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ABSTRACT Over the last years, the role of the distribution system operator (DSO) has largely expanded.
This is necessitated by the increased penetration of intermittent energy resources at the distribution level,
as well as the new, more complex interactions with the transmission system operator (TSO). As such,
to properly manage its system and to have an effective joint cooperation with the TSO, the DSO is
required to procure and carefully manage flexibility services from distributed energy resources (DER).
This paper introduces a thorough framework on optimal operational planning (day-ahead scheduling) and
operational management (real-time dispatch) of active distribution systems under uncertainties, to avoid
line congestions and voltage limit violations, and efficiently balance the distribution system. A two-stage
stochastic programmingmodel based on weighted scenarios is proposed to optimize themulti-period optimal
power flow day-ahead scheduling, i.e., scheduled power flows at the TSO-DSO interface and reserved DER
flexibility services. Subsequently, the operational management, realized with a predictive real-time dispatch
model based on a constantly updated rolling horizon, aims to efficiently activate the available flexibility
services to minimize deviations from the committed schedule. Different sources of flexibility are considered,
with their respective response times also taken into account at real-time dispatch. The proposed framework
is applied on two distribution systems and investigates the DSO’s level of risk exposure while minimizing
its total cost (reservation and activation expenses). The results indicate that a less conservative approach at
planning stage, despite the potential risk exposure, can lead to significant reduction in total expenses.

INDEX TERMS Battery storage systems, distributed energy resources, flexibility services management,
real-time dispatch, renewable energy sources, stochastic day-ahead scheduling, stochastic programming.

NOMENCLATURE
ACRONYMS & ABBREVIATIONS
ANM Active network management
BSS Battery storage systems
DAS Day-ahead scheduling
DER Distributed energy resources
DERA DER aggregators
DSO Distribution system operator
FSD Flexibility service downward-regulated
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FSP Flexibility service providers
FSU Flexibility service upward-regulated
HV High voltage
LV Low voltage
MPC Model predictive control
MV Medium voltage
NLP Non-linear programming
OPF Optimal power flow
PV Photovoltaics
P-RTD Predictive real time dispatch
RES Renewable energy sources
RTD Real time dispatch
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SS Substations
S-DAS Stochastic day-ahead scheduling
TSO Transmission system operator
T-D TSO-DSO interface
WG Wind generators

SETS & INDICES
�N Buses of the system, indexed by i and j
�Ni Buses of the system connected with bus i
�D Loads, indexed by d
�Di Loads located at bus i
�W RES, indexed by w
�Wi RES located at bus i
�B BSS, indexed by b
�Bi BSS located at bus i
�AG DERA, indexed by ag
�AGi DERA regulating the net load of bus i
8 HV/MV SS of the system, indexed by ss
8i HV/MV SS of the system located at bus i
S Scenarios, indexed by s
S` States of load, indexed by `
Sv States of wind speed, indexed by v
t Index of time-intervals, running from 1 to T
h Index of rolling horizon time-intervals, running

from 1 to H

PARAMETERS
Gij/Bij Conductance/susceptance of line i− j
Smax
ij Capacity of line i− j [MVA]
Smax
ss Capacity of HV/MV SS ss [MVA]
Vmax /min Maximum/minimum voltage magnitude
Pfrcd,t Forecast of active power consumed by load

d in time-interval t [MW]
Pactd,t Actual active power consumed by load d in

time-interval t [MW]
Pfrcw,t Forecast of available active power pro-

duced by RES w in time-interval t [MW]
Pactw,t Actual available active power produced by

RES w in time-interval t [MW]
ECapb Energy capacity of BSS b [MWh]
PCapb Power capability of BSS b [MW]
SoCmax /min

b Maximum/minimum state of charge of
BSS b

η
Ch/Dch
b Charging/discharging efficiency of BSS b
EFSU/FSDag Energy capacity of FSU/FSD offered by

DERA ag [MWh/day]
PFSU/FSDag Power capability of FSU/FSD of DERA ag

[MW]
1PFSU/FSDag Ramping limit of FSU/FSD of DERA ag

[MW/h]
CR−FSU/FSD
ag Cost of reserved FSU/FSD of DERA ag

[e/MW-h]
CA−FSU/FSD
ag Cost of activated FSU/FSD of DERA ag

[e/MWh]

CCh/Dch
b Cost of charging/discharging of BSS

b[e/MWh]
CR
b Cost of reserved capacity of BSS b

[e/MW-day]
Ccurt
w Cost of wind generation curtailment

[e/MWh]
ρ
Dev+/Dev−
ss,t Penalty for upward/downward deviation at

T-D in time-interval t [e/MWh]
πs Probability of scenario s
π` Probability of load state `
πv Probability of wind speed state v
dt Duration of time-interval t [hour]

VARIABLES
Vi,t/θi,t Voltage magnitude/angle of bus i in time-

interval t
Pij,t/Qij,t Active/reactive power flow of line i − j in

time-interval t [MW/MVAr]
PDASss,t Active power scheduled to be imported

at T-D, i.e., at the HV/MV SS, in time-
interval t [MW]

Pss,t/Qss,t Active/reactive power imported at T-D in
time-interval t [MW/MVAr]

PDev+/Dev−ss,t Upward/downward deviation of active
power imported at T-D in time-interval t
[MW]

PInjw,t Active power injected by RES w in time-
interval t [MW]

QInjw,t Reactive power of RES w in time-interval
t [MVAr]

Eb,t Energy stored in BSS b at the end of time-
interval t [MWh]

PR−FSU/FSDag,t Reserved FSU/FSD of DERA ag in time-
interval t [MW]

PA−FSU/FSDag,t Activated FSU/FSD of DERA ag in time-
interval t [MW]

QFSU/FSDag,t Reactive power of FSU/FSD of DERA ag
in time-interval t [MVAr]

ER−Capb Reserved energy capacity of BSS b [MWh]
PR−Capb Reserved power capability of BSS b [MW]
PCh/Dchb,t Charging/discharging active power of BSS

b in time-interval t [MW]

I. INTRODUCTION
The ever-increasing integration of renewable DER due to the
deregulation of the energy market creates more challenges
for the DSO, as high levels of uncertainty are introduced
into the electrical power system, especially at the distribution
level. Apart from the traditional problem of voltage control in
passive distribution systems, the issue of congestion manage-
ment has also attracted significant attention. In adhering with
the future smart grid vision [1], active distribution systems are
expected to host very high shares of renewable technologies,
which have been noted to cause substantial thermal issues if
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left uncontrolled. It comes to no surprise that recent research
works have proposed approaches to combat congestions
[2]–[6]. On the other hand, DER are also excellent sources
of flexibility for managing the electrical systems. The DSO
can utilize DER flexibility to optimize its system’s voltage
profile, manage local congestions [7], and generally optimize
the operation of smart distribution networks through ANM
schemes [8].

However, the uncoordinated activation of DER flexibility
by the DSO is likely to impact the system’s balance and imply
extra costs to the TSO, as explained in [7]. A prerequisite for
the beneficial use of DER flexibility is the joint cooperation
with the TSO, a topic that, recently, is widely discussed by
many studies [9]–[11], with several coordination schemes
having been proposed [12]. For the purposes of this paper,
the TSO-DSO coordination is realized under the scheme of
shared balancing responsibility model, according to the con-
ceptual framework of [12]. Under this coordination scheme,
the DSO organizes a local flexibility services market and is
responsible for congestion management and balancing the
distribution grid, while staying committed to a predefined
schedule in the interconnection with the TSO.

This paper aims to propose a comprehensive framework
of flexibility services management for the DSO. Within this
framework, the DSO firstly carries out the DAS of the nec-
essary DER flexibility for congestion management and bal-
ancing the local system, while optimizes an import/export
hourly schedule at the T-D to timely notify it to the TSO.
Subsequently, the distribution system is operated by proper
RTD of the reserved DER flexibility. The overall objective is
to minimize the deviations from the committed import/export
schedule at the T-D with minimum flexibility services costs
(reserve and activation cost), while meeting all technical
limits.

In the past, the DAS was modelled as a multi-period
OPF problem, assuming negligible forecast error, and thus
ignoring the inherent uncertainties of RES and loads. Articles
[13]–[15] are representative of such a DAS approach present-
ing deterministic models that anticipate the periods when net-
work technical constraints are violated and propose volt/var
control and/or up/down active power regulation for conges-
tion management during these periods. In [13], the DAS
is modelled as an active-reactive OPF that considers the
four-quadrant operation capability of the BSS to maximize
wind energy yield. A dynamic OPF formulation with energy
storage and flexible demand in an ANM framework is pro-
posed in [14]. An integer genetic algorithm is employed to
optimally solve the DAS problem and minimize operational
costs in [15].

In recent years, research has focused on new models that
integrate in DAS the uncertainties of RES and load. The
authors of [16] propose a deterministic, dynamic OPF model
that considers the operational uncertainties of wind gener-
ation and demand during the planning stage. This model
schedules the import/export at the T-D and commits reserves
for the worst-case uncertainty scenario. Such an approach

leads to more expensive reserves than an approach that
would considermore scenarios of uncertainty alongwith their
probability of occurrence. In [17], a two-stage stochastic
multi-period OPF is used to schedule the generation of the
dispatchable units given the available demand response flex-
ibility, while considering the wind power uncertainty under
multiple weighted scenarios. The authors of [18] introduce a
two-stage robust OPF model for DSOs willing to utilize flex-
ibility services from local DER to solve congestion/voltage
problems considering the worst-case scenario of uncertainty.
Even though the approach of [18] concludes in more reliable
solutions, it also leads to more expensive reserves and with
total operational costs similar to those of a deterministic
scheduling with OPF.

The DAS is by itself insufficient to properly manage the
distribution system, and thus, RTD is additionally employed
to achieve improved operation. Several dispatch techniques
have been proposed, from single-period OPF models to more
advanced techniques of predictive control based on multi-
period OPF models with a rolling horizon. RTD with pre-
dictive control is based on the principles of MPC, a model
that predicts the future evolution of a process to optimize
a set of control variables over a constantly updated rolling
horizon.

Several studies have employed the MPC approach to man-
age the operation of power systems [19]–[23]. In [19], a MPC
algorithm is proposed to solve the economic dispatch problem
in the presence of RES in electrical systems, while the authors
of [20] propose a centralized MPC strategy to maximize
the wind energy yield in an isolated electrical system by
compensating for wind and load variability. Studies [19]–[20]
both highlight the potential of MPC in electrical systems,
but overlook important technical aspects, such as voltage
and power flow limits, without having formulated the power
flow equations. A combined day-ahead and intra-day hierar-
chical optimization is introduced in the works of [21]–[22]
to maximize RES exploitation, while minimizing variations
between DAS and RTD. A MPC-based dispatch approach
addresses the uncertainties of electric vehicle charging
patterns in [23].

However, none of the proposed models has considered the
response time of DER offering flexibility services, which is
proposed as a new flexibility index by [24]. The response
time is also presented by [25] as a physical requirement of
flexibility that should be taken into account by the operators.
Both [24] and [25], highlight the significance of integrating
the response time in the modelling of flexibility services.
To the authors’ knowledge, this is the first paper to take into
account the response time of flexibility services in the MPC
algorithm to solve the RTD problem, with respect to DSO
utilizing flexibility services from DER.

The contribution of this paper is threefold:
a) It proposes a novel framework for managing flexibil-

ity services that optimizes both the DAS of the reserved
flexibility as well as their activation during RTD procedure.
The proposed framework additionally investigates the DSO’s
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level of risk exposure that minimizes the total expenditures
of flexibility services (DAS and RTD costs).
b) It proposes a novel stochastic DAS approach based

on a two-stage stochastic programming formulation. The
proposed S-DAS schedules the power flows at the T-D and
minimizes the reserved flexibility services by minimizing the
cost of their expected activation.
c) A predictive control strategy is employed for the RTD

procedure. The proposed P-RTD not only considers the mod-
elling of the ramping limits and the dynamic operation of
DER, but also proposes a model for the efficient handling of
the different response times of system’s flexibility sources.

The remainder of this paper is structured as follows:
Section II presents the proposed framework for flexibility
services management. Section III formulates the proposed
S-DAS. Section IV describes the proposed P-RTD optimiza-
tion procedure. Section V presents the examined case studies
and analyses the obtained results. Section VI concludes the
paper and proposes future research work.

II. PROPOSED FRAMEWORK FOR FLEXIBILITY
SERVICES MANAGEMENT
This paper proposes a framework for optimal operational
planning (DAS stage) and optimal operational management
(RTD stage) of active distribution systems by means of
congestion management and system balancing, while max-
imizing the active power injection from RES. With this
approach, theDSO exploits theDERflexibility services in the
most effective way in order to stay committed to the hourly
import/export schedule at the T-D with minimum deviations.
The expected value of these deviations is minimized at the
DAS stage by anticipating the needed flexibility services,
whereas the actual value of these deviations is minimized
during RTD by activating the needed portions of flexibility
services from those reserved during DAS.

A. MAIN ASSUMPTIONS
For the sake of clarity, the main assumptions adopted in this
paper are summarized as follows:
a) The FSP included in this study are: i) DERA (aggre-

gators of flexible loads and DER operating at LV), ii) BSS
(operating at MV), and iii) RES (operating at MV). Their
models are described in Section III.
b) The proposed framework is applied under normal oper-

ating conditions, where the scenarios considered are solely
related to the intermittent nature of RES and load. Extreme
conditions, such as WG tripping, which require contingency
reserves, are not within the scope of this paper.
c) Wind power generation depends, among other factors,

on various parameters of weather conditions. In this paper,
for simplicity, the authors have considered that wind power
generation depends only onwind speed and thus, is calculated
based on the well-known wind turbine S-curve Pw (v) [13].
Additionally, without loss of generality, wind speed profile
is considered the same across all buses of the distribution
system.

d) It is supposed that an online local flexibility market
platform has been developed. This platform is intended to
facilitate the trading between DSO and the FSP.
e) The FSP are able to submit their bids in the local flexi-

bility market platform until 10:00 am. After the local market
is cleared, the DSO timely notifies the scheduled power flows
at the T-D to the TSO, not later than 12.00 at noon. The TSO,
in turn, clears the ancillary services day-ahead market under
its responsibility, having the predefined schedules at the T-D.

B. FLEXIBILITY SERVICE PROVIDERS
A flexibility service, as defined in [26], is a power regulation
(upward or downward) sustained at a given time-period for
a predefined duration from a specific location within the
network. The flexibility service, as a product, is technically
characterized by four indices: a) power capability, b) energy
capacity, c) ramping limit and d) response time [24].

In what follows, flexibility services are split in two main
categories according to the direction of active power regula-
tion. Thus, the term FSD refers to demand reduction (or gen-
eration increase) and vice versa for the term FSU.

1) DER AGGREGATORS
ADERA is an intermediary entity that aggregates the demand
of end-customers’ flexible loads and the generation of resi-
dential DERs (e.g., roof-top photovoltaics, other small-scale
RES) to provide both FSD and FSU to the DSO upon request.
The DERA provides its services at the MV level of the distri-
bution system. The DSO, in turn, offers proper remuneration,
according to the DERA’s bid (energy-price pair), depending
on the reserved and the activated volumes of FSD and/or
FSU. Therefore, the DERA is remunerated at a ‘‘commitment
price’’ (in e/MW-h) for keeping the needed FSD and FSU
reserves, and at an ‘‘activation price’’ (in e/MWh) for the
finally delivered FSU and FSD.

FSD offered by DERA can be achieved by reducing cus-
tomers’ aggregated consumption, or by increasing the power
injected by local DER (e.g., discharging of the scheduled
stored energy for backup). FSU, in accordance, is derived by
increasing customers’ aggregated consumption (e.g., through
price signals or demand response programs) or by reducing
residential RES aggregated production (e.g., generation cur-
tailment). The way in which the DERA achieve FSU and FSD
is not the focus of this paper.

2) BATTERY STORAGE SYSTEMS
BSS can inherently provide bi-directional flexibility services,
both FSD and FSU, when discharging and charging, respec-
tively. It is assumed that BSS are privately-owned, and an
agreement is in place stating that the DSOmay reserve partial
of full capacity of the BSS at the day-ahead stage. The BSS
are then dispatched by the DSO to ‘‘absorb’’ any power mis-
matches from the day-ahead committed schedule. The portion
of BSS’s capacity that is scheduled to be utilized is deter-
mined duringDAS. In case the capacity of the BSS is partially
reserved, it is assumed that its owner uses the remaining

38858 VOLUME 8, 2020



V. A. Evangelopoulos et al.: Flexibility Services Management Under Uncertainties for Power Distribution Systems

capacity in a way that does not affect the corresponding bus’s
net load profile. Here, again a twofold remuneration scheme
is in place for the services provided by BSS owners. The
BSS owner is remunerated by the DSO at a ‘‘commitment
price’’ (in e/MW-day) for its capacity availability and at an
‘‘activation price’’ (in e/MWh) when charging/discharging
active power is activated.

3) RENEWABLE ENERGY SOURCES
Privately-owned large-scale RES connected at MV of the
distribution system are subject to curtailment providing a
service of FSU. RES curtailment is the DSO’s last resort, as it
is usually activated in case of forecasted congestion or when
energy mismatches between DAS and RTD are more expen-
sive than RES tariffs. The conditions under which a DSO
can force curtailment are determined in a power purchase
agreement contract between the DSO and the RES owner.
Curtailment policies, as well as the compensation paid to the
RES owners differ per country [27]. In this paper, the cost
of RES curtailment is set equal to a fixed price (in e/MWh),
supposing a feed-in-tariff contract.

Large-scale RES should also be able to provide reactive
power support according to grid code. The reactive power
requirements, as specified in different grid codes, are summa-
rized in [28]. For the purposes of this study, the reactive power
capability ranges±33% of the active power injected by RES,
i.e., power factor ranges from 0.95 leading to 0.95 lagging.
This is a producer’s obligation and thus the DSO uses reactive
power compensation free of remuneration.

C. STRUCTURE OF THE PROPOSED FRAMEWORK
Fig. 1 depicts the proposed framework that structures the
solution of the problem in two stages.

1) DAY-AHEAD SCHEDULING (1ST STAGE)
Formulated as a multi-period OPF, in the general approach,
DAS comprises the decisions to be made one day in advance
given the day-ahead forecasting. In this paper, a two-stage
stochastic programming model for the multi-period OPF,
hereafter called S-DAS, is proposed to optimize the first stage
variables, while ensuring feasible control actions throughout
the second stage. To simulate the uncertain realization of the
second stage, multiple scenarios are considered, based on the
day-ahead forecast, weighted according to their probability
of occurrence.

The first stage variables, pertaining to here-and-now
decisions that ensure feasible solution across all scenarios
considered, are the following:

1) scheduled import at T-D, i.e., the HV/MV SS,
2) reserved FSD and FSU by DERA,
3) reserved BSS power capability.

The vector of here-and-now control variables in time-interval
t is defined as follows:

uDASt =

{
PDASss,t ,P

R−FSU
ag,t ,PR−FSDag,t ,PR−Capb

}

FIGURE 1. Proposed framework for flexibility services management.

The second stage variables, referring to wait-and-see deci-
sions potential to be realized during RTD, comprise the con-
trol actions activated by the DSO:
1) DERA FSD and FSU activation,
2) BSS active power charging/discharging,
3) RES active power curtailment,
4) RES reactive power compensation,

and the state variables of the system during RTD:
5) voltage magnitude and angle per bus,
6) active and reactive power flow per line,
7) active and reactive power imported at the T-D,
8) reactive power of activated FSD and FSU,
9) BSS stored energy at the end of each time-interval.

The vectors of the second stage variables (control and state
variables) in time-interval t under scenario s that are used in
the S-DAS are defined as follows:

uRTDt,s =

{
PA−FSUag,t,s ,PA−FSDag,t,s ,P

Ch
b,t,s,P

Dch
b,t,s,P

Inj
w,t,s,Q

Inj
w,t,s

}
xRTDt,s =

{
Vi,t,s, θi,t,s,Pij,t,s,Qij,t,s,P

Dev+
ss,t,s ,P

Dev−
ss,t,s ,

Qss,t,s,QFSUag,t,s,Q
FSD
ag,t,s,Eb,t,s

}
2) REAL-TIME DISPATCH (2ND STAGE)
The RTD stage is the validation process of the DAS. In this
stage, the DSO transitions to the RTD, given the reserves and
the schedule of DAS. In general, RTD is an iterative proce-
dure that determines the control actions to be implemented
at each time-interval of the operation based on the decisions
made in the DAS stage and given the updated state of the
system. In this paper, a P-RTD is proposed, formulated as
multi-period OPF to take advantage of a look-ahead rolling
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horizon, based on the principles of MPC. The modelling of
response time of the available flexibility services is also intro-
duced. The P-RTD utilizes the constantly refreshed short-
term forecasting to determine the real-time control actions,
anticipating optimal future control actions of the rolling
horizon.

The P-RTD, thoroughly analysed in Section IV, optimizes
the vectors of the second stage variables uP−RTDt+h|t and xP−RTDt+h|t
at the h−th time-interval of the t−th rolling horizon, given the
system’s current state, i.e., for h = 0 of the previous rolling
horizon, uP−RTDt|t−1 and xP−RTDt|t−1 .

uP−RTDt+h|t =

{
PA−FSU
ag,t+h|t ,P

A−FSD
ag,t+h|t ,P

Ch
b,t+h|t ,

PDchb,t+h|t ,P
Inj
w,t+h|t ,Q

Inj
w,t+h|t

}

xP−RTDt+h|t =

{
Vi,t+h|t , θi,t+h|t ,Pij,t+h|t ,Qij,t+h|t ,Qss,t+h|t ,

PDev+ss,t+h|t ,P
Dev−
ss,t+h|t ,Q

FSU
ag,t+h|t ,Q

FSD
ag,t+h|t ,Eb,t+h|t

}

III. S-DAS FORMULATION
In this section, firstly the uncertainties of RES and load
are modelled by creating different scenarios. Subsequently,
the models of the FSP, the interaction with the TSO and the
network constraints are described. The objective function and
the overall S-DAS formulation are also given.

A. DAY-AHEAD FORECASTING
UNCERTAINTIES MODELLING
This subsection explains the process of scenario creation for
handling the uncertainties of the day-ahead point forecasts of
load and RES generation. These scenarios represent scenarios
of the distribution system’s net load, since they are derived
from combinations of different uncertain states of load and
RES generation. Their values are used as input parameters
for the S-DAS.

1) PROBABILISTIC FORECASTS WITH
PREDICTION INTERVALS
In decision-making, probabilistic forecasting provides a bet-
ter view of the potential future outcomes than determin-
istic forecasting. The term deterministic forecasting refers
to methods for producing point forecasts, which represent
the conditional expectations of the future outcomes with-
out considering future errors, whereas the term probabilistic
forecasting is used when prediction error and its probability
density function are considered.
A prediction interval is a type of probabilistic forecast

directly linked to past errors due to point forecasts, which do
not consider the error distributions [29]. According to [30],
a prediction interval with a coverage rate α% is defined as
a range of potential values for the future observations yt+h,
computed based on past observations, such that the future
observations yt+h will fall in this interval with probability
α, where α ∈ [0, 1]. For example, for a prediction inter-
val with a coverage rate of 90%, there is 90% probabil-
ity for the future observations to belong in this prediction

interval [30]. Prediction intervals are usually based on the
root mean square error of the deterministic forecastingmodel,
which provides an estimate of the standard deviation of the
forecast error [31]. In this paper, the upper and lower bounds
of the prediction interval are constructed by (1) assuming
that the forecast error of the h − th next time-interval is
normally distributed with zero mean and standard deviation
σh, i.e., εh ∼ N

(
0, σ 2

h

)
[32].

ŷt+h ± zσh (1)

where ŷt+h denotes the point forecast issued at time-interval t
for the h−th next time-interval and z is the critical value of the
standard normal distribution that gives the coverage rate of
the prediction interval. For example, z = 3 gives a prediction
interval with a coverage rate of 99.7% [31]. Do note that the
standard deviation of the forecast error depends on the lead
time of the prediction.
In what follows, the probabilistic forecasts of the future

outcomes are realized based on a prediction interval with
a certain coverage rate. This prediction interval, in turn,
is used to create multiple representative states of the future
outcomes, each one with its probability of occurrence. These
states are created by dividing the selected part of the normal
distribution of the forecast error (i.e., the area within the
prediction interval selected) into distinct intervals, according
to the methodology followed in [33] and [34].
Wind speed and load forecast errors are both assumed

to follow the normal distribution, a common approach
employed by many researchers to model such forecast errors
[34]–[36]. Modifications on the probability distribution func-
tion of the forecast errors could be made accordingly to better
approximate the reality; however, this is out of the scope of
this paper. Nonetheless, the forecast error modelling (for both
wind speed and load) that is detailed hereafter is generic; it
is applicable for any distribution function desired, should one
wish to obtain even more representative results.

2) WIND SPEED FORECASTING UNCERTAINTIES
The uncertainties of wind speed deterministic forecasting
are strongly related to the forecast error of the numerical
weather prediction tools. This error is assumed to be normally
distributed with zero mean and standard deviation σw [35].
To construct multiple states of wind speed, firstly, the nor-

mal distribution of the wind speed forecast error is divided
into distinct intervals. An example of nine intervals is pre-
sented in Table 1. The corresponding value of wind speed
forecast error for each state (εwv ) is determined taking into
account the worst-case per state in accordance with Table 1.
For example, in state 1, where εlov = −3σw and εupv = −2σw,
it implies that εwv = −3σw, i.e., ε

w
v takes the worst case

value between εlov and εupv . Similarly, in state 8, where εlov =
+1.5σw and εupv = +2σw, it implies that εwv = +2σw. The
probability of each state is calculatedwith (2a). The sum of all
probabilities of the selected states is equal to the coverage rate
aV of the considered prediction interval, as (2b) shows. For
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TABLE 1. States of wind speed forecast error for prediction interval with
coverage rate of 99.7%.

example, the nine states of Table 1 have a prediction interval
with a coverage rate (aV ) of 99.7%.

πv = Pr(εlov ≤ x ≤ ε
up
v ) =

1

σw
√
2π

ε
up
v∫

εlov

e
−
(x−µw)2

2σ2w dx, ∀v (2a)

aV =
∑
v∈Sv

πv (2b)

Following this process, a set of states for the wind speed
forecast error is created, each state with its value and its
probability of occurrence: {εwv , πv}.

3) LOAD FORECASTING UNCERTAINTIES
The DSO should also predict the day-ahead demand at each
of the system’s buses. Assuming that the load forecast error
follows the normal distribution, the same approach with
wind speed probabilistic forecasting is applied. Likewise,
the example of Table 1 is applied for the states of load forecast
error. The probability of each state is calculated with (3a),
while the sum of all probabilities of the selected states is
equal to the coverage rate aL of the considered prediction
interval, as shown by (3b). A set of states for the load forecast
error is created, each state with its value and its probability of
occurrence: {εd` , π`}.

π` = Pr(εlo` ≤ x ≤ ε
up
` ) =

1

σ`
√
2π

ε
up
`∫

εlo`

e
−
(x−µ`)

2

2σ2
` dx, ∀` (3a)

aL =
∑
`∈S`

π` (3b)

4) SCENARIOS CREATION
For the creation of scenarios, each state of wind speed fore-
cast error is combined with each state of load forecast error,
i.e., {εws , ε

d
s } = {ε

w
v , ε

d
l }s, using a scenario tree model as

in [37]. Assuming that the individual states of wind speed
and load forecast error are independent, the probability of
occurrence of scenario s is calculated according to (4a). The
load forecasting curve under scenario s is calculated by (4b)
based on the day-ahead point forecast P̂frcd,t . The wind power
forecasting curve under scenario s is given by (4c), as a func-
tion of the wind speed day-ahead point forecast v̂frct by using
the S-curve transformation of the wind turbine of WG w, i.e.,
Pw (v). Equation (4d) gives the sum of all probabilities of the
created scenarios. The value of β represents the probability
the upcoming observations of load and wind speed to be
covered by the created scenarios. Hence, β is the coverage
rate of the selected scenarios.

πs = πl · πv ∀s (4a)

P frc
d,t,s = P̂ frc

d,t + ε
d
s ∀d, t, s (4b)

P frc
w,t,s = Pw

(
v̂ frct + ε

w
s

)
∀w, t, s (4c)

β = aL · aV =
∑
s∈S

πs (4d)

B. FLEXIBILITY SERVICE PROVIDERS MODEL
1) DER AGGREGATORS
The participation of DERA in the day-ahead flexibility mar-
ket is described by (5a)–(5e). Equations (5a) and (5b) denote
the maximum energy of FSU and FSD the DSO can reserve
over a day. The power capability of FSU and FSD are formu-
lated by (5c) and (5d), accordingly. Equation (5e) gives the
cost of reserves that should be remunerated.

T∑
t=1

PR−FSUag,t ≤EFSUag ∀ag (5a)

T∑
t=1

PR−FSDag,t ≤EFSDag ∀ag (5b)

PR−FSUag,t ≤PFSUag ∀ag, t (5c)

PR−FSDag,t ≤PFSDag ∀ag, t (5d)

FDASag,t =C
R−FSU
ag PR−FSUag,t +CR−FSD

ag PR−FSDag,t ∀ag, t (5e)

Equations (6a)–(6e) model the activation of the flexibility
services provided by DERA. Depending on the hourly avail-
ability ‘‘agreed upon’’ during the DAS, the DSO can proceed
to FSU or FSD activation during RTD, when needed, up
to the reserved volume according to (6a)–(6b). The reactive
power regulated by DERA, i.e., QFSDag,t,s or Q

FSU
ag,t,s is consid-

ered proportional to the FSD or FSU activation during RTD
according to the power factor of the system’s bus. Ramping
limits are also considered in this stage and are modelled by
(6c)–(6d). Equation (6e) gives the activation cost that should
be remunerated to the DERA.

PA−FSUag,t,s ≤P
R−FSU
ag,t ∀ag, t, s (6a)

PA−FSDag,t,s ≤P
R−FSD
ag,t ∀ag, t, s (6b)

−dt1PFSUag ≤P
A−FSU
ag,t,s −P

A−FSU
ag,t−1,s≤dt1P

FSU
ag ∀ag, t, s (6c)
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−dt1PFSDag ≤P
A−FSD
ag,t,s −P

A−FSD
ag,t−1,s≤dt1P

FSD
ag ∀ag, t, s (6d)

FRTDag,t,s=C
A−FSU
ag PA−FSUag,t,s +C

A−FSD
ag PA−FSDag,t,s ∀ag, t, s (6e)

2) BATTERY STORAGE SYSTEMS
Equations (7a)–(7d) model the reserved BSS capacity. The
DSO can fully or partially reserve the BSS power capability
and the BSS energy capacity, as given by (7a) and (7b),
respectively. Equation (7c) ensures that the proportion of
the reserved power capability is always equal to that of the
reserved energy capacity. Equation (7d) gives the cost of BSS
availability calculated during the DAS.

PR−Capb ≤ PCapb ∀b (7a)

ER−Capb ≤ ECapb ∀b (7b)

PR−Capb /PCapb = ER−Capb /ECapb ∀b (7c)

FDASb = CR
b P

R−Cap
b ∀b (7d)

The operation of BSS under all scenarios is modelled
by (8a)–(8f). The BSS energy balance at each time-interval
should satisfy the dynamic mathematical formulas (8a)–(8b).
The upper limit of power that can be absorbed by or injected
to the system is described by (8c)–(8d). Equation (8e) models
the upper and lower technical limits of the BSS. Equation (8f)
gives the activation cost of BSS charging/discharging.

Eb,t,s=Eb,t−1,s+dt
(
ηChb PChb,t,s − P

Dch
b,t,s/η

Dch
b

)
∀b, s, t 6= 1 (8a)

Eb,t,s = Eb,0 + dt
(
ηChb PChb,t,s − P

Ch
b,t,s/η

Dch
b

)
∀b, s, t = 1 (8b)

PChb,t,s ≤ P
R−Cap
b ∀b, t, s (8c)

PDchb,t,s ≤ P
R−Cap
b ∀b, t, s (8d)

SoCmin
b ≤ Eb,t,s/E

R−Cap
b ≤ SoCmax

b ∀b, t, s (8e)

FRTDb,t,s = CCh
b PChb,t,s + C

Dch
b PDchb,t,s ∀b, t, s (8f)

3) RENEWABLE ENERGY SOURCES
Equation (9a) limits the RES active power injection up to the
forecasted available RES production. Equation (9b) relates
the reactive power capability of RES with the injected active
power. Equation (9c) gives the compensation the DSO pays
to the RES owner, should curtailment be needed.

PInjw,t,s ≤ P
frc
w,t,s ∀w, t, s (9a)

−0.33 · PInjw,t,s ≤ Q
Inj
w,t,s ≤ 0.33 · PInjw,t,s ∀w, t, s (9b)

FRTDw,t,s = Ccurt
w

(
P frc
w,t,s − P

Inj
w,t,s

)
∀w, t, s (9c)

C. INTERACTION OF DSO WITH THE TSO
In this framework, the DSO aims to stay committed to the
hourly import/export schedule at the T-D, already informed
to the TSO at noon a day in advance. Only if the reserved
flexibility services from local DERhave been exhausted, does
the DSO import energy from the TSO. Equation (10a) gives

the final import in RTD and (10b) calculates the cost imposed
if deviations from the committed schedule occur at the T-D,
i.e., the HV/MV SS.

Pss,t,s = PDASss,t + P
Dev+
ss,t,s − P

Dev−
ss,t,s ∀ss, t, s (10a)

FRTDss,t,s = ρ
Dev+
ss,t PDev+ss,t,s + ρ

Dev−
ss,t PDev−ss,t,s ∀ss, t, s (10b)

The penalties for upward and/or downward deviations are
set by the TSO and are related to the real-time system price
and the cost of extra energy portions the TSO must dispatch
to balance the system under its responsibility.

D. AC POWER FLOW MODEL
The AC power flow equations, given by (11a)–(11c), are
applied ∀i, t, s and ∀j ∈ �Ni:

Pij,t,s = −V 2
i,t,sGij

+Vi,t,sVj,t,s
(
Gij cos θij,t,s + Bij sin θij,t,s

)
(11a)

Qij,t,s = V 2
i,t,sBij
+Vi,t,sVj,t,s

(
Gij sin θij,t,s − Bij cos θij,t,s

)
(11b)

θij,t,s = θi,t,s − θj,t,s (11c)

The node power balance is expressed by (12a)–(12b):∑
j∈�Ni

Pij,t,s=
∑
ss∈8i

Pss,t,s+
∑
w∈�Wi

PInjw,t,s

+

∑
b∈�Bi

(
PDchb,t,s−P

Ch
b,t,s

)
+

∑
ag∈�AGi

(
PA−FSDag,t,s −P

A−FSU
ag,t,s

)
−

∑
d∈�Di

P frc
d,t,s ∀i, t, s (12a)

∑
j∈�Ni

Qij,t,s=
∑
ss∈8i

Qss,t,s+
∑
w∈�Wi

QInjw,t,s

+

∑
ag∈�AGi

(
QFSDag,t,s − Q

FSU
ag,t,s

)
−

∑
d∈�Di

Q frc
d,t,s ∀i, t, s (12b)

Equations (13a)–(13c) describe the system’s technical con-
straints. Equation (13a) sets the bus voltage limits. Equa-
tions (13b) and (13c) set the capacity limits of network’s
power flows and HV/MV SS, respectively.

Vmin
≤ Vi,t,s ≤ Vmax

∀i, t, s (13a)(
Pij,t,s

)2
+
(
Qij,t,s

)2
≤

(
Smax
ij

)2
∀i, t, s, j ∈ �Ni (13b)(

Pss,t,s
)2
+
(
Qss,t,s

)2
≤
(
Smax
ss

)2
∀ss, t, s (13c)

E. OBJECTIVE FUNCTION
The objective function of S-DAS, given by (14a), consists
of two terms, each one related with the stage the decisions
refer to. The first term is (14b) and the second term is the
expected value of (14c), both over the 24-hour scheduling
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period, with 1 h resolution interval. Equation (14b) gives the
cost of reserving flexibility services, and (14c) gives the cost
of activating flexibility services under scenario s.

f S−DAS =FDAS
(
uDASt

)
︸ ︷︷ ︸

1st stage

+

∑
s∈S

πsFRTDs

(
uRTDt,s , x

RTD
t,s

)
︸ ︷︷ ︸

2nd stage

(14a)

FDAS =
T∑
t=1

∑
ag∈�AG

FDASag,t +
∑
b∈�B

FDASb (14b)

FRTDs =

T∑
t=1

FRTDss,t,s +
∑

ag∈�AG

FRTDag,t,s

+

∑
w∈�W

FRTDw,t,s +
∑
b∈�B

FRTDb,t,s

 (14c)

F. OVERALL FORMULATION
The general mathematical formulation of the S-DAS is given
in (15) as follows:

min f S−DAS
(
uDASt ,uRTDt,s , x

RTD
t,s

)
(15a)

subject to

(5)− (14) (15b)

The proposed S-DAS problem is a NLP optimization prob-
lem and is solved using the state-of-the-art CONOPT4 com-
mercial solver of GAMS [38]. In S-DAS, the duration of
time-intervals is considered equal to one hour (dt = 1), i.e.,
24 time-intervals.

The S-DAS problem is inherently a large-scale opti-
mization problem. Its computational complexity primarily
depends on: a) the number of network buses, b) the multiple
periods of the day-ahead planning and c) the number of the
scenarios that model the uncertainties of wind speed and load.
For instance, to optimize the day-ahead planning (24 hourly
periods) for a 33-bus distribution system considering 9 states
of wind speed and 9 states of load (81 scenarios of net
load), the time elapsed is approximately 34 minutes. All tests
in this paper were performed on a PC with an Intel Core
i7-8700 CPU at 3.20 GHz and 8 GB of RAM. When the
number of buses increases, the tractability degrades in a non-
linear fashion.

The computational performance could be improved by
employing convex relaxations of the AC power flow equa-
tions, such as the semi-definite programming relaxation [39],
the second order cone relaxation [40]–[41], and the quadratic
convex relaxation [42].

In this paper, the authors’ main interest is to propose
a novel and effective S-DAS model to solve the problem
and validate the extracted results, rather than improve the
execution performance. Given the novelty of the proposed
approach, it is paramount to ensure its reliability, as is done
in this paper, before developing further add-ons.

IV. P-RTD FORMULATION
In this section, firstly a model to handle the response time of
the FSP is introduced. Subsequently, the algorithm of the pro-
posed P-RTD procedure is outlined based on the principles of
MPC. Moreover, the overall P-RTD formulation is given.

A. HANDLING RESPONSE TIME
The time delay between receiving the activation signal sent by
the DSO and achieving the requested output is defined as the
response time of the flexibility service. The response time is
a critical parameter during RTD as it plays significant role in
the optimal flexibility sources management and the efficient
activation of the less expensive flexibility services on time.
Response time varies from a few seconds to few minutes and
depends on the technologies used to implement the flexibility
services, as analyzed in [24] and [25].

FIGURE 2. Handling response time when equal to one timeslot of the
P-RTD procedure.

Let define ut+h|t as the vector of control actions with
response time equal to one timeslot during the h − th times-
lot of the t − th rolling horizon, where h = 0...H − 1.
The handling of the response time during P-RTD can be
depicted by Fig. 2.Whenever the response time is equal to the
timeslot of the dispatch procedure, the vector of the current
control actions utn|tn cannot be immediately dispatched and
is replaced by the vector of the control actions utn+1|tn−1 of
the second timeslot of the previous rolling horizon. In case
the response time is equal to twice the timeslot of the dispatch
procedure, the vector of the current control actions utn|tn is
replaced by the control actions utn+2|tn−1 of the third timeslot
of the previous rolling horizon, and so on. For technologies
with response time quite faster than the timeslot of the dis-
patch procedure, it is assumed that the vector of the current
control actions utn|tn is applied at the beginning of the current
timeslot.

BSS are characterized by a fast response time, up to some
seconds, and can quickly compensate mismatches attributed
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to short-term forecasting errors. RES curtailment can be
activated with response time up to some seconds, but the
response time may be set to longer durations (e.g., some
minutes) depending on system operator rules to avoid unwill-
ing ramp-up production, e.g., due to wind gusts. Here, RES
maximum permitted production is announced 15 minutes in
advance. As far as the response time of DERA is concerned,
the activation signal is usually sent from 5 to 30 minutes in
advance depending on the energy technologies used and their
contractual agreement with the DSO. In this paper, a response
time of 15 minutes is assumed, which is a prerequisite for
many DSOs when procuring flexibility services [43].

B. PROPOSED P-RTD BASED ON MPC PRINCIPLES
In general, MPC allows for the optimization of current
timeslots, while always taking future time-slots into account,
by constantly re-predicting future events based on the actual
flow of real events. This is achieved by continuously opti-
mizing the system’s operation under a finite horizon but
implementing the control actions only on the current oper-
ating condition, thus performing a brand-new optimization
for every single operating condition, under an ever-changing
rolling time horizon.

In the proposed P-RTD, the DSO solves a look-ahead
multi-period OPF problem for each time-interval. The opti-
mization depends on the current value of the system’s
dynamic state variables, i.e., BSS state of charge at the end
of the previous time-interval and the DERA’s set-point of the
previous time-interval due to ramping limits. The procedure
of the proposed P-RTD is implemented as follows:
a) at time-interval t themulti-periodOPF problem is solved

over a predefined rolling horizon with H time-intervals.
T he control variables ut+h|t are computed for h = 0...
H−1, where ut|t is the vector of current values of the control
variables of the time-interval t and ut+h|t is the vector of the
values of the control variables for the time-interval t+h, given
the system’s state at time-interval t .
b) the P-RTD implements: i) the currently optimized values

for h = 0, i.e., ut|t , these ones with faster response time
(up to 1 min), and ii) the values optimized for the second
time-interval during the previous rolling horizon for h = 1,
i.e., ut+1|t−1, these ones with response time equal to the time-
interval t .
c) the actual values (received from measurement units),

the updated short-term forecasting values and the values
of the system’s state are obtained and are fed back to the
procedure.
d) the optimization process is repeated from step a) for the

next time-interval t = t+1 having new short-term forecasting
values for the next rolling horizon.

Based on the above procedure, the control actions of BSS
charging/discharging and DERA’s FSU and FSD are con-
stantly updated to minimize the objective function of (18a)
over the finite rolling horizon by considering: a) the most
recent forecasted data, b) the control actions of the flexibility

sources with greater response time, and c) the current state of
the system.

C. P-RTD OVERALL FORMULATION
Equations (6), (8)–(13) are used in this stage by excluding the
subscript s (where it exists) and by replacing the subscript t
with t + h|t that indicates the variable of the h − th time-
interval of the t − th rolling horizon. Equation (9a) is refor-
mulated with (16a)–(16b), where PInjw,t+1|t−1 is the set-point
(maximum permitted injection) of RES w for h = 1 that was
optimized in the previous rolling horizon (t − 1).

PInjw,t+h|t ≤ P
frc
w,t+h|t ∀w, t, h 6= 0 (16a)

PInjw,t+h|t = min(PInjw,t+1|t−1,P
act
w,t ) ∀w, t, h = 0 (16b)

In P-RTD, (14c) is modified to formulate the objective
function of the t − th rolling horizon, as follows:

f P−RTDt+h|t =

H−1∑
h=0

FRTDss,t+h|t +
∑

ag∈�AG

FRTDag,t+h|t

+

∑
w∈�W

FRTDw,t+h|t +
∑
b∈�B

FRTDb,t+h|t

 (17)

The general mathematical formulation of the multi-period
OPF problem of the t − th rolling horizon is given by (18).

min f P−RTDt+h|t

(
uP−RTDt+h|t , xP−RTDt+h|t

)
(18a)

subject to

(6), (8), (9a)− (9c), (10)− (13), (16)− (17) (18b)

The iterative procedure of P-RTD has been coded
in MATLAB, while the optimization model (formulated
as a NLP problem) is solved using the state-of-the-art
CONOPT4 commercial solver of GAMS [38]. In P-RTD,
the duration of time-intervals is considered less than one hour
with dt ∈ (0, 1], e.g., if the duration is 15 min, dt = 0.25 and
the number of rolling horizons over a day is 96.

In contrast with the computational complexity of S-DAS,
the P-RTD of each time-interval is executed in less than
10 seconds. This is mainly due to the absence of the scenarios
of uncertainty in P-RTD.

V. CASE STUDIES & NUMERICAL RESULTS
This section is dedicated to investigating the DSO’s level
of risk exposure by applying the proposed flexibility ser-
vices management framework. At the very beginning of this
section, the methodology that evaluates the risk exposure is
introduced. Subsequently, the proposed flexibility services
management framework is implemented in two case studies.
The first is based on a 4-bus distribution system and is pre-
sented as a proof-of-concept validation. The second is based
on a 33-bus distribution system and is presented for further
investigation.
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TABLE 2. Cases of risk exposure and their corresponding rate 1 − β.

A. RISK EXPOSURE EVALUATION METHODOLOGY
1) CASES OF RISK EXPOSURE
Four different cases (presented in Table 2) are considered
in order to investigate the DSO’s level of risk exposure.
Each case of risk exposure is linked to a certain prediction
interval of load (αL) and a certain prediction interval of wind
speed (αV ), the coverage rates of which are considered equal,
as presented in the second column of Table 2. The third
column of Table 2 gives the prediction interval bounds, for
both load and wind speed, following the notation of (1) and
assuming that both errors are normally distributed with zero
mean. The prediction intervals of load and wind speed are
selected based on the states of Table 1, which are shown in
the fourth column of Table 2. Pertaining to the last column,
the rate of risk exposure is 1 − β, with β ∈ [0, 1], where
β is the coverage rate of the selected scenarios as defined in
(4d) of Section III.A.4. The selection of the cases of Table 2
is based on the modelling of Section III.A.

Case A is the most conservative among the selected cases
with a rate of risk exposure (1−β) of only 0.6%, whichmeans
virtually zero risk exposure for the DSO. To create the sce-
narios of Case A, all the states of load forecast error and wind
speed forecast error that are shown in Table 1 of Section III.A
are included, the combination of which concludes in 81 sce-
narios, each with its own probability of occurrence.

On the other hand, Case B, Case C and Case D demonstrate
the DSO’s level of risk exposure given that the higher the
rate of risk exposure (1 − β) is, the less the reserves are,
and thus the riskier the RTD is. Therefore, Case D is the
least conservative among the selected cases, because it has
a rate of risk exposure (1− β) of 53.3%. Transitioning from
Case A to Case B, the states that lie on the tails of the forecast
error’s normal distribution, i.e., those with smaller probability
(1st and 9th states) are excluded. Combining the 7 remaining
states of load forecast error with those 7 remaining states
of wind speed forecast error, the 49 scenarios of Case B
are created. Their probabilities are normalized to neglect the
probabilities of the rejected scenarios in S-DAS, following
the theory of the truncated normal distribution applied in [44].
Following the same procedure and excluding more states,
Case C and Case D comprise 25 and 9 scenarios, respectively.

2) RISK EXPOSURE METRIC
The metric additional risk exposure, denoted by AREX→Y ,
is introduced tomeasure the risk exposure, when transitioning
from Case X to Case Y, given that Case X is more conserva-
tive (has lower rate of risk exposure) than Case Y. As shown
in (19), ARE is the ratio of the increase in RTD cost over the
reduction of DAS cost, when transitioning from Case X to
Case Y. In fact, ARE is a ratio that measures the increase in
RTD cost as a result of reducing theDAS cost by an additional
monetary unit (e.g., e).

AREX→Y =
RTDX→Y

DASX→Y
=
RTDY − RTDX
DASX − DASY

(19)

where RTDX and DASX denote the RTD cost and the DAS
cost of Case X, respectively.

The values of ARE can be interpreted as follows.
If AREX→Y has a value less than unit, the transition from
Case X to Case Y is beneficial for the DSO, since the DAS
cost reduction is higher than the RTD cost increase. Inversely,
if the value of AREX→Y is greater than unit, it is no worth
transitioning from Case X to Case Y.

FIGURE 3. 4-bus distribution system (illustrative example).

B. CASE STUDY OF 4-BUS DISTRIBUTION SYSTEM:
AN ILLUSTRATIVE EXAMPLE
1) CHARACTERISTICS OF THE DISTRIBUTION SYSTEM
The 4-bus distribution system of Fig. 3 is used in a proof-
of-concept framework. This network is radial, with nominal
voltage of 20 kV, and is supplied by an 8 MVA capacity
HV/MV SS. The maximum line capacity is set at 8 MVA and
the peak load is equal to 3.68 MVA. The net load of bus 2 is
regulated by a DERA, offering maximum FSU of 0.4 MW
with energy capacity of 8 MWh per day and maximum FSD
of 0.8 MW with energy capacity of 15 MWh per day. The
ramping limits (ramp-up and ramp-down) are set to 0.4MW/h
and 0.8 MW/h for FSU and FSD, respectively. Multiple DER
are also in place: a WG of 4 MW installed capacity, a PV
station of 0.6 MWp, and a grid-scale BSS with 0.5 MW,
2.0 MWh, and 90% round-trip efficiency.

Figs. 4 and 5 depict the probabilistic forecasts of network’s
total load and wind generation, respectively, with their corre-
sponding prediction intervals (shadowed areas) in accordance
with the cases of Table 2. The point forecasts and the actual
measurements are also shown to illustrate the actual devia-
tions from the day-ahead point forecasts.

With regard to the remuneration schemes described in
Section II.B, Table 3 shows the prices concerning FSP

VOLUME 8, 2020 38865



V. A. Evangelopoulos et al.: Flexibility Services Management Under Uncertainties for Power Distribution Systems

FIGURE 4. Network load: actual values, day-ahead point forecasts and
the corresponding prediction intervals (4-bus distribution system).

FIGURE 5. Wind generation: actual values, day-ahead point forecasts and
the corresponding prediction intervals (4-bus distribution system).

TABLE 3. Remuneration for the FSP of the 4-bus distribution system.

participation in this test system. The penalties for deviating
from the import schedule at the T-D are given in Fig. 6 (the
penalties of upward deviation are considered equal to those
of downward deviation).

For the day-ahead forecasting, the standard deviation for
the load forecast error and that for the wind speed forecast
error are considered equal to 10% and 15%, respectively,
of the point forecasts [16]. It is usual the wind speed forecast
error to be greater than that of the load forecast [45].

As far as the short-term forecasting is concerned, the pre-
dictor of the P-RTD procedure is assumed to have an error
with standard deviation that varies over time, from 3%
(1 h ahead) to 15% (24 h ahead) for the wind speed, and from
1% (1 h ahead) to 10% (24 h ahead) for the load forecast
(expressed as percentage of the point forecasts).

FIGURE 6. T-D deviation penalties imposed by the TSO based on the
day-ahead market price.

TABLE 4. Summary of S-DAS results for the 4-bus distribution system.

2) S-DAS RESULTS
The results of S-DAS, presented in Table 4, show that the
more conservative the DSO is, the higher the reserve costs
become. The total DAS cost of Case A (e545.9) with rate of
risk exposure of only 0.6% is more than twice as expensive
compared to the total DAS cost of Case D (e245.0) with rate
of risk exposure of 53.3%. Most of the cost that is avoided
by adopting riskier approaches is attributed to the significant
reduction in the level of DERA reserves, while the reserva-
tion costs of the remaining flexibility options, i.e., the BSS,
remain relatively at the same level, as Table 4 shows. This
makes DERA the additional option in guaranteeing system
balance, as well as the source for most of the DSO’s day-
ahead expenses. Fig. 7 shows how the total energy of FSD is
allocated across the day, making clear that when considering
Case C and Case D for S-DAS, the reserved FSD energy is
much lower than that of considering Case A and Case B. The
narrower the coverage rates of the prediction intervals of load
and wind speed are, the less the expected deviations from
the point forecasts are supposed to be, and thus lower FSD
reserves are needed.

3) P-RTD RESULTS
Using the reserves scheduled with the S-DAS, the DSO
applies the proposed P-RTD to stay committed to the hourly
import schedule at the T-D, while exploiting the available
flexibility services with the least possible expenses. The
P-RTD is executed with time-resolution of 15 minutes and
is tested for different rolling horizons to highlight the impor-
tance of look-ahead optimization in RTD.
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FIGURE 7. DERA’s reserved FSD considering different cases of risk
exposure for S-DAS (4-bus distribution system).

FIGURE 8. RTD cost for different rolling horizons considering different
cases of risk exposure for S-DAS (4-bus distribution system).

Fig. 8 illustrates the RTD cost for different look-ahead
rolling horizons considering different cases of risk exposure
when solving the S-DAS. In the bar-chart of Fig. 8, the first
set of bars, labeled with ‘‘no P-RTD’’, refers to an ordinary
RTD strategy that does not consider look-ahead horizon. The
set of bars ‘‘no P-RTD’’ is used as benchmark for comparison.
The rest sets of bars refer to the length of the selected rolling
horizon of the P-RTD, e.g., the label ‘‘4h P-RTD’’ denotes
P-RTD of a 4 h rolling horizon. Fig. 8 shows that in all cases
of risk exposure, the proposed P-RTD has better performance
(lower RTD cost) than ‘‘no P-RTD’’. The longer the rolling
horizon of the P-RTD is, the lower the RTD cost is.

Depending on the length of the rolling horizon, the P-RTD
process differs in accuracy (the extension of the rolling hori-
zon increases the forecast errors) and thus different costs are
incurred. For instance, it is observed from Fig. 8 that the RTD
cost of Case A is reduced from e649.5 (‘‘no P-RTD’’) to
e555.6 (‘‘1h P-RTD’’), i.e., a reduction of 14.5% from ‘‘no
P-RTD’’; when extending the rolling horizon by 1 hour the
RTD cost of Case A is reduced from e555.6 (‘‘1h P-RTD’’)
to e527.1 (‘‘2h P-RTD’’), i.e., an additional reduction
of 5.1%; and when extending the rolling horizon by 2 hours
(‘‘4h P-RTD’’) the additional reduction from ‘‘2h P-RTD’’ to
‘‘4h P-RTD’’ is about 1%. While the extension of the look-
ahead horizon generally reduces the costs incurred, the addi-
tional reduction quickly diminishes. Extending the rolling
horizon’s length makes sense until a certain point. After a cer-
tain threshold is reached, it appears that themarginal gains are
minimal. In fact, if the P-RTD approach is also coupled with

a very broad look-ahead horizon, it may lead to additional
costs, due to the fact that the more extended is the horizon
the higher is the variance of the forecast error. Thus, apart to
how much value the DSO gains from considering prediction
intervals with higher coverage rate for S-DAS, there is also
a case to be made on how much value the DSO gains from
extending the rolling horizon of P-RTD.

There is merit to take a closer look at Fig. 8 and ana-
lyze the reduction of RTD cost for different cases of risk
exposure, while keeping the length of the rolling horizon
to a fixed value. For example, focusing on the set of bars
‘‘4h P-RTD’’, the RTD cost of CaseA is reduced frome649.5
(‘‘no P-RTD’’) to e520.1, i.e., a reduction of 19.9% from
that of ‘‘no P-RTD’’; the RTD cost of Case B (equal to that
of Case A) is also reduced by 19.9%, while the RTD cost
of Case C and Case D are reduced by 17.5% and 10.9%,
respectively, from those of ‘‘no P-RTD’’. This shows that
the performance of P-RTD, not only depends on the rolling
horizon selected, but also depends on the flexibility services
reserved, highlighting the dynamic nature of the P-RTD.

FIGURE 9. Import profile at the T-D considering Case C for S-DAS.

FIGURE 10. DERA’s activated FSD considering Case C for S-DAS.

Figs. 9, 10 and 11 refer to P-RTD of 4 h rolling horizon
(‘‘4h P-RTD’’) and present results of RTD when considering
Case C for the S-DAS. The results of Figs. 9, 10 and 11 are
compared with the results obtained if a dispatch strategy
without predictive control (‘‘no P-RTD’’) is implemented.
Fig. 9 illustrates the import at the T-D and compares the
curves of ‘‘no P-RTD’’ and ‘‘4h P-RTD’’ with that sched-
uled during DAS. This comparison determines the deviations
of actual active power flows from the committed ones at
the T-D. Fig. 10 depicts the FSD activation that the DERA
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FIGURE 11. BSS activation considering Case C for S-DAS.

provides, while Fig. 11 presents the operation of the BSS
by depicting its state of charge. By simultaneously analyzing
Figs. 9, 10 and 11, one can notice that P-RTD ends up in lower
deviations during the time window 16:00–21:00 (between
64-th and 84-th time-interval), when T-D deviation penalties
(Fig. 6) are much higher, than during early morning hours.

4) DAS & RTD OVERALL DISCUSSION
The results extracted for the illustrative example
(Sections V.B.2 and V.B.3) signify the vital need for careful
S-DAS. In the pursuit of reducing the reserve costs, the
adopted risk may be very high, and may lead to hefty intraday
balancing costs that are not offset by the savings of the DAS
stage, regardless of how sophisticated the utilized real-time
prediction tool is.

Fig. 12 presents the total cost breakdown in RTD cost
and DAS cost for the four cases of risk exposure defined
in Table 2 of Section V.A. In Fig. 12, the RTD cost refers
to P-RTD simulation with a 4 h rolling horizon. Table 5 gives
the values of ARE metric (defined in Section V.A.2). As an
example, the ARE for the transition from Case B to Case C
(denoted as B→C in Table 5) is computed as follows:

AREB→C =
RTDC − RTDB
DASB − DASC

=
551.40− 520.10
505.10− 399.40

=
31.30
105.70

= 0.30

The AREA→B = 0.00 (Table 5) shows that the transition
from Case A to Case B is beneficial for the DSO, because no
extra RTD cost is incurred as a result of the additional gains
achieved through DAS cost reduction by e40.8. Increasing
once more the rate of risk exposure (1− β) and transitioning
from Case B to Case C, AREB→C = 0.30. This indicates
that the B→C transition reduces the DAS cost more than
three times compared to the RTD cost increase, as is also
shown in Table 5. Consequently, the transition B→C is also
beneficial for the DSO.

The AREC→D = 2.03 (Table 5) shows that the transition
from Case C to Case D is not beneficial for the DSO. Indeed,
although the DAS cost is very low in Case D (Fig. 12),
the DSO has severely jeopardized system balance, and as
a result, the RTD cost of Case D is much higher than that
of Case C (Fig. 12). The risk undertaken in Case D (much
higher RTD cost) is not properly compensated by the DAS
cost reduction. Keeping less reserves in Case D causes much

TABLE 5. Risk exposure metric (ARE) for the 4-bus distribution system for
P-RTD of 4h rolling horizon.

FIGURE 12. Total cost (DAS and RTD cost) considering different cases of
risk exposure for S-DAS (4-bus distribution system).

TABLE 6. Remuneration for the FSP of the 33-bus distribution system.

higher T-D deviations (from the schedule), which are accom-
panied by stiff penalties (those of Fig. 6), as well as more
expensive flexibility activation.

C. CASE STUDY OF 33-BUS DISTRIBUTION SYSTEM
1) CHARACTERISTICS OF THE DISTRIBUTION SYSTEM
The 33-bus distribution system of [46], modified according
to Fig. 13, is also studied. The basic network data are directly
sourced from [46]. This network is radial, with nominal
voltage of 12.66 kV, and is supplied by a 10 MVA capacity
HV/MV substation. The maximum line capacity is set at
8.7 MVA and the peak load is considered equal to 4.37 MVA.
The network contains controllable loads by DERA, and also
has multiple installed DER: WG, PV stations, and grid-scale
BSS. The WG total installed capacity is 3.2 MW and the
PV station’s installed capacity is 0.6 MWp. Two grid-scale
BSS of 1.3MW total power capability and 2.5MWh capacity
(90% round-trip efficiency) are also part of the system.

Two DERA are competing in this case study, by reg-
ulating the net load of different buses: DERA-1 controls
buses 8, 14 and 31, while DERA-2 controls bus 25. DERA-1
offers FSU of 0.6 MW maximum power and energy capacity
of 11 MWh/day, as well as FSD of equal power and energy
capacity. DERA-2 offers FSU of 0.3 MW maximum power
with energy capacity of 6 MWh and FSD of equal power and
capacity. The ramping limits (ramp-up and ramp-down) of
DERA-1 and DERA-2 are set to 1.2 MW/h and 0.6 MW/h,

38868 VOLUME 8, 2020



V. A. Evangelopoulos et al.: Flexibility Services Management Under Uncertainties for Power Distribution Systems

FIGURE 13. Modified 33-bus distribution system.

FIGURE 14. Total cost (DAS and RTD cost) considering different cases of
risk exposure for S-DAS (33-bus distribution system).

TABLE 7. Risk exposure metric (ARE) for the 33-bus distribution system
for P-RTD of 4h rolling horizon.

accordingly. The prices remunerated to the FSP that partici-
pate in this case study are given in Table 6.

2) RESULTS
Fig. 14 shows the breakdown of total cost for the four cases
of risk exposure presented in Table 2 of Section V.A, for the
33-bus distribution system. Fig. 14 shows that Case C results
in an overall cost (DAS and RTD cost) of e971.72, which is
the lowest value among the selected cases. Even though the
rate of risk exposure is higher when deciding to solve S-DAS
with Case C, the DSO reduces its overall cost by 7.3% in
comparison with that of Case A (e1,048.62), which is the
most conservative case. Once again, there is a threshold of
risk exposure, over which the DSO’s total expenses begin to
increase. Indeed, as is shown in Table 7, the values of ARE
metric are less than unit for the transitions A→ B and B→C,
while ARE is greater than unit for the transition C→D.

Interesting findings can be drawn when multiple DERA
are participating in the local flexibility market. Fig. 15 shows
the reserved FSU and FSD versus those activated by the

FIGURE 15. Reserved versus activated FSU and FSD per DERA considering
Case C for S-DAS (33-bus distribution system).

two DERA participating in the 33-bus distribution system,
i.e., DERA-1 and DERA-2. The results of Fig. 15 refer to the
reserves of FSU and FSD considering Case C for the S-DAS.
The activation of FSU and FSD considers a 4 h rolling
horizon for P-RTD. As Fig. 15 shows, the DSO activates
more the FSD of DERA-1 (4.13 MWh) than that of DERA-2
(0.45 MWh). However, with a closer inspection of Fig. 15,
the degree the DSO exploits the reserved FSD of DERA-2
(63% of the reserved FSD, which is 0.72 MWh) is higher
than that of DERA-1 (48% of the reserved FSD). This is rea-
sonable, because the activation price the DERA-2 has bidden
is cheaper than that of DERA-1. Of course, DERA-1 FSD
total energy is higher, as the energy bid is also much higher
than that of DERA-2. However, when it comes to FSU,
even though DERA-2 activation price is still lower, the FSU
reserves are zero owing to the higher commitment price
(e25/MW-h) compared to that of DERA-1 (e20/MW-h), and
thus no FSU could be activated by DERA-2.

D. OVERALL DISCUSSION
There is a clear trade-off between the reserved flexibility ser-
vices and the real-time expenses. In other words, sacrificing
a part of the reserves of Case A, the DSO spends less in
total (DAS plus RTD expenses). What is more important is
to investigate the maximum level of risk exposure, i.e., the
portion of the reserves that could be sacrificed leading to
lower total expenses. This varies among different test systems
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and depends on the cost of reserves, the cost of activation and
the penalties of deviating from the scheduled power flows
at the T-D. Further investigation is needed in this direction,
in order to be able to elaborate more the results of different
test systems for different range of net load scenarios to draw
more specific conclusions for the flexibility services manage-
ment under uncertainties.

VI. CONCLUSION AND FUTURE WORK
This paper introduces a flexibility services management
framework consisting of two optimization stages: 1) a
stochastic scheduling approach to efficiently handle both day-
ahead uncertainties and intra-day fluctuations, and 2) a real-
time dispatch based on predictive control used as validation
of the DAS. The work addresses contemporary issues for
both optimization stages that are frequently disregarded. The
general insufficiency of the deterministic day-ahead schedul-
ing is demonstrated due to the always present forecasting
errors. Even so, the inclusion of stochastic programming
to model the planning stage can prove inadequate, leading
to over- or underestimations of the planning decision due to
the high variability of renewable technologies. In addition,
the dire need for a dynamic and highly adaptable approach for
real-time dispatch applications is demonstrated by employ-
ing the MPC principles. The constantly updated short-term
predictions on the output of wind farms are such that require
constant monitoring with a continuous stream of updated set-
points timely sent to the various rapidly responding tech-
nologies (e.g., BSS), which are a powerful tool in the DSO’s
arsenal.

With respect to the recorded numerical results, it has been
shown that when performing stochastic programming, there
is a limit to the level of risk exposure, i.e., what range
of scenarios should be considered, when compared to the
marginal gains, especially if they are not high enough to offset
the extra RTD cost. While additional reserved flexibility is
certainly not undesirable, approaches that are overly conser-
vative are generally avoided in the industry sector, as they
usually lead to more expensive solutions. The limits of risk
exposure with respect to marginal gains are illustrated by the
various values of ARE metric that is introduced to measure
the DSO’s level of risk exposure. It is also shown that when
performing optimization for real-time dispatch based on a
look-ahead technique, there is a saturation to the effectiveness
of extending the time horizon.

The handling the response time of the FSP is also a critical
aspect, which is illustrated in this paper. It is the first time
that a model is formulated to effectively activate the less
expensive flexibility services on time, while considering a
look-ahead technique. The quantification of the benefits from
handling the response time is also valuable, but not within the
scope of this paper; however it is strongly recommended as a
future work.

Moreover, an issue not within the scope of the paper
but with significant research interest is the tractability of
the proposed approach. While proven effective, its reliable

application in much larger distribution systems is challeng-
ing. As such, the proper approximations must be devised to
expand the applicability of the proposed approach for larger
problem sizes. Furthermore, an issue that has been ignored by
past research works is the case of the TSOmaking emergency
requests for flexibility from the DSO. The approach that the
DSO would have to adopt is to include these new unplanned
(time-wise and quantity-wise) parameters in its schedule, and
it is an issue that has not been properly addressed in the
scientific literature. It is in that light that the authors plan to
significantly extend their work by not only incorporating even
more modern aspects of active distribution networks, but also
doing so in a scalable fashion.
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