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ABSTRACT Real-time understanding of surrounding environment is an essential yet challenging task
for autonomous driving system. The system must not only deliver accurate result but also low latency
performance. In this paper, we focus on the task of fast-and-accurate semantic segmentation. An efficient
and powerful deep neural network termed as Driving Segmentation Network (DSNet) and a novel loss
function Object Weighted Focal Loss are proposed. In designing DSNet, our goal is to achieve the best
capacity with constrained model complexity. We design efficient and powerful unit inspired by ShuffleNet
V2 and also integrate many successful techniques to achieve excellent balance between accuracy and speed.
DSNet has 0.9 million of parameters, achieves 71.8% mean Intersection-over-Union (IoU) on Cityscapes
validation set, 69.3% on test set, and runs 100+ frames per second (FPS) at resolution 640 × 360 on
NVIDIA 1080Ti. In order to improve performance on minor and hard objects which are crucial in driving
scene, Object Weighted Focal Loss (OWFL) is proposed to deal with the serious class imbalance issue in
pixel-wise segmentation task. It could effectively improve the overall mean IoU of minor and hard objects
by increasing loss contribution from them. Experiments show that DSNet performs 2.7% points higher on
minor and hard objects compared with fast-and-accurate model ERFNet under similar accuracy. These traits
imply that DSNet has great potential for practical autonomous driving application.

INDEX TERMS Autonomous driving perception, efficient neural networks, semantic segmentation.

I. INTRODUCTION
An autonomous vehicle must immediately, accurately and
comprehensively understand the complex surrounding envi-
ronment, which poses great challenge to driving perception
system. Thanks to the remarkable progress of deep learning,
computer vision is playing an increasingly important role in
driving perception task [1], [2]. Image semantic segmenta-
tion could obtain exhaustive information such as object cate-
gories, shape, spatial location at pixel level, thus is especially
beneficial for comprehensive driving scene understanding.

The task of image semantic segmentation is to densely
label each pixel in an image to its object category, and result
in an image with non-overlapping meaningful regions. Many
computer vision and machine learning methods have been
proposed [3]. In recent years, Convolutional Neural Net-
work (CNN) based methods achieve remarkable progress on
image semantic segmentation [4]–[6], significantly improv-
ing accuracy even efficiency [7], and have become the de
facto solution. However, current state-of-the-art semantic
segmentation methods are not practical for autonomous driv-
ing application, since they can not fulfill the low latency
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requirement in autonomous driving system. These methods
are pursing higher scores with increasingly larger number
of parameters and complex modules [6], [8], [9]. However,
finer segmentation results come at the expense of very long
inference time, some methods even take more than one sec-
ond to process an image. This seriously limits the application
of semantic segmentation methods. Therefore, the quest for
fast-and-accurate methods is becoming a very active research
direction.

Intuitively, some lightweight methods are designed with
much less parameters for real-time performance, for instance,
ENet [7] and ESPNet [10]. They replace cumbersome 3× 3
convolutions with point-wise (1 × 1) convolutions and fac-
torized convolutions, and also adopt other techniques to
drastically reduce the number of parameters. As a result,
ENet [7] and ESPNet [10] which both have about 0.4M
(million) parameters are 180 times lighter than PSPNet [8],
and 79 times than SegNet [5]. ENet [7] is able to achieve
58.3% mean IoU and ESPNet [10] 60.3%. The results are
significantly lower than PSPNet [8] of 80.2%, but surpass
SegNet [5] of 57.0%. See Table 1 for more detailed com-
parison. Lightweight models demonstrate the potential to
outperform some cumbersome methods at the same time run-
ning real-time, however, in our opinion, excessively reducing

36776 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1254-3910
https://orcid.org/0000-0003-1650-7167
https://orcid.org/0000-0002-3466-7423
https://orcid.org/0000-0003-3023-1662
https://orcid.org/0000-0001-7361-3084
https://orcid.org/0000-0002-0026-2284


W. Wang et al.: Real-Time Driving Scene Semantic Segmentation

FIGURE 1. Diagram of the proposed method (DSNet) for an example input and its corresponding output (C = 19), and γ is the object
order-of-magnitude weight which is introduced in Section III. All spatial resolution values are with example input of 1024× 2048,
the network can perform on arbitrary image sizes.

parameters like ENet will sacrifice much capability of the
model. In our trial experiments, with the number of param-
eters under 0.4M we can not achieve mean IoU higher than
62% on Cityscapes dataset. Such few parameters could lead
to unsatisfying result of critical objects in the driving scene,
for example bicycle in ENet [7] scores 34.1% which is too
low to provide accurate information for safe autonomous
driving. Some efficient methods achieve satisfying accuracy
at the same time delivering excellent runtime performance.
For instance, ERFNet [11] and EDANet [12] propose effi-
cient and powerful units with reasonable parameters (ERFNet
and EDANet are 5.8 and 1.8 times larger than ENet), and
achieve impressive mean IoU close to 70%. ICNet [13] and
BiSeNet [14] optimize upon existing advanced model with
novel modules for the trade-off between accuracy and speed.
Refer to Section II for more discussion and Table 1 for
detailed comparison.

Although some methods could achieve impressive balance
between accuracy and speed, they lack specific tool to handle
hard and minor objects which are crucial for autonomous
driving. Take ERFNet [11] for example, its mean IoU is as
high as 69.7% over all objects, however the IoUs of critical
objects such as truck, motorcycle and train are around 50%
which is far from its mean IoU. It would provide confusing
information of the scene, and such model is not ready for
perception application especially on urban street scene. One
of the main reasons for low performance on these objects
is the serious class imbalance issue naturally in pixel-wise
image segmentation task. For example, in a street image,
large objects such as road, building, sky would occupy most
of the image, resulting in very imbalance distribution of
objects. Fig.2 shows the percentage of objects count in pixel

on Cityscapes train dataset. As we can see, top six objects
account over 78% of all the pixels, while minor objects such
as train, bus, truck, motorcycle, and rider in total account less
than 1.2%. Training on such imbalanced dataset could lead to
a very biased model.

In this paper, we aim to propose a fast-and-accurate model
for practical use. It should not only achieve excellent bal-
ance between accuracy and inference speed, but also focus
on improving the performance of hard and minor objects.
In designing lightweight model, different from extensively
reducing the number of parameters like ENet [7], we deter-
mine to increase the number of parameters slightly (it is still
a tiny model) and adopt efficient yet powerful modules and
techniques to ensure decent quality and speed at the same
time. We design our units based on basic unit of ShuffleNet
V2 [15], and adapt it to the task of semantic segmentation.
The ShuffleNet V2 unit first splits the channel of input, and
employs a residual architecture where one branch consists of
point-wise convolution and depth-wise convolution, the two
branches are finally concatentated and shuffled. ShuffleNet
V2 aims to reduce computation complexity at the same
ensuring its powerful expressiveness. To better handle minor
and hard objects in segmentation task, we propose Object
Weighted Focal Loss (OWFL). It first adopts normalized
object frequency weight to balance the biased loss value,
then object order-of-magnitude weight further increases the
loss contribution gap between minor-and-hard and major-
and-easy objects, guiding the network to concentrate on
minor and hard objects. The two weights are derived from
object distribution of the dataset. We also integrate Semantic
Encoding Loss from [16]. The whole method is depicted
in Fig. 1.
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TABLE 1. Evaluation results on cityscapes test set. ‘‘Sub’’: the downsampling factor of the input images. ‘‘ImN’’: ImageNet dataset. ‘‘coarse’’: the coarse
annotation set of cityscapes dataset.

In summary, our main contributions are as following.

• We design efficient and powerful unit and asymmet-
ric encoder-decoder architecture inspired by ShuffleNet
V2 [15] and ENet [7], and propose a lightweight model
Driving Segmentation Network (DSNet).

• The proposed Object Weighted Focal Loss could effec-
tively improve the overall accuracy of minor and hard
objects by a large margin.

• DSNet has 0.9M parameters, runs 100+ FPS at resolu-
tion 640×360 on NVIDIA 1080Ti with 69.3% accuracy
on Cityscapes test dataset, which achieves excellent bal-
ance between accuracy and speed.

The rest of this paper is organized as follows. Section II
reviews related works, Section III discusses computation
complexity, and introduces the units, architecture and loss
function of DSNet. Section IV reports our experimen-
tal results on Cityscapes dataset. Section V draws the
conclusion.

II. RELATED WORK
In this section, we briefly review literature on classical and
lightweight semantic segmentation models, and class imbal-
ance issue. The comparison with related methods in detail is
summarized in Table 1, including mean IoU, inference time,
the number of parameters if provided, and base model.

A. SEMANTIC SEGMENTATION MODELS
The first CNNmodel successfully applied on image semantic
segmentation is Fully Convolutional Network (FCN) [4].
It achieves great improvement in accuracy than tradi-
tional methods on PASCAL VOC [19] dataset, and demon-
strates how to use a CNN model to solve image semantic
segmentation problems. This triggers a research boom
of CNN-based methods on image semantic segmentation,
to name a few representative works, SegNet [5], Dila-
tion10 [17], DeepLab V3+ [20], PSPNet [8] and ICNet [13].
RNN could also be applied in semantic segmentation task
and is able to successfully model global context [21]–[23].
For example, Byeon et al. [22] proposes a simple 2D LSTM

based architecture in which the input image is divided into
non-overlapping windows which are fed into four sepa-
rate LSTM memory blocks. Mask R-CNN is proposed for
instance segmentation task. It builds upon Faster R-CNN and
adds an additional branch for predicting segmentation masks
on each pixel of Region of Interest (RoI).

SegNet [5] and U-Net [24] adopt encoder-decoder archi-
tecture. Dilation10 [17] first employs dilated convolution
(also called atrous convolution) in cascade in semantic seg-
mentation CNN models. Compared with pooling operation,
dilated convolution could have various receptive field by
employing different dilation rates, while pooling operation
does not have any parameters to save. In addition, com-
pared with standard convolution, dilated convolution could
gain larger receptive field without increasing parameters and
computation but in the price of local spatial information.
PSPNet [8] proposes Pyramid Pooling Module in semantic
segmentation task, which uses pyramid pooling module to
generate global scene prior upon the final feature map of the
network at four different scales. In DeepLab series [6], [25],
the authors highlight the use of atrous convolution and pro-
pose Atrous Spatial Pyramid Pooling (ASPP) module to
aggregate object and context information at different scales.
RefineNet [9] proposes Refine module which takes one fea-
ture map and its lower scale feature map in the encoder, and
fuses them as feature map in the decoder.

B. LIGHTWEIGHT SEMANTIC SEGMENTATION MODELS
Efficient methods are to seek the balance between accuracy
and real-time performance, which can be classified into two
main categories: methods which are designed or utilized
a light model with fewer parameters, and methods which
optimize other advanced networks with novel techniques or
modules.

In the first category, ENet and ESPNet are very light mod-
els which both have about 0.4M parameters. ENet [7] designs
its efficient units using point-wise convolution or factorized
convolution, and a simple decoder also helps reduce param-
eters, and ESPNet [10] proposes efficient spatial pyramid
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FIGURE 2. Objects pixel-wise percentage of cityscapes train dataset.
Horizontal axis represents objects’ names, and vertical axis represents
their corresponding percentage in the train dataset. The distribution
shows a clear long-tail effect, which top 6 objects dominate the train
dataset.

module where 3 × 3 convolution is replaced by point-wise
convolution and spatial pyramid of dilated convolution. These
techniques massively reduce parameters. However, drasti-
cally reducing parameters could sacrifice much capability of
the model for dense pixel-wise semantic segmentation task.
Reference [11] utilizes factorized convolution to its best, and
proposes ERFNet which has 5.8 times more parameters than
ENet and achieves excellent accuracy and speed balance.
EDANet [12] employs an asymmetric convolution structure
incorporating the dilated convolution and the DenseNet-like
architecture to attain high efficiency. CGNet [18] proposes
efficient Context Guided block, and scores 64.8% mean
IoU on Cityscapes with only 0.5M parameters. In the sec-
ond category, for example, ICNet [13], BiSeNet [14], and
ShelfNet [26] propose novel modules or techniques to opti-
mize advanced models. ICNet [13] proposes a PSPNet-based
architecture. The authors input three scales images, small
scale image goes through deeper networks, large scale shal-
lower, and fuses three scales of features through cascade
feature unit. BiSeNet [14] builds upon Xception 39 [27]
and ResNet [28], and proposes spatial path and context
path, and FFM (Feature Fusion Module) and ARM (Atten-
tion Refine Module) modules, where ARM in context path
employs global average pooling to capture global context and
generates an attention vector to guide the feature learning
and FFM fuses features from spatial path and context path.
ShelfNet [26] is based on ResNet [28], and has multiple
encoder-decoder branch pairs at each spatial level.

C. CLASS IMBALANCE
Class imbalance issue refers to the problem where the dispar-
ity in the proportion of different classes in the whole dataset is
overwhelming [29], [30]. As mentioned above, there is severe
class imbalance issue inherited in segmentation task [31].
This imbalance is especially difficult for lightweight models,

since with much constrained capacity compared with large
models, the minor classes would be more easily drowned
during training. Class imbalance problem is also prevalent in
other computer vision tasks, for example anchor-based object
detection task [32], and depth estimation task [33].

Approaches dealing with class imbalance problem could
be summarized into two main categories: data level methods
and classifier level methods [29]. Data level methods aim to
increase the volume of minor samples by data augmentation
or over-sampling, or decrease major samples from under-
sampling. For example, [34] proposes class-aware sampling
which controls the selection from each class and ensure uni-
form distribution of each mini-batch.

Classifier level methods, in the context of deep learning,
mainly refer to cost-sensitive re-weighting and novel loss
function designs. Cost-sensitive re-weighting assigns rela-
tively higher cost to minor classes. ENet [7] proposes a
class re-weighting scheme which affects the loss function
by assigning weights according to the inverse of proportion
of each class. ERFNet [11] also adopts this re-weighting
scheme. Reference [35] proposes class re-balancing scheme
based on effective number of samples. As for designing loss
functions, Gradient Harmonizing Mechanism [36] further
suggests a novel loss function to balance the gradient norm of
each class. Focal loss [37] is designed to dynamically adjust
higher cost to hard classes and lower to easy classes during
training. In [38], the authors propose online bootstrapping
of hard training pixels, which drops pixels with small loss
value. Reference [39] proposes Online Hard Example Min-
ing (OHEM) to select hard regions-of-interest (RoIs) for
object detection, and OCNet [40] adopts OHEM in semantic
segmentation.

III. DESIGNING DRIVING SEGMENTATION NETWORK
In designing DSNet, we keep in mind that both accuracy and
speed are important, and aim to achieve the best capacity with
constrained and reasonable model complexity. Many previ-
ous successful techniques in [41] and others are integrated.
We first discuss important runtime performance metrics, and
then explain in detail about DSNet units, architecture, and
design choices. At last, we propose the loss function design.

A. COMPUTATION COMPLEXITY
Inference speed (FPS) is the direct metric to evaluate compu-
tation complexity of CNN based approaches. Inference speed
could vary in different software and hardware settings, hence
two indirect metrics are usually evaluated in lightweight CNN
models: number of parameters and number of float-point
operations (FLOPs). Another vital metric, memory access
cost (MAC), refers to the number of memory access opera-
tions on physical device. If we assume that the cache in the
computing device is large enough to store the feature maps
and parameters, MAC for 1 × 1 convolution could be theo-
retically calculated by equation MAC = hw(c1 + c2)+ c1c2,
where c1 and c2 are the input and output channel number,
h and w are the spatial size of the feature map.
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FIGURE 3. DSNet Units. (a) Init unit. (b) Basic unit. (c) Down unit. (d) Up unit. C represents the number of channels. In 3× 3 Conv and
TransConv, ‘‘k1 × k2, w , d ’’ indicate the kernel size (k1 × k2), the output channel number (w), and the dilation rate (d ). All convolutions are
followed by Batch Norm and ReLU, and all 1× 1 Conv of units have stride = 1 and dilation = 1.

TABLE 2. Different size of DSNets performance. Params is short for the
number of parameters, and K indicates thousand of parameters. FPS is
evaluated following inference speed experiment in Section IV at
resolution 640× 360.

The sensible paradigm of designing efficient CNN mod-
els is not to achieve light by drastically reducing param-
eters, but to design efficient and powerful modules with
reasonable amount of parameters. We need to significantly
reduce the number of parameters compared to cumber-
some models. However more importantly, we should also
avoid over-reducing the number of parameters such as ENet.
We design basic units mainly by modifying ShuffleNet V2
module enjoying its high efficiency in reducing MAC
and FLOPs [15] at the same time remaining powerful
expressiveness.

To evaluate the trade-off between computation complexity
and accuracy, we conduct experiments of training DSNet
with increasing parameters, termed as DSNet0.5, DSNet1.0,
DSNet1.5, DSNet2.0, where the number indicates the ratio
of the model’s parameters to the proposed parameters,
and we achieve this by adjusting the number of units.
DSNet0.5 reduces to 6 Basic units with dilate rate scheme of
2, 5, 9, 5, 9, 17, DSNet1.5 adds another 10 Basic units com-
pared with DSNet1.0, and DSNet2.0 adds another 10 Basic
units compared with DSNet1.5. See Section IV for training
and evaluation details.

FromTable 2, we can see that DSNet0.5 scores 6.7%points
lower thanDSNet1.0, we contemplate that limited parameters
and shallow depth of the network are the main reason. While
compared with DSNet1.0, DSNet1.5 and DSNet2.0 have

increased 1.2% and 1.3% points which indicates that the
increased depth and number of parameters could not promise
proportional improvement of accuracy. As accuracy does
not improve proportionally with respect to the number of
parameters but FPS decreases linearly, we therefore choose
DSNet1.0 as it has enough parameters and network depth
to achieve good accuracy at the same time running fast at
inference.

B. DSNET UNITS
DSNet Unit is shown in Fig. 3. We adopt initial unit from
ENet, which use max pooling and convolution with stride
2 to down-sample the input. The Basic unit develops from
ShuffleNet V2 unit where input channel is first split into
two. Depth-wise separable convolution in ShuffleNet V2 is
replaced with dilated convolution to enlarge receptive field,
which is vital for semantic segmentation task. The feature
channel of convolution layer in the units has equal channel
width following guidelines in ShuffleNet V2 [15] to reduce
MAC. In Down unit, input is max pooling following 1 × 1
convolution in left branch of the unit, and in up-sample
unit, input is un-pool from corresponding down-sample unit.
In the final part, down-sample unit perform concatenation and
channel shuffle like basic unit, while up-sample unit adds left
and right branch features. The add operation introduces little
additional computation, as we only have two such units in the
whole architecture. We also would like to highlight that the
basic unit achieves feature reuse like DenseNet [42], since
half of the features directly go through the block and join the
next block.

C. DSNET ARCHITECTURE
The architecture of DSNet is shown in Table 3. We deter-
mine to adopt asymmetric encoder-decoder architecture like
ENet [7]. The asymmetric architecture has three main stages
as encoder, two light stages as decoder. The structure of
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TABLE 3. The architecture of DSNet. Output shape is given for an
example input of 800× 800. C is the number of classes.

ENet’s architecture is a thoroughly considered choice, and it
is also adopted by ERFNet [11].

For dilation rate scheme, in DRN [43], dilation rate
scheme of 2, 4 is applied at last two blocks of ResNet,
in Deeplab V3 [25], dilation rate scheme of 2, 4, 8, 16 is
applied, similar dilation rate scheme is also adopted in
ENet [7], in Dilation-bigger of Hybrid Dilated Convolution
(HDC) [44], consecutive dilation rate scheme of 1, 2, 5, 9 and
5, 9, 17 is applied at res4b and res5b of ResNet respectively.
In determining dilation rate scheme, we follow the scheme of
HDC, which performs better in overcoming the ‘‘gridding’’
issue in our experiments (see ablation study for proposed
architecture and visual comparison).

1) MULTI-SCALE FEATURE FUSION
Multi-scale feature fusion refers to the technique of merging
feature maps from different scales in a network. For example,
FCN-8s [4] fuses 1/8 feature maps from 1/16 and 1/32
scales to obtain a fine-grain output. Pyramid pooling module
in PSPNet [8] fuses features under four different pyramid
pooling scales.

Multi-scale feature fusion has been proved a beneficial
technique to achieve better accuracy. However, our concern
is that multi-scale feature fusion usually adds more paths,
which violates the degree of parallelism and brings additional
computation. In designing DSNet architecture, we do not to
utilize multi-scale feature fusion. See ablation study exper-
iment which adds pyramid pooling module on top of the
output of DSNet’s encoder in Section IV.

2) FEATURE MAP SIZE
1/8 feature map size is adopted, as it is consistently proven to
achieve better accuracy than other sizes [8], [20]. As smaller

ones lose too much spatial information which is impossi-
ble to recover when only using methods such as bi-linear
up-sampling or transposed convolution in decoder, otherwise
decoder may need to fuse features from encoder to make up
spatial information loss which certainly adds more compu-
tation. Hence, we determine to keep 1/8 feature map size
in our main layers to remain spatial information as much as
possible.

D. LOSS FUNCTION
Amajor class is usually large and easy to classify, and quickly
contributes little useful information during training. However,
the overwhelming number makes it account for most of the
loss value. While a minor class is often underrepresented and
at the same time hard to classify. The numerous imbalance
gap in number makes minor class drowned in the loss value
contribution. It is the minor class that should attract more
attention during the training process.

We propose a novel Object Weighted Focal Loss (OWFL)
to handle the class imbalance issue in semantic segmentation
task, and Semantic Encoding Loss (SEL) is also adopted to
aggregate more context information. Our final loss is shown
in Equation (1), where L is the total loss, and we experimen-
tally set λ1 = λ2 = 1, as we value both the imbalance class
and the context information of the network.

L = λ1OWFL+ λ2SEL (1)

1) OBJECT WEIGHTED FOCAL LOSS (OWFL)
Underrepresented object is often difficult to classify, thus
requires more attention of the model. The motivation of
OWFL is to make the minor and hard objects contribute
more information to the loss function without affecting other
objects. To achieve that, normalized object frequency weight
and object order-of-magnitude weight are jointly utilized to
control the loss value contribution of the object.

Object frequency weight is obtained by ωi = 1
ln(fi+c)

,
which is proposed in ENet [7], and we set c = 1.02 following
ENet. fi is the frequency of the ith object appeared in the
dataset. Different from ENet controlling ωi in the range of
[1, 50], we normalize the weights to [0, 1] by dividing the
maximum:

αi =
ωi

max(ωi)
(2)

Object order-of-magnitude weight is calculated by equa-
tion below:

γi = OM(
fi

min(fi)
) (3)

where function OM is to calculate the order of magni-
tude of a given number. Finally, the Object Weighted Focal
Loss (OWFL) is derived based on focal loss [37]:

OWFL(pi) = −αi · (1− pi)γi · log(pi) (4)

where pi is the probability of a sample belonging to the
ith object predicted by the network. The αi balances the
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FIGURE 4. Figure of derivative function of OWFL in Equation 5 with
γi = 0,1,2. It is better viewed in color.

loss contribution of each class, and the γi down-weights
well-classified object. Their joint effect is to make hard and
minor objects contribute more loss value, and immensely
down-weight major and easy objects. The general derivative
function for OWFL with respect to pi is given in Equa-
tion (5). We plot the derivative function with γi = 0, 1, 2
in Fig.4.

dOWFL(pi)
dpi

= γi(1− pi)γi−1log(pi)−
(1− pi)γi

pi
(5)

It shows that when objects are not well-classified, for
instance its confidence is below 0.3, objects all con-
tribute similar large gradients value. However, as confidence
approaches 1.0, the gradient contribution begins to diverge,
the major objects which have larger γi generate much small
gradients, and αi would further enlarge the gap of the gradi-
ents contribution. In this way, minor and hard objects domi-
nate the loss value contribution. It should be noted that when
class distribution is balanced, OWFL becomes class-balanced
cross entropy, and when unbalanced, OWFL actually expands
into multiple loss functions for different groups of objects.

2) SEMANTIC ENCODING LOSS (SEL)
We also introduce Semantic Encoding Loss in order to encode
global semantic context of the scene. SEL is proposed in [16]
as part of the Context Encoding Module which consists of
encoding layer that encodes global semantic context, feature
attention and semantic encoding loss. We adopt encoding
layer and build semantic encoding loss by adding a fully
connected layer with sigmoid activation function upon the
output of encoding layer. SEL is only applied on the final
output of encoder which is shown in Fig. 1. Feature attention
module is not applied as it introduces additional computation.
Context encoding layer considers an input feature map with
the shape of C × H × W as a set of C-dimensional input
features X = {x1, . . . xN }, whereN is total number of features
given by H × W . It learns an codebook D = {d1, . . . dk},
containing K number of code words (visual centers) and a

set of smoothing factor of the visual centers S = {s1, . . . sk}.
Encoding Layer outputs residual encoder by aggregating
the residuals with soft-assignment weights ek =

∑N
i=1 eik ,

where

eik =
exp

(
−sk ‖rik‖2

)
∑K

j=1 exp
(
−sj

∥∥rij∥∥2) rik (6)

The residuals are given by rik = xi−dk , and e =∑K
k=1 φ (ek) where φ denotes Batch Norm with ReLU acti-

vation. An additional fully connected layer is built upon
encoding layer, and the final SEL is calculated by sigmoid
cross entropy:

SEL(si) = −tilog(sigmoid(si)) (7)

where ti and si are the ground truth and output of the fully
connected layer for each class i, and sigmoid is activation
function.

We summarize the training process with OWFL and SEL
in Algorithm 1.

Algorithm 1 Training With OWFL and SEL
Require: traindata: training dataset, labeldata: label for

training dataset.
1: Iterate over labeldata to obtain ωi and γi by Eq. 2 and

Eq. 3.
2: for steps t ∈ {1, 2, . . . k} do
3: Sample a mini-batch of (imgs, gts) from traindata and

labeldata
4: Feed into dsnet(imgs), and obtain se_logits and

cls_logits
5: Obtain OWFL with cls_logits and gt by Eq. 4
6: Obtain se_label = [histgram(gts) > 0]
7: Obtain SEL with se_logits and se_label by Eq. 7
8: total_loss = λ1OWFL+ λ2SEL
9: Backpropagate and update weights of dsnet

10: end for

IV. EXPERIMENTAL EVALUATION
In this section, we first report details about the experiment
settings, especially on data augmentation and training pro-
tocol detail. Then we conduct experiments to evaluate the
effectiveness of proposed model and loss function, finally the
evaluation results on Cityscapes dataset and comparison with
other methods are reported.

All experiments are conducted following the same data
augmentation strategy, hyper-parameter settings and vali-
dated on the same validation dataset at full resolution. For dif-
ferent purposes, we adopt different schemes. To be specific,
in ablation study of proposed model, ablation study of loss
function and experiments of different sizes of DSNets (shown
in Table 2), we train 120 epochs on fine annotation without
pre-training and set batch size to 8. In Cityscapes dataset
evaluation and comparing with other methods, we adopt
pre-training on coarse labels for 80 epochs, then train on
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fine labels for 120 epochs with the batch size of 16, and add
another 40 epochs fine-tuning to obtain the best result.
All experiments adopt synchronized multi-GPU Batch Nor-
malization. Note that batch size is vital to effectively train
CNN models, and has been proven crucial in [25].

A. DATASET AND EVALUATION METRICS
We use the Cityscapes dataset [45], a recent dataset of
urban driving scenes that has been widely adopted in seman-
tic segmentation benchmarks due to its highly challeng-
ing and varied scenarios. It consists 5000 fine-annotated
images at the high-resolution of 1024× 2048, which are
split into 2975 images for training, 500 images for valida-
tion, and 1525 images for testing. There is another set of
19, 998 images with coarse annotation. The dense annotation
contains 30 common class labels in which 19 classes are for
training and evaluation. Evaluation metrics is mainly IoU,
which is defined as IoU = TP/(TP + FP + FN ), where TP,
FP, and FN are the numbers of true positive, false positive,
and false negative pixels, respectively,

B. EXPERIMENTS SETUP
The details about experiment settings, including software
and hardware settings, data augmentation strategy, and train-
ing details are reported. These details are important for
reproducing our work.

1) HARDWARE AND SOFTWARE SETUP
We conduct our experiments on a server with Intel E5 2630
CPU which has 6 cores with 2.3 GHz base frequency, 32 GB
memory, and four NVIDIA GTX 1080Ti GPU cards. The
server runs Ubuntu 16.04, NVIDIA CUDA 9.0, cuDNN 7.05,
and tensorflow 1.6. We use tensorpack [46] to implement our
experiment which is a high-level training interface built upon
tensorflow, and the tensorpack version is 0.8.9.

2) TRAINING PROTOCOL DETAIL
Pre-train.We train on coarse annotation set for 80 epochs as
pre-training, and input images at resolution 512×1024 which
down-samples original image by 2. We set initial learning
rate to 5× 10−4 which decreases 0.5 every 10 epochs, batch
size to 12, weight decay to 5 × 10−4, and use ADAM as
optimizer.

Train.We train on fine annotation set for 120 epochs with
the batch size of 16. It could start from scratch on fine annota-
tion set or fine-tune on coarse annotation pre-trained model.
In training fine annotation, we input images 800 × 800 per-
forming data augmentation stated before, set batch size to 16,
momentum to 0.9, and weight decay to 2×10−4. The learning
rate scheduling is lr = baselr ×

(
1− iter

total−iter

)power
. The

base learning rate is set to 1×10−4, and the power is set to 0.9.
For our final comparison with other methods, we further
fine-tune another 40 epochs with initial learning rate lr =
2× 10−5 and stochastic gradient descent optimizer, and save
the best model.

3) DATA AUGMENTATION
Data augmentation is vital, as deep neural networks usually
require huge amount of data for training. Our data augmen-
tation strategy is mainly used in training fine annotation.
We adopt cropping strategy which is widely adopted and
proven beneficial in [25], [44] to augment fine annotation set.
Specifically, we crop each training image and its correspond-
ing ground truth label image into eight 880× 880 patches
with partial overlapping, augmenting fine annotation training
dataset to 23800 images. The overlapping strategy ensures
all regions in an image will be visited. Cropping not only
enlarges fine annotation set, but also helps to fit more training
images into one batch on GPU without losing spatial infor-
mation. We employ multi-scale inputs (We could fit scales =
{0.5, 1.0}) with random cropping 800×800 out of 880×880,
and random horizon left and right flipping.

C. ABLATION STUDY OF PROPOSED MODEL
To evaluate the proposed DSNet, we conduct experiments to
show the benefits of proposed units and architecture.

1) ABLATION STUDY OF PROPOSED UNITS
We perform two sets of experiments to evaluate the pro-
posed units. The first set of experiments are to evaluate the
components of units. We remove channel shuffle in Basic
unit and Down unit (NOSF), replace 3×3 Conv in Basic unit
and Down unit with depth-wise separable convolution (DW),
and replace concatenate with add operation in Down unit and
Basic unit which channel split is also removed, and double
channel depth inside the unit (ADD). In the second set of
experiments, we compare our proposed unit with MobileNet
V2 unit (MBV2) and ENet unit (ENET). Various units pos-
sess different number of parameters, for fair comparison,
we make adjustments in the number of units to ensure the
number of parameters basically the same. In DW and ENET,
another 4 units are added after Unit 1.4, 9 units after Unit
2.8, 9 units after Unit 3.8. In ADD and MBV2, they have 2
units in 1.x stage, and 4 units with dilation rate of 2, 5, 9, 17
in 2.x stage.
The results are summarized in Table 5. Channel shuffle is

the essential operation of ShuffleNet unit, NOSF performs
much worse without channel shuffle. ADD unit is ‘‘heavier’’
than DSNet unit, but it does not improve accuracy or speed
performance. DW is 22 more deeper than DSNet, however,
it performs much worse in accuracy, and more than 40%
slower thanDSNet. In addition, the training process for DW is
also much longer. Depth-wise separable convolution possess
much fewer parameters than standard 3×3 convolution, but in
practice, it does not promise speed improvement proportional
to the massive reduction in parameters. ENet unit performs
inferior in both accuracy and FPS, and this indicates the
advantage of DSNet unit over ENet unit. The MobileNet
V2 unit has almost equal accuracy performance with DSNet
unit in our experiments, however, FPS drops more than 35%
under similar parameters. This suggests that DSNet unit is
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TABLE 4. Class-wise IoU evaluation results on Cityscapes. Results of ERFNet val and test are from original paper and pre-trained on ImageNet.

TABLE 5. Ablation study of proposed model. FPS is evaluated following
inference speed experiment in Section IV at resolution 640× 360.

more computation efficient, and equally powerful compared
with MobileNet V2 unit under the same parameters and
architecture.

2) ABLATION STUDY OF PROPOSED ARCHITECTURE
To evaluate our proposed units architecture and dilation rate
scheme, we conduct experiments as follows: replace Init unit
with a simple 3× 3 convolution of stride 2 (INIT), add pyra-
mid pooling module of PSPNet at the end of encoder (PSP),
fuse featuremaps between encoder and decoder by long range
skip connections (SKIP), and adopt dilation rate scheme of
2, 4, 8, 16 at Basic unit 2.x and Basic unit 3.x (DILA).

The results are summarized in Table 5. The INIT slightly
drops 0.3% point compared with DSNet, and it also slows
down a little in FPS due to introduced computation. This
suggests Init unit has better performance in both accuracy and
speed compared with simply 3 × 3 convolution with stride
of 2. Adding additional pyramid pooling module improves
accuracy by 0.4% point, however increased computation
results in 12% drop in speed performance. Skip connec-
tion between encoder and decoder does not bring positive
improvement in our experiment, similar result is also found in
ERFNet [11]. For dilation rate scheme, HDC performs better
than the scheme of Deeplab V3 [25] or DRN [43]. Training
with OWFL and SEL also improves ‘‘gridding’’ issue, see
visual comparison in Fig. 6.

D. ABLATION STUDY OF LOSS FUNCTION
To show the effectiveness of the proposed loss function,
we conduct experiments with four different loss functions:
class weighted cross entropy (WCE), class weighted cross
entropy and semantic encoding Loss (WCE+SEL), focal
loss and semantic encoding loss (FL+SEL), and OWFL and
semantic encoding loss (OWFL+SEL). 19 trainable classes
in Cityscapes dataset are grouped into 3 categories according
to the γi value which represents the object’s frequency in
the whole dataset. At last, 10 objects are in γi = 0 group,
6 objects in γi = 1 group, 3 objects in γi = 2 group,
the grouping details are shown in Table 4. γi = 0 group
represents the minor objects, and γi = 2 group the major
objects. The mean accuracy of γi = 0 group is far lower than
that of γi = 1 and γi = 2 group.

The result is shown in Table 6. As we can see, simple class
re-weighting scheme alone performs the worst for handling
seriously imbalanced dataset. Adding semantic encoding loss
forces the network to aggregate more global semantic context
information, and it improves the accuracy over all 3 categories
for free as it does not bring any computation in inference.
It also greatly alleviated the issue of misclassification inside
an object, as show row 3, column c and d in Fig. 6. Focal loss
with semantic encoding loss gets worse than class weighted
cross entropy and semantic encoding. Our contemplation is
that focal loss has unstable issue due to its ability to dynam-
ically adjust loss value which may lead to large fluctuation
during training. OWFL with semantic encoding loss achieves
the best result, and significantly improves accuracy in γi = 0
group by 2.9% points over 10 minor objects compared with
WCE. The visual improvement is shown in Fig. 6. With 3
γi groups, OWFL actually expands into 3 loss functions.
Objects in γi = 0 group employ class weighted cross
entropy loss function, while in γi = 2 adopt class weighted
focal loss which the well-classified objects are heavily sup-
pressed, thus minor and hard objects dominates the loss
value contribution, and leading to the best performance. It is
also worth highlighting the pre-training on coarse annota-
tion dataset. As coarse annotation dataset mainly consists of
large geometric shapes, large and easy objects are already
well-classified in pre-training phase, therefore training on
fine annotation could almost entirely focus on minor and hard
objects (See Fig. 5).
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TABLE 6. mean IoU results with four different loss function settings.

FIGURE 5. Validation mean IoU of group γi = 0,1,2 and all classes
during training.

E. CITYSCAPES DATASET EVALUATION
We show main evaluation results on Cityscapes dataset,
and compared with other semantic segmentation methods.
Results include comprehensive metrics of DSNet with other
methods, class-wise IoU results of DSNet and ERFNet,
as they have comparable accuracy, and a qualitative results
which displays visual comparison of DSNet with only class
weighted cross entropy and DSNet with OWFL, SEL and
HDC.

1) MEAN IOU
We list comprehensivemetrics and results of DSNet and other
methods including mean IoU, inference time and number
of parameters, shown in Table 1. DSNet without any base
model or ImageNet pre-training could achieve 69.3% mean
IoU, which is one of the excellent results among lightweight
semantic segmentation methods. DSNet is much higher in
accuracy than lightweight semantic segmentation methods
which focus on reducing the number of parameters, such as
ESPNet [10] and ENet [7], and is also more accurate than
some classical cumbersome models, such as Dilation10 [17],
FCN-8s [4] and DeepLab V1 [6]. To be specific, DSNet
has 148 times fewer parameters than Dilation10, but 2.1%
points higher in accuracy. DSNet is close to ICNet [13]
and ERFNet [11] which pre-trained on large-scale ImageNet
dataset. With 69.3% mIoU and 0.91M parameters, DSNet
achieves excellent trade-off.

2) CLASS-WISE IOU
Class-wise IoU is shown in Table 4 where we compare DSNet
with ERFNet on every trainable classes on validation and
test set, since the result of ERFNet which pre-trained on

ImageNet has very close mean IoU result with DSNet. The
mean IoUs of ENet, ERFNet and DSNet over γi = 0 group
are displayed in Table 7. ENet* and ERFNet* are trained
using the same protocol as DSNet, but with WCE as loss
function. We could obtain ENet* as high as 61.5%, and
ERFNet* 68.6% which is 1.4% points lower than the result
70.0%of ERFNetwithout ImageNet pretraining. Our training
hyper parameters and protocol may not be the best fit for
ERFNet.

Generally speaking, with similar mean IoU result, DSNet
scores better at γi = 0 group both at validation set and test set,
which is shown is Table 7. DSNet is consistently 2.7% points
higher than ERFNet [11]. This suggests that DSNet with
OWFL does improve minor and hard objects, and generalize
well to test set. In Table 4, we also observe significantly drop
in some certain minor and hard objects between validation
and test dataset. For instance, wall, truck and bus in ERFNet,
traffic light and train in DSNet drop more than 10% points.
The performance drop ismainly due to the difference between
validation and test dataset distribution. Besides, minor objects
are severely short for diversity, and the model may not to
able to learn well-generalized features from limited data. The
validation mean IoU during the training process is depicted
in Fig. 5. The training starts upon pre-training phase. As we
can see, γ = 2 group which consists of major and easy
objects has very high accuracy after pre-training on coarse
labels, thus the training specially focuses on minor and hard
objects with OWFL as the γ = 0 group improves signifi-
cantly during training. The IoU during training also exhibits
fluctuation for minor and hard objects which could explain
DSNet’s IoU of traffic light is worse than ERFNet. OWFL
could bring benefit to the overall improvement of the group
of minor and hard objects, but can not guarantee every object
is better than ERFNet.

3) VISUAL COMPARISON
To intuitively understand the performance of proposed
DSNet, we select some images from validation set, and visu-
ally shows our proposed methods beyond metrics. In Fig. 6,
column c is prediction results by DSNet with class weighted
cross entropy and the dilation rate scheme of 2, 4, 8, 16
(DSNet (WCE)), column d is DSNet with OWFL and
semantic encoding loss and dilation rate scheme of HDC
(DSNet (OWFL+SEL+HDC)). Both results are delivering
fine quality of the driving scene. However, if we focus on the
white boxes which most are minor and hard objects, DSNet
(OWFL+SEL+HDC) performs much finer. For example,
in the second row, DSNet (OWFL+SEL+HDC) is segment-
ing the contour of a rider much finely. In the third row,
without context aggregation provided by context encoding
layer, DSNet (WCE) makes wrong predictions in the win-
dow of the train. In the fifth row, train and bus are mis-
classified in DSNet (WCE), DSNet (OWFL+SEL+HDC)
could precisely handle. In the last row, DSNet (WCE)
shows ‘‘gridding’’ issue, it is very much improved with the
help of HDC and context encoding layer. Overall speaking,
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FIGURE 6. Qualitative results of proposed method on the Cityscapes validation dataset, better viewed in color. (a) Input image. (b) Ground truth.
(c) DSNet(WCE). (d) DSNet (OWFL+SEL+HDC). It is better viewed in color.

TABLE 7. mean IoU results on cityscapes of ERFNet and DSNet. ENet* and
ERFNet* are trained using the same training protocol with DSNet except
that using WCE as loss function. Results of ERFNet val and test are
pre-trained on ImageNet.

DSNet (OWFL+SEL+HDC) is more capable of refining
hard and minor objects, and delivering fast and accurate
semantic information of the driving scene.

F. INFERENCE SPEED
Inference speed is a very important metric in evaluating
efficient CNN models. While speed is also very difficult

TABLE 8. Speed analysis of ENet, ERFNet and DSNet. ENet* and ERFNet*
are re-implemented in tensorpack and speed are tested under the same
settings for fair comparison, results may be different from original paper.

to reproduce, as it is determined by many uncontrolled
factors, especially evaluating settings vary in different
research works. For research purpose and fair comparison,
we re-implement ENet and ERFNet using tensorpack based
on open source code [47], and evaluate speed of ENet,
ERFNet and our model under the same setting. We load vari-
ables necessary for inference and drop all the other variables
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in saved checkpoint files, and only count inference time for
each image. We feed 100 images one by one to calculate
average inference time per image for ten times. Inference
evaluation is carried out on single NVIDIA 1080Ti GPU card.
The results are shown in Table 8. From the results, we can
see that the inference speed of DSNet outperforms ENet by
a small margin at every input scale, and approximately 1.1
times faster than ENet. Compared with ERFNet, DSNet is
25%+ faster at every scale.

V. CONCLUSION
In this paper, we propose a lightweight CNN model termed
as DSNet and a novel lossfunction Object Weighted Focal
Loss. DSNet achieves excellent trade-off among model size,
accuracy and inference speed. Specifically, DSNet has 0.9M
parameters, 69.3%mean IoU on Cityscapes dataset, and runs
more than 100 FPS on NVIDIA 1080Ti. In order to deal with
severe class imbalance issue and improve minor and hard
objects accuracy, Object Weighted Focal Loss is proposed.
It adopts normalized object frequencyweight and object order
of magnitude weight to make minor object contribute more
loss value and greatly suppress contribution from the major
and well-classified objects. Experiments show that OWFL
together with semantic encoding loss effectively improves
minor objects accuracy. Therefore, DSNet is promising for
practical application.
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