
Notice to Readers 
 
“Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation” 
By Gendry Alfonso Francia, Carlos Pedraza, Marco Aceves, and Saúl Tovar-Arriaga 
Published in IEEE Access, Volume 8 
DOI: 10.1109/ACCESS.2020.2975745 
 
This paper includes authors who, prior to final publication, were prohibited from publishing with 
IEEE. Due to the nature of this violation, reasonable effort should be made to remove all past 
references to this paper, and refrain from future references to this paper.  
 



Received February 2, 2020, accepted February 15, 2020, date of publication February 21, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975745

Chaining a U-Net With a Residual U-Net for
Retinal Blood Vessels Segmentation
GENDRY ALFONSO FRANCIA , (Student Member, IEEE),
CARLOS PEDRAZA, (Senior Member, IEEE), MARCO ACEVES, (Senior Member, IEEE),
AND SAÚL TOVAR-ARRIAGA , (Senior Member, IEEE)
Faculty of Engineering, Autonomous University of Querétaro, Santiago de Querétaro 76010, Mexico

Corresponding author: Saúl Tovar-Arriaga (saul.tovar@uaq.mx)

This work was supported by the National Council of Reseach of Mexico (CONACyT).

ABSTRACT Retina images are the only non-invasive way of accessing the cardiovascular system, offering
us a means of observing patterns such as microaneurysms, hemorrhages and the vasculature structure which
can be used to diagnose a variety of diseases. The main goal of this paper is to automate retinal blood vessel
segmentation with a good tradeoff between blood vessel classification and training time in the presence
of high unbalanced classes. In this work, a novel methodology is proposed using two convolutional neural
networks (CNN’s), chained to each other. The second CNN has been designed with residual network blocks,
which joined to the information flow from the first, give us metrics like recall and F1-Score, which are,
in most cases, superior to state of the art in vessel segmentation task. We tested this work on two public
datasets for blood vessel segmentation in retinal images showing that this work outperforms many of other
contributions by other authors.

INDEX TERMS Retina vessel segmentation, convolutional neural network, U-Net, residual block, F1-Score.

I. INTRODUCTION
Cardiovascular diseases (CVD’s) are a whole of interrelated
pathologies, including coronary heart disease, cerebrovascu-
lar disease, peripheral arterial disease, rheumatic and congen-
ital heart diseases, which are undoubtedly a world leading
cause of death [1]. These diseases represent a set of dis-
orders of the heart and blood vessels are most prevalent in
developing countries. Habits like smoking, poor diet, seden-
tary lifestyle, and others are factors that negatively influence
CVD’s. Therefore, modifications of these factors can reduce
their occurrence.

The predictive models which have obtained the most
acceptable results in their attempts to predict these events
have been the Pooled Cohort equations [2], Framingham [3]
and the SCORE project [4]. All of these models try to pre-
dict the probability of a CVD, through a follow-up period
of 10 years, which avoids predicting events in short periods
of time.

The retina is the only place in the human body where
veins and arteries can be seen directly. This gives us the
opportunity to appreciate their structure, for example the
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shape of microvascular changes related to the development
of cardiovascular diseases (CVD) [5].

There are other CVD related patterns that can be seen in
retina images. One example is the hemorrhage, a disorder of
the eye in which bleeding occurs in the light-sensitive tissue
on the back wall of the eye [6]. It can be related to diabetic
retinopathy, which cause the formation of small fragile blood
vessels, which can be easily damaged by high blood sugar
level, potentially causing the growth or creation of new blood
vessels [7]. Another related disease is hypertensive retinopa-
thy, which consists of damage to the retina from high blood
pressure which may result in deformation of the retinal blood
vessels. The recognition of this disease may therefore be
important in cardiovascular risk stratification of hypertensive
patients. Hypertension affect the eyes in several ways, some
examples of them are: focal arteriolar narrowing, arteriove-
nous nicking, hemorrhages, microaneurysms and hard exu-
dates. Related to hypertensive retinopathy, others affection
are retinal vein occlusion, artery occlusion, arteriolar emboli,
and macroaneurysms [8].

Segmenting blood vessels into retinal images can give us
important clues in the diagnosis of ophthalmological diseases
such as diabetes, microaneurysms, arteriosclerosis and hyper-
tension. However, this is a task that retina specialists perform
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manually, a time-consuming process which allows for more
margin for human error, even when performed by the most
experienced doctors. In this paper, we focus on the automatic
segmentation of blood vessels in retina images.

Currently, the use of deep networks has shown signifi-
cant advances and proven results in the detection of patterns
in highly complex images with many classes of objects,
specifically with convolutional neural networks (CNN’s) [9].
These results have been facilitated by increased computa-
tional capacity through graphic processing units (GPUs).

In segmentation of medical images, the U-Net architecture
proposed by [10] has been successful as well as the introduc-
tion of residual networks [11]. Many variations of the CNNs
have been proposed, some of these will be reviewed below.

II. BACKGROUND
Numerous works for retinal blood vessels segmentation have
been proposed, some using traditional machine learning
methods. Orlando et al. [12], used a fully connected model
and a conditional random field with learned parameters
of the method using a support vector machine classifier.
Oliveira et al. [13], proposes an unsupervised method com-
bining a matched filter, a Frangi’s filter and a Gabor Wavelet
filter to enhance the images.

Currently the mainstream techniques used for segmen-
tation make use of CNNs, for example the work of
Cai et al. [14], whose architecture is based on the VGG
network [15]. Dasgupta and Singh [16] proposed a multi-
label inference task, combining a CNN with a structured
prediction. In [17], Alom et al. introduce residual blocks and
complement it with recurrent residual convolutional layers.
However, Zhuang in [18] went beyond this and stacked two
U-Nets with residual blocks, increasing the paths for informa-
tion flow. Another important work was proposed by Khanal
and Estrada in [19], which used of stochastic weights to
get a good balance between background pixels and vessels,
by using a second reduced network, for ambiguous classi-
fication pixels. Table 1 summarizes these works and others
which are based on their methods and reported performance
metrics.

The present work proposes an architecture based on a com-
mon U-Net and U-Net with residual blocks, where both net-
works are linked. The first part consists of feature extraction,
while the second focuses on the detection of new characteris-
tics or those that were ambiguous (or could not be specified),
by importing the information flow from the previous network.

III. METHODOLOGY
For the development of this work we used the DRIVE [22]
and CHASE [23] databases which are free and have been
used in competitions in the search and detection of different
pathologies that can be identified in retinal images. These
images can be used in the training and testing of a deep
learning network.

The general intention of this study is to follow a workflow
in which the retinal images are obtained, then subjected

TABLE 1. Overview of papers for retinal image segmentation. Metric
reported were accuracy, recall and F1-Score among others for DRIVE
dataset.

to pre-processing. At this point, various techniques can be
applied as feature extraction, highlighting certain patterns
and/or omitting others. The most important characteristics
are then selected, before the image is introduced to the CNN
architecture. Next comes the training and evaluation of the
images passed in batch, the calculation of and the adjustment
of the weights. All of this process is a cycle subject to changes
in the architecture until the best results are achieved. Finally,
the results can be used and interpreted by specialists.

A. PRE-PROCESSING
The successful behavior of a neural network is dependent
on the preprocessing of the images before their use. Such
preprocessing can improve the quality of the images and
therefore allow the CNN to detect certain characteristics.

The first step is to convert the RGB input image to
grayscale, thus achieving a higher contrast of blood vessels
with respect to the background of the original image. The
formula used was the following:

Img = R ∗ 0.299+ G ∗ 0.587+ B ∗ 0.114 (1)

where R,G, and B are the corresponding channels of the input
image. In this equation, the green channel (G) is highlighted,
because it provides the highest contrast [24].

The second step is data normalization, which is useful
in classification algorithms, particularly in backpropagation
neural network types. The normalization of the input values
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FIGURE 1. Result of preprocessing. Original image on the left,
preprocessed image on the right.

for each measured attribute in the training tuples will con-
tribute to accelerate the training phase [25].

Two techniques were carried out, min-max and z-score.
The first one develops a linear transformation of the input
data, preserving the relation of the original values:

v′ =
v− minA

maxA − minA
(2)

where v′ is the normalized value from the original v value
and its relation with the minimum and maximum values of
an attribute A. In the case of this study, attribute varies in a
scale between 0 and 255.

Z-score normalization is based on the mean and standard
deviation of an A attribute, and is useful when there may be
outliers governing the minimum and maximum extremes of
an attribute:

v′ =
v− Á
σA

(3)

where Á and σA are the mean and standard deviation respec-
tively.

The third step is to apply a contrast-limited adaptive his-
togram equalization (CLAHE), which is an effective method
for improving the details of a grayscale retina image in
a uniform manner. The final stage is the adjustment of
the brightness levels through a gamma correction. This
becomes necessary because many images present an insuf-
ficient or uneven brightness, which can make the details of
diagnoses undetectable [26].

The result of the pre-processing stage can be seen in
figure 1:

Patches are then extracted, allowing for the acquiring of
larger scale data sets and thus facilitating the training of
arbitrarily configured neural networks. This procedure can be
considered as an increase in data and is complemented with
the random horizontal and vertical flipping of these patches
in each iteration [27].

B. ARCHITECTURE
In this work a fully double convolutional neural network was
used, with the peculiarity that the second uses a residual
network. The original structure, also known as U-Net, was
proposed by [10] and is composed of an encoding part, where
both semantic and contextual information is captured as the

FIGURE 2. Residual block used in the present work. A feature map x
passes a sequence of layers (blue: convolutional, yellow: batch
normalization, green: ReLU activation). After that original characteristic x
is added with results obtained through the layers. Finally, a ReLU
activation is applied.

number of filters is doubled; as well as a second decoding
part, where the spatial information is restored and the charac-
teristics obtained at the lowest levels are merged.
â U-Net 1: It is composed of four levels where a double

convolution is repeatedly applied with a 3×3 filter, with
a padding equal to zero, a stride equal to one and a max
pooling operation with a 2 × 2 filter and stride of two.
Input image had one channel and 572 × 572 of size.
In the first level the numbers of channels used were set
in 24 and the image size was 568×568 after double con-
volutions. This process was repeated by three levels and
the results for each level were 48 channels and 280×280,
96 channels and 136× 136, 192 channels and 64× 64,
in the bottleneck 384 channels and 28×28. The decoding
part follows the previous structure, but in the opposite
direction. The numbers of channels were the same of
contracting part but image size get reduced, the values
for each level were 52× 52, 100× 100, 196× 196 and
388× 388. It also adds the characteristics found in each
of the different encoding levels. After each convolution
layer, a batch normalization layer and a ReLU activa-
tion function are applied, significantly improving the
training time as well as the stability and generalization
capacity of the model [28].

â Residual block: the idea arises from a degradation
problem that comes when models begin to converge,
as demonstrated in [11]. To reduce this problem, a resid-
ual block was proposed where the expected output is
composed of:

FM (x) = F (x)+ x (4)

where FM (x) is the expected feature map, from apply-
ing two convolutional layers to the input features, rep-
resented as F (x) and to this transformation, the original
input x was added. The addition of the original feature
map attenuates the problem of degradation that appears
in the models. Figure 2 details the process used in this
work.

â U-Net 2 with Residual blocks: The output of the first
network, as well as the maps of characteristics of each
level constitute the entrance to this second one. The
number of channels and image size at each level kept
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FIGURE 3. Proposed architecture. It consists of a U-net following with a U-net with residual blocks. In the first U-net, feature extraction is
carried out, while in the second U-net with residual blocks the detection of new characteristics or those that were ambiguous is performed.

equal to decoding part of first half of the architecture
proposed. The main difference is that a residual block is
added at each new level, both contraction and expansion.
This time a padding equal to one is used and in the
last layer a 1 × 1 filter convolution is applied in order
to produce an output of two channels, since a binary
classification task is carried out (see Figure 3).

This classification problem has the peculiarity that it
presents unbalanced classes, because the majority of pixels
represent the background of the images, while the minority
represent the vasculature of a retina image; for this reason,
a negative log-likelihood loss function will be used. This type
of loss function is defined by the following equation:

loss (x, y) = − (logy) (5)

This function maximizes the overall probability of the
data, by giving a high loss value when classification is
wrong or unclear and a low loss value when prediction
matches the expected by the model. The logarithm performs
the penalizing part, the lower the probability, the greater the
logarithm. Since these probabilities have values between zero
and one, and the logarithms in that range are negative, the
negative sign is used to convert them into positive values.

To handle the problem of class unbalance, the weight
attribute is provided, and each class is assigned both the
prediction and the reference. The approach proposed in [19]
is follow

wrand(1,α,s) (6)

where the weight w, varies randomly between one and the
value of α with a step equal to s. This dynamic variation of
the weights prevents the net from falling into local minima.
In order to obtain the logarithmic probabilities, the LogSoft-
max function is applied to the last layer of the neural network.

IV. MATERIALS AND EXPERIMENTATION
For the present investigation we worked with two public
databases for the segmentation of retina images, DRIVE and
CHASEDB that are described below:

â DRIVE: Consists of 40 color images of retina, with
dimensions of 565×584. This set is already divided into
20 images for training, which were separated into 15 to
train the proposed neural network and 5 to validate them,
as well as 20 other images for tests.

â CHASEDB: Consists of 28 images of retina of 14 chil-
dren, centered in the optic nerve, each with a dimension
of 999× 960 pixels.

The equipment used in all tests is a PC with an Intel(R)
Core (TM) i5-8400 processor CPU@2.80 GHz, with 16 GB
RAM and an NVIDIA GeForce GTX 1070 graphics card,
with 8 GB VRAM.

The neural network was initialized according to the param-
eters proposed by [19], and ADAM optimization was used,
proposed in [29], with a learning rate of 0.001. The setting
of a learning rate value is the most important task for the
configuration the model, yet unfortunately this value cannot
be analytically calculated and the closest value must instead
be found by means of trial and error. Normally the learning
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rate is less than 1.0 and greater than 10−6, learning rate
decay was applied and was adjusted every 30 epochs to a
ratio of 0.7. In total, 250 epochs were performed with an
early stop configured to 35 iterations with no change in the
loss function. Batch size is also an important hyperparameter,
as is the definition of the number of samples that will be
propagated through the network. In this case selected value
was four since lessmemory is required and typically networks
train faster with mini-batches because the weight is updated
after each propagation.

For training as well as for validation and testing,
the default configuration was respected in DRIVE. However,
CHASEDB used the cross validation technique using a strat-
ified 5-fold configuration, which was generated randomly,
such that in each fold 5 images were left for testing and the
remaining 23 images were split into training and validation.
The validation process was repeated 5 times with the same
architecture and trained from scratch for each fold. Finally,
the results were then averaged to produce a single estima-
tion. The value of 5 for k in k-fold was set empirically and
according to the proposals of most of the state of the art,
a higher value for k would have led to more training time.
All the implementation was done in PyTorch (version 1.1.0),
which is an open-source automatic learning library, used for
applications such as computer vision.

V. EVALUATION AND RESULTS
After building a model, it is of upmost importance to evaluate
its performance. The problem presents the peculiarity of a
high class unbalance, so the selection of the correct metrics
may be critical. According to [30], recall or sensitivity, pre-
cision and the harmonic mean between these two metrics
called F1-Score are suitable, useful metrics when working
with unbalanced classes. In addition, we include accuracy.
Their calculation is based on four possible interpretations of
the data:

â True Positive (TP): The sample label is positive and is
classified as such.

â True negative (TN): the sample label is negative and is
classified as such.

â False positive (FP): the sample label is negative, but is
classified as positive.

â False negative (FN): the sample label is positive, but is
classified as negative.

Based on these values the metrics mentioned above can be
calculated:

â Recall: tells us how many relevant samples are selected.

Recall =
TP

TP+ FN
(7)

â Precision: tells us how many predicted samples are
relevant.

Precision =
TP

TP+ FP
(8)

TABLE 2. Comparison with other state of the art works on DRIVE.

TABLE 3. Comparison respect to training time.

â F1-Score: is the harmonic mean between recall and pre-
cision.

F1Score =
2 ∗ TP

2 ∗ TP+ FP+ FN
(9)

â Accuracy: measures how many observations, both posi-
tive and negative, were correctly classified.

ACC =
(TP+ TN )

TP+ FP+ FN + TN
(10)

In Table 2 we can see a comparison of several similar
works based on the DRIVE dataset, according to the metrics
described above.

One can conclude, from the balanced values of precision
and recall obtained by using the F1-Score metric and a high
value, that we were properly classifying veins or background
pixels of the input image. As it can be seen, in the comparative
table 2, our proposal obtained the second-highest margin of
F1-Score and the highest accuracy among all related works,
it can be concluded that this classification proposal was in
most cases successful, and not at the expense of increasing
the number of false positives and false negatives. It should
also be noted that under the technical conditions in which the
experiments of this study were carried out, the execution time
was reduced by 57 minutes on the set of DRIVE images, and
by 10 hours 38 min on CHASEDB, in comparison to [19].
This study therefore achieved similar results in a shorter
processing period, as shown in Table 3.

Table 4 shows the same comparisons in the case of the
CHASEDB dataset:

Figures 4 and 5, show qualitative outputs of proposed
architecture. In Figure 4 one can see an example of a result
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TABLE 4. Comparison with other state-of-the-art works on CHASEDB.

FIGURE 4. Test results on DRIVE dataset. A: original image, B:
preprocessed image, C: ground truth and D: segmented output.

obtained from the DRIVE dataset. In Figure 5, the result for
CHASEDB is shown.

SSIM metrics were performed in order to make under-
standable the segmentation process, and due to the difficulty
of differentiating between a first phase with only U-Net and
a second one with the addition of the residual blocks. The
structural similarity index (SSIM) analyzes the viewing dis-
tance, edge information between the reference and the test
image. Is a perceptual metric that quantifies image quality
degradation caused by processing such as data compres-
sion [32]. The SSIM ranges from 0 (completely different)
to 1 (identical patches). The higher the value, the better.
Figure 6 shows a comparison between ground truth and a
result from the first U-Net, whilst Figure 7 compares the
ground truth with a result from all proposed architecture over
DRIVE database.

In the following image a detailed piece of segmentation on
images from DRIVE can be observed.

FIGURE 5. Test results on CHASEDB dataset. A: original image, B:
preprocessed image, C: ground truth and D: segmented output.

FIGURE 6. SSIM value for ground truth and result from U-Net 1.

FIGURE 7. SSIM value for ground truth and result from entire architecture.

The effect of lesion near vessels was also evaluated in
the segmentation process. The images used for experimen-
tation were taken from the DRIVE and CHASE databases.
In the 40 photographs found in DRIVE, 33 present no sign
of illness and the remaining 7 present signs of mild early
diabetic retinopathy and pigment epithelium changes, pig-
mented scar in fovea, or choroidiopathy. None of the images
in CHASE_DB show any presence of lesion. In the images
which presented signs of lesion, the segmentation was per-
formed without any problem. The results can be observed in
the following images.
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FIGURE 8. Piece of segmentation where thin, medium and large vessel
structures can be seen.

FIGURE 9. Test results on CHASEDB dataset. A: Original image with
background diabetic retinopathy, B: Segmented image, C: Area of the
lesion and D: Area of the lesion in segmented image.

As one can see in these images, there is no evidence of any
lesion in the segmented area. One can therefore conclude that
this level of lesion does not affect the segmentation of vessels.

VI. CONCLUSION
The task of achieving precise segmentation is an arduous
one, which has a high processing cost in algorithm training.
The main contribution of this work is the addition of a new
U-Net network, connected to the first one, with the peculiarity
that residual blocks were added to it, therefore attenuating the
degradation problem. Moreover, connections are established
at all levels, so that the information obtained in each of the
previous levels is added to the new characteristics identified.
Likewise, for the final output, a coupling of each level of
this last U-Net network with residual blocks is made. This
constant flow of information allows us to avoid or minimize
the natural information loss that occurs in the contraction of
images.

The results of this study are very similar to those of the
highest-performance methods, however they were obtained
with a considerably shorter training time. We were able to
reduce this training time thanks to the proposed architecture,
in which two fully-connected convolutional neural networks
were linked, with an encoder-decoder design, with the pecu-
liarity of adding residual network blocks in the second one.

The pre-processing of input images is very helpful in
the task of segmentation, which consists of working with
grayscale images, normalizing them, applying CLAHE
and gamma adjustment. Due to the few images available,
the increase in data was also significant, this time working
with patches of the original data and flipping them randomly.

The use of dynamic weights rounded the final result,
achieving a high F1-Score and precision values, from which
one can conclude that the segmentation task was carried out
with high reliability values.

The experiments were conducted on two public datasets,
DRIVE and CHASEDB. The research team hopes to continue
experimenting, for example increasing the number of filters
in order to determine if new patterns can be detected.
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