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ABSTRACT In this study, we consider the physical layer security in the downlink of a Massive MIMO
system employing one-bit quantization at the base station (BS). We assume an active eavesdropper that
attempts to spoiling the channel estimation acquisition at the BS for a legitimate user, whereas overhearing
on downlink transmission. We consider the two most widespread methods for degrading the eavesdropper’s
channel, the nullspace artificial noise (NS-AN) and random artificial noise (R-AN). Then, we present
a lower bound on the secrecy rate and asymptotic performance, considering zero-forcing beamforming
(ZF-BF) and maximum-ratio transmission beamforming (MRT-BF). Our results reveal that even when the
eavesdropper is close enough to the intercepted user, a positive secrecy rate –which tends to saturation with
increasing the number of BS antennas N—is possible, as long as the transmit power of eavesdropper is
less than that of the legitimate user during channel training. We show that ZF-BF with NS-AN provides
the best performance. It is found that MRT-BF and ZF-BF are equivalent in the asymptotic limit of N
and hence the artificial noise technique is the performance indicator. Moreover, we study the impact of
power-scaling law on the secrecy rate. When the transmit power of BS is reduced proportional to 1/N ,
the performance is independent of artificial noise asymptotically and hence the beamforming technique is the
performance indicator. In addition, when the BS’s power is reduced proportional to 1/

√
N , all combinations

of beamforming and artificial noise schemes are equally likely asymptotically, independent of quantization
noise. We present various numerical results to corroborate our analysis.

INDEX TERMS Active eavesdropping, ergodic information leakage, Massive MIMO, one-bit quantization,
physical layer security.

I. INTRODUCTION
Information secrecy in Massive multiple-input multiple-
output (MIMO) system—as a key technology for fifth-
generation networks—has been a critical issue that spurred
widespread interest [1]–[6]. One challenge inMassiveMIMO
lies in the increase in hardware complexity and energy con-
sumption [7] due to a large number of antennas at the base
station (BS). In recent years, there has been a growing interest
in replacing the high-resolution analog-to-digital convert-
ers (ADCs) and digital-to-analog converters (DACs) with
low-resolution ADCs and DACs. The extreme case of one-bit
ADC/DAC has been gaining much attention [8]–[11] because
of the considerable design simplicity offered to the physical
layer and negligible energy consumption. With this in mind,
it is of interest to understand the secrecy capability ofMassive
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MIMO employing one-bit quantization, which is the aim of
this work.

In a major advance in 1949, Shannon [12] established
the information-theoretic basis of communication secrecy of
cryptographic systems. In classical security, the transmitter
often shields the private message by a means of shared-key
cryptographic techniques carried out at the logical layers of
the network. Typically, the encryption key is very long and
computationally demanding. In addition, it is susceptible to
interception by powerful adversaries, especially in a wire-
less environment. Consequently, a key exchange between
two legitimate parties becomes infeasible in dynamic wire-
less networks with nodes of limited resources. To tackle
this problem, physical layer security provides an alternative
or a complement to classical cryptography, which exploits
the statistical differences between the channel of the legit-
imate receiver and that of the eavesdropper to guarantee
secrecy.
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The first information-theoretic approach to physical layer
security dates back to Wyner’s work [13] on the degraded
Gaussian wiretap channel. Later, Csiszar and Korner [14]
generalized Wyner’s work to the non-degraded wiretap chan-
nel. In the preceding works of Wyner, Csiszar, and Korner,
it was shown that when the channel of the legitimate receiver
is more capable (less noisy) than that of the eavesdropper,
secure communication is possible with no need for classical
cryptography. The maximal rate at which the transmitter and
legitimate receiver can communicate securely is limited by
the secrecy capacity, defined as the maximal of the difference
between the channel mutual information of the legitimate
receiver and that of the eavesdropper.

In the literature, passive attack refers to the situation where
an eavesdropper is concealing himself and thus only eaves-
dropping on the confidential transmission. On the other hand,
active attack refers to the situation where an eavesdropper
is not only eavesdropping on the confidential transmission
but also jamming the transmission. In the literature, many
attempts have been made [1], [6], [15]–[17] to study the
impact of the passive attack in Massive MIMO systems under
different scenarios. One common thing among most of the
above works and others in the literature is the use of artificial
noise to degrade the eavesdropper channel [5] and hence
improve security. Most of the above works focus on the care-
ful design of data beamforming (or precoding) and artificial
noise. In the literature, two artificial noise techniques are
widely used, the nullspace artificial noise (NS-AN) and ran-
dom artificial noise (R-AN) [5]. With NS-AN, the artificial
noise is made aligned with the nullspace of the channel of
the legitimate user while with the R-AN, the artificial noise
is generated randomly.

Massive MIMO has been considered as one of the key
technologies enabling green communication for its ability
to scale down the transmitted power while maintaining a
minimum quality of service to each user in the system. Thus
minimizing power (transmitted and circuit power consump-
tion [18]) while achieving secure communication simulta-
neously is of great importance [19]. Besides, one of the
constrains in wireless communication is the limited battery
life of wireless devices [20]–[23]. Thus maximizing the
energy harvested while satisfying the requirement of secure
communication turns out to be of importance in current and
future networks. Zhu et al. [23] studied the information
secrecy under the simultaneous wireless information and
power transfer (SWIPT) MIMO system, where the authors
proposed a low-complexity iterative algorithm to optimize the
design of beamforming to maximize the harvested energy and
meeting secrecy rate requirements simultaneously. In [21] a
joint optimization of beamforming and AN in a multiuser
MIMO system is considered under target secrecy rate and
transmit and harvested power constraints.

Stemming from the fact that meeting physical layer secu-
rity in the information-theoretic sense may give rise to a
significant loss in data rate, Chen et al. [3] considers a
cryptographic-like scheme to achieve security in Massive

MIMO system in the presence of a powerful eavesdropper.
In [3], the message symbols are randomly phase rotated while
this phase rotation is only available at the legitimate receiver
through downlink training with a small amount of overhead.
There, it is shown that when the BS is equipped with a
sufficiently large number of antennas, we guarantee secure
communication with high probability.

It is well-known that the promising gains of Massive
MIMO systems [24]–[27] are affected by pilot contamina-
tion [28], [29], whether resulting from pilot reuse [28] in
multi-cellular networks or pilot attack [4], [30], [31] created
intentionally by an active eavesdropper. In fact, the pilot
attack can cause serious degradation of the secrecy rate since
the beamformed signal in the downlink will be partly aligned
with the direction of eavesdropper’s channel, thereby increas-
ing the information leakage. This situation becomes more
pronounced when the pilot attack is severe, under which no
positive secrecy rate is possible.

Many attempts [32]–[36] with the purpose of detecting
and combating pilot attack in Massive MIMO have been
done. Ozan Basciftci et al. [32] showed that pilot attack
can be eliminated asymptotically as the size of the pilot
set (which is assumed known to everyone) is increased as
long as users select their pilots randomly. Xiong et al. [33]
proposed an efficient energy-based detector to identify a pilot
attack without the knowledge of the channel state informa-
tion (CSI). Do et al. [34] considered a single-user uplink
Massive MIMO and studied two anti-jamming strategies
based on pilot re-transmission and pilot adaptation technique.
Schaefer et al. [36] studied the secrecy and pilot attack
detection in a single-cell Massive MIMO in the presence of
a single-antenna eavesdropper. There, it is shown that the
secrecy rate can drop to zero as the power of eavesdropper
is increased. Do et al. [35] considered pilot jamming in
the uplink and proposed jamming-resistant approach using
unused pilot and pilot hopping to estimate the jamming chan-
nel. With zero-forcing type receiver, it is shown in [35] that
we can greatly enhance the robustness of the Massive MIMO
uplink against jamming attacks.

In multicell multiuser Massive MIMO systems, although
pilot contamination resulting from reuse of pilot across the
network can be alleviated through coordination between dif-
ferent BSs with low overhead [37] (also see [38] for inter-
ference alignment-based approach), however, the pilot attack
can still pose a real performance risk. Wu et al. [31] consid-
ered an active eavesdropper armed with multiple antennas,
and presented signal design using beamforming based on
maximum-ratio transmission andNS-AN technique under the
correlated channel. They showed that the NS-AN can benefit
from the highly correlated channels, enabling secure commu-
nication; however, this is not the case when the channel is
weakly correlated or independent and identically distributed
(i.i.d.). To overcome the limitation in [31], the authors in [39]
considered pilot-data exploitation for CSI acquisition. They
showed that decreasing the legitimate user’s power causes
its received signal to lie in a different eigenspace as that of
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the eavesdropper in the asymptotic limit of data length, thus
mitigating the effect of a strong pilot attack.

Using low-resolution ADCs/DACs at the BS in Massive
MIMO can substantially simplify the physical layer and
reduce energy consumption, particularly when the one-bit
quantization is considered. A related challenge is the design
of the channel estimator and the precoder [40], [41] which
turns to be not trivial as the quantization can break the struc-
ture of the beamforming matrix. This challenge can exacer-
bate when a pilot attack is present in the system. In [42] the
design of artificial noise is investigated in a simple scenario
of a multiple-antenna system under the constraint of a few
RF chains at the BS, considering a passive eavesdropper
and perfect CSI at the BS. The impact of hardware impair-
ment (such as phase noise and amplified receiver noise)
on secrecy in Massive MIMO is studied in [43] and hence
both the uplink training and the design of artificial noise are
optimized to enhance secrecy under a passive eavesdropper.
More recently, a low-resolution Massive MIMO system with
multiple-antenna passive eavesdropper was studied in [44].
With perfect CSI assumed available at the BS, it was shown
that quantization noise gives rise to the increase in secrecy
rate.

The main limitation of the previous studies on the secrecy
of Massive MIMO system with quantization or limited RF
chains at the BS is the focus on passive attack scenarios with
the assumption of perfect CSI at the BS. As far as quanti-
zation is concerned, the assumption of perfect CSI becomes
inaccurate even in the absence of pilot contamination and in
particular, the perfect CSI is unjustified when the extreme
one-bit quantization case is considered. Also, of even greater
importance is the impact of active eavesdropping on secrecy
in quantized Massive MIMO systems, which is not well
understood in the literature. In this work, we will particularly
study the one-bit quantized Massive MIMO system with an
active eavesdropper, and investigate its secrecy performance
under various beamforming and artificial noise techniques.

As a first step toward understanding the potential secrecy
in such quantized systems, we will investigate only the per-
formance under the zero-forcing and maximum ratio com-
bining (or matched filtering) beamformers combined with
two widely used techniques for degrading the quality of the
eavesdropper’s channel: nullspace and random artificial noise
techniques.

A. CONTRIBUTIONS
We summarize themain contributions of this work as follows:
1) We derive lower bounds on secrecy rate under vari-

ous beamforming and artificial noise schemes, and an
asymptotic performance analysis (when the number of
BS antennas N →∞) is given.

2) We show analytically (as N → ∞) a threshold on
the transmit power ratio between the eavesdropper and
intercepted user below which a positive secrecy rate is
possible. As a result, when the eavesdropper is near
enough to the intercepted user, secure communication

turns to be difficult (if not impossible) when the trans-
mit ratio is close to 1. This result is confirmed by
simulation of a practical scenario.

3) We show that when there is no power scaling at the
BS (i.e., power is not scaled down by the number of
BS antennas), NS-AN technique outperforms R-AN
technique, regardless of beamforming technique,
as N →∞.

4) We show that when the power at the BS is reduced
proportional to 1/N , the zero-forcing beamforming
(ZF-BF) outperforms maximum-ratio transmission
beamforming (MRT-BF), regardless of artificial noise.
Further, when the power is reduced proportional to
1/
√
N all schemes (any combination of beamform-

ing and artificial noise techniques) are asymptotically
equivalent and also quantization noise is irrelevant.

B. OUTLINE
We organize the rest of the paper as follows. Section II
introduces signal models in uplink and downlink and we
discuss channel estimation. Section III presents the design of
downlink beamforming and artificial noise. Also, we show
the analysis of information rates, the main results and spe-
cializing the main results to an unquantized system and a
quantized system with passive eavesdropping. In Section IV,
we present the asymptotic performance comparison and we
derive the condition under which secure communication is
possible. In Section V, we present some numerical examples
to verify our analytical results and Section VI concludes this
work.

C. NOTATION
Throughout this paper we use the superscript T to denote
transposition and the superscript H to denote hermitian
transpose, E[·] and Var(·) denote the expected value and
variance of a random variable, respectively. Boldface capital
letter X denotes a random matrix, boldface small letter x
denotes a random vector, small letter in normal font x denotes
a scalar random variable, big letter in normal font X is
typically used to denote a system parameter. We denote by
‖x‖ the Euclidean norm of a vector x, [X]i denotes the
i-th diagonal entry of a matrix X , diag(a1, a2, · · · ) denotes
a diagonal matrix with a1, a2, · · · comprise its diagonal,
and tr(·) denotes the matrix trace. The pointwise operations
log(·), sign(·),<{·} and ={·} denote the logarithm to base 2,
sign function, real and imaginary parts of a scalar, vector or
matrix, respectively.

II. SIGNAL MODEL AND CHANNEL ESTIMATION
We consider the downlink of a single-cell Massive MIMO
system with one-bit ADCs/DACs employed at the BS.
We assume that the BS has N antennas, serving K
single-antenna users (K � N ) in the same time-frequency
resource block. We assume the communication system oper-
ates in the time-division duplex (TDD) mode. Further,
we assume a single-antenna active eavesdropper who attacks
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FIGURE 1. System model in uplink.

the communication between a legitimate user and the BS by
contaminating its CSI acquisition at the BS during channel
training and overhearing on the downlink transmission.

We consider Rayleigh block-fading for both BS-users and
BS-eavesdropper channels with coherence time Tc. Within
each block, the channel remains constant over Tc sym-
bol intervals and changes independently from one block to
another. The composite small-scale fading channel between
all legitimate users and the BS is denoted by H =

[h1,h2, · · · ,hK ] ∈ CN×K and g ∈ CN represents the
small-scale fading channel between the eavesdropper and
the BS. The (n, j)-th component of H , denoted hnj, repre-
sents the propagation gain between the n-th BS antenna and
user j, whereas gn denotes the propagation gain between the
BS antenna n and the eavesdropper. Both H and g com-
prise i.i.d. complex Gaussian random variables, each with
zero-mean and unit variance. Further, we denote by βj &
βe the large-scale fading coefficients associated with legiti-
mate user j and the eavesdropper, respectively. We assume
all large-scale fading coefficients change slowly in order of
several Tc intervals and hence assumed available to everyone.
Since we are interested in the downlink rate, we divide the
coherence time into two parts; one for training (over τ symbol
intervals) and the other for downlink transmission (over Tc−τ
symbol intervals).

A. UPLINK SIGNAL MODEL
At the start of communication, all legitimate users in the
system send mutually orthogonal pilot sequences of length τ
symbols in the uplink for channel estimation at the BS,
whereas the eavesdropper concurrently transmits the same
pilot sequence of user k (intercepted user) to impair its
channel acquisition at the BS (see Fig. 1). We denote by
9 = [ψ1,ψ2, · · · ,ψK ]

T
∈ CK×τ the pilot matrix satis-

fying 99H
= τ IK . The j-th pilot sequence is expressed

as ψ j = [ψj(1), ψj(2), · · · , ψj(τ )]T ∈ Cτ where ψj(t)
is a discrete-time pilot symbol sent from user j at time t .

For simplicity of analysis, there is no loss of generality in
assuming the pilot symbols {ψj(t)} to have unit modulus,
i.e., |ψj(t)|2 = 1.
Thus, the discrete-time received signal at the BS during τ

symbol intervals can be written as

Y =
K∑
j=1

√
p′jhjψ

T
j +

√
p′egψ

T
k + Z (1)

where p′j and p
′
e are the average received power at the BS from

user j and eavesdropper, respectively, i.e.,

p′j = βjpj (2a)

p′e = βepe (2b)

where pj and pe are the average transmit powers of user j and
eavesdropper, respectively. The matrix Z ∈ CN×τ denotes a
complex additive white Gaussian noise (AWGN) with i.i.d.
CN (0, 1) entries.

Let yTn = [yn(1), yn(2), · · · , yn(τ )] be the n-th row
of Y (i.e., signal received by BS antenna n) and zTn =
[zn(1), zn(2), · · · , zn(τ )] be the n-th row of Z. Thus yTn can
be expressed as

yTn =
K∑
j=1

√
p′jhnjψ

T
j +

√
p′egnψ

T
k + z

T
n . (3)

We observe that the row vectors of Y are independent of each
other and have the common covariance matrix given by

Cyn = 9
HP ′9 + p′eψ

∗
kψ

T
k + Iτ . (4)

where P ′ = diag(p′1, · · · , p
′
K ) is a diagonal matrix. There-

fore, it suffices to consider the signal model (3) for our
analysis. From (3), the t-th component of yTn is given by

yn(t) =
K∑
j=1

√
p′jhnjψj(t) +

√
p′egnψk (t)+ zn(t). (5)
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Then, the signal after the one-bit quantizer (one-bit ADC)
attached to the n-th BS antenna is expressed as

vn(t) = sign(yn(t)), t = 1, 2, · · · , τ (6)

where sign(·) is the sign function which yields the sign of
the real and imaginary parts of yn(t) independently. Here
we assume a zero-threshold quantizer. Accordingly, the con-
stellation of the quantized signal corresponds to the quadra-
ture phase-shift keying constellation, i.e., A = 1

√
2
{1 + j,

1− j,−1+ j,−1− j}.
Because of the non-linearity of (6), the analysis is difficult.

However, since yn(t) is a Gaussian random variable, it holds
from the Bussgang theorem [45] that we may express (6) as
a sum of a scaled version of yn(t) and an uncorrelated term
(quantization noise) [11], [46], i.e.,

vn(t) = γ yn(t) + qn(t) (7)

where γ < 1 is a scaling factor and qn(t) is the quantiza-
tion noise uncorrelated to yn(t). From (7), γ is obtained by
the linear minimum mean squared error (LMMSE) solution,
i.e., γ = E[y∗n(t) vn(t)]/σ

2
y , resulting in quantization noise

with minimum variance. From [45] (see also [11], [46]),
E[y∗n(t) vn(t)] =

√
2σ 2

y /π , where σ
2
y is the variance of yn(t) .

Hence,

γ =

√
2
πσ 2

y
=

√
2/π∑K

j=1 p
′
j + p

′
e + 1

. (8)

Substituting (8) in (7), the variance of quantization noise is

σ 2
q = E[|vn(t)|2]− γ 2E[|yn(t)|]

= 1− 2/π ≈ 0.3634. (9)

Stacking the successive symbols vn(t)(t = 1, 2, · · · , τ ) in
a row vector vTn = [vn(1), vn(2), · · · , vn(τ )], we obtain

vTn = γ y
T
n + q

T
n (10)

where qTn = [qn(1), qn(2), · · · , qn(τ )].
In this work the quantization noise is assumed uncorre-

lated [11], i.e., Cqn = σ
2
q Iτ . This can be justified as follows.

Using (10) the covariance matrix (or correlation) of qTn can
be written as [11], [46]

Cqn =Cvn − γ
2Cyn

=
2
π
sin−1

[
6
−1/2
yn Cyn6

−1/2
yn

]
− γ 2Cyn (11)

where Cvn is the covariance matrix of vn and 6yn is the
diagonal matrix constructed from the diagonal entries of Cyn .
It is seen from (11) that when the input of quantizer is uncor-
related (i.e., Cyn ∝ Iτ ) so is the quantization noise. Note that
the diagonal entries of Cyn are all equal to σ

2
y =

∑K
j=1 p

′
j +

p′e + 1, while the off-diagonal entries can be expressed as

Cyn (t, t
′)=

K∑
i=1

p′i ψ
∗
i (t) ψi(t

′)︸ ︷︷ ︸
ejφi(t,t

′)

+p′eψ
∗
k (t) ψk (t

′), t 6= t ′ (12)

From (12) we observe that when K is sufficiently large,
the magnitudes of off-diagonal entries of Cyn are really much
smaller than its diagonal entries, i.e., σ 2

y � |Cyn (t, t
′)|, due

to the sum of a large number of weighted complex exponen-
tials having distinct phases in (12). Thus we can approxi-
mate Cyn as a diagonal matrix, i.e., Cyn ≈ σ 2

y Iτ , leading to
Cqn ≈ σ

2
q Iτ . Finally, without loss of generality, in this work

we assume τ = K � 1.

B. CHANNEL ESTIMATION
To estimate the propagation gain hnl (from user l to BS
antenna n), the BS correlates (10) with the pilot sequence of
user l. Hence,

ṽl :=
1
√
τ
vTnψ

∗
l =

1
√
τ

τ∑
t=1

ψ∗l (t) vn(t)

=

√
γ 2τp′lhnl +

√
γ 2τp′egnδ(l − k)+ γ z̃l + q̃l (13)

where z̃l = zTnψ
∗
l /
√
τ and q̃l = qTnψ

∗
l /
√
τ are zero-mean

scalar random variables with variances 1 and σ 2
q , respectively.

Using (13) the LMMSE estimate of hnl reads

ĥnl =
γ

√
p′lτ

γ 2p′lτ + γ
2p′eτδ(l − k)+ γ 2 + σ 2

q
ṽl := λl ṽl (14)

and therefore the variance of ĥnl is

σ 2
ĥl
=

γ 2p′lτ

γ 2p′lτ + γ
2p′eτδ(l − k)+ γ 2 + σ 2

q
. (15)

Stacking all channel estimates in a matrix form, the com-
posite channel estimate, denoted Ĥ , can be written as

Ĥ = V9H3/
√
τ (16)

where 3 = diag(λ1, λ2, · · · , λK ) ∈ RK×K is a diagonal
matrix and V ∈ CN×τ is the quantized signal corresponding
to Y , where the (n, t)-th entry of V is defined in (6). Finally,
we remark that the channel estimates ĥnl are treated as i.i.d.
CN (0, σ 2

ĥl
), thanks to the law of large numbers. This follows

from the fact that ṽl is typically comprised of a sum of a large
number of random variables.

C. DOWNLINK SIGNAL MODEL
Over one symbol interval, the BS synthesizes the following
signal vector (complex baseband precoded signal):

x̃ =

√
θ

η
Ws︸ ︷︷ ︸

information

+

√
θ̄

ζ
n︸ ︷︷ ︸

artificial noise

(17)

where s = [s1, s2, · · · , sK ]T comprises K independent com-
plex Gaussian information symbols, i.e., sj ∼ CN (0, 1),
W = [w1,w2, · · · ,wK ] ∈ CN×K is the precoding (or
beamforming) matrix with wj being the j-th column of W ,
and n = [n1, n2, · · · , nN ]T ∈ CN is a zero-mean com-
plex artificial noise vector generated deliberately to weaken
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FIGURE 2. System model in downlink.

the eavesdropper’s channel. In (17), η and ζ are long-term
normalization constants given by η = E[tr(WWH )] and
ζ = E[‖n‖2]. Further, θ ∈ (0, 1) and θ̄ = 1−θ are the power
fractions allocated to the beamformed signal and artificial
noise, respectively. Consequently, we have E[‖x̃‖2] = 1.
Then, after the one-bit quantizers at the BS, the signs of

the real and imaginary part of x̃ are retrieved (pointwise). The
complex baseband representation of the transmitted signal is
thus given by

x =
√
pd/N sign(x̃) (18)

where the scaling factor
√
pd/N is introduced to restrict the

average transmit power at the BS to pd . The system model in
downlink in depicted in Fig. 2.

Since x̃ is a unit norm vector and we consider the channel
matrix H drawn from random Gaussian matrix ensembles,
the variance of each component of the precoded signal
x̃ turns to be σ 2

x̃ = 1/N . By linearizing the nonlinear
model in (18) as we have discussed previously, we can
express (18) as

x =
√
pd
N

(γ̄ x̃+ q̄)

=

√
θγ̄ 2pd
Nη

Ws+

√
θ̄ γ̄ 2pd
Nζ

n+
√
pd
N
q̄

=

√
2θpd
πη

Ws+

√
2θ̄pd
πζ

n+
√
pd
N
q̄ (19)

where q̄ is the quantization noise, which is assumed to be
uncorrelated, i.e., C q̄ = σ

2
q IN and γ̄ is a scaling factor given

by

γ̄ :=

√
2

πσ 2
x̃

=

√
2N
π
. (20)

For simplicity of notation, we express (19) as

x = c1Ws+ c2n+ c3q̄ (21)

where c1, c2 and c3 are, respectively, defined as

c1 =
√
2θpd/πη (22a)

c2 =
√
2θ̄pd/πζ (22b)

c3 =
√
pd/N . (22c)

Remark 1: To retrieve the unquantized signal model from
the quantized signal model (19), we simply replace pd by
pdπ/2 and let σ 2

q = 0.

III. SECRECY CAPACITY ANALYSIS
In this section, we establish the achievable rate Rk of the
intercepted user k , and an upper bound on the eavesdropper’s
rate Re. We use the underline and overline notation to distin-
guish between a lower bound and upper bound, respectively.
Then the achievable secrecy rate Rs is given by [1], [14]

Rs =
[
Rk − Re

]+
(23)

where [A]+ = A when A > 0 and [A]+ = 0 when A < 0.

A. DATA BEAMFORMING AND ARTIFICIAL NOISE
In this work, we will consider two classical beamforming
techniques: the maximum ratio transmission beamforming
(MRT-BF) and zero-forcing beamforming (ZF-BF). Using
the channel estimate Ĥ in (16), the beamforming matrices of
MRT-BF and ZF-BF are thus given by

W :=

Ĥ
∗

MRT-BF,

Ĥ∗
(
ĤT Ĥ∗

)−1
ZF-BF.

(24)

For the artificial noise, the vector n in (17) is defined by

n = Sñ (25)

where S is a shaping matrix and ñ is an N × 1 Gaussian
vector with i.i.d. CN (0, 1) components. In this work, we will
consider the two widely known designs of artificial noise;
the R-AN and NS-AN. In the R-AN approach, the noise
is purely random, which points to no specific direction.
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Therefore, we let S = IN , thus n = ñ. When NS-AN
approach is used, n ∈ nullspace(ĤT

), i.e.,

ĤTS = 0K×K . (26)

This means that under unquantized systems, when the
channel estimate is sufficiently accurate and both user and
eavesdropper channels are not highly correlated, a large part
of the nullspace artificial noise will be annihilated at the user
while it is observed as a random noise at the eavesdropper,
degrading its channel quality. To satisfy (26), we simply

choose S to be the orthogonal complement matrix of ĤT
,

given by S = IN − Ĥ
∗
(ĤT Ĥ∗)−1ĤT

.
We summarize:

S :=


IN R-AN,

IN − Ĥ
∗
(ĤT Ĥ∗)−1ĤT︸ ︷︷ ︸

Pproj

NS-AN. (27)

Next the beamforming and AN normalization constants
η and ζ in (17) are evaluated as follows. Let the channel
estimate Ĥ be decomposed as

Ĥ = H̃61/2 (28)

where H̃ is a random Gaussian matrix with i.i.d. CN (0, 1)
components, and 6 = diag(σ 2

ĥ1
, σ 2

ĥ2
, · · · , σ 2

ĥK
) is a diagonal

matrix whose diagonal elements comprise the row vector
(σ 2
ĥ1
, σ 2

ĥ2
, · · · , σ 2

ĥK
).

Thus, when MRT-BF is used we have that

ηmrt = E[tr(WmrtWH
mrt)]

= E[tr(61/2H̃T H̃∗61/2)]

= tr(61/2E[H̃T H̃∗]61/2) = N tr(6) (29)

and when ZF is used, we can write

ηzf = E[tr(WH
zfW zf)]

= E[tr(6−1/2(H̃T H̃∗)−16−1/2)]

= tr(6−1/2E[(H̃T H̃∗)−1]6−1/2) =
tr(6−1)
N − K

(30)

where in (30) we have used E[(H̃T H̃∗)−1] = (N − K )−1IK ,
which follows from the property of the inverse of central
Wishart matrix H̃T H̃∗ [47].
From (27), the respective AN normalization constants cor-

responding to R-AN and NS-AN are

ζr-an = E[tr(IN )] = N (31)

ζns-an = E[tr(IN − Pproj)(IN − Pproj)H ]

= E[tr(IN − Pproj)]

= N − K . (32)

By substituting the above derived normalization constants
in (22), we again rewrite (22) as

c1 =

{√
2θpd/πN tr(6) MRT-BF√
2θpd (N − K )/πN tr(6−1) ZF-BF

(33)

c2 =

{√
2θ̄pd/πN R-AN,√
2θ̄pd/π (N − K ) NS-AN.

(34)

c3 =
√
pd/N . (35)

B. DATA RATES ANALYSIS
The received signal at the intercepted user k is

rk =
√
βkc21h

T
k wksk +

K∑
j=1,j 6=k

√
βkc21h

T
k wjsj

+

√
βkc22h

T
k Sñ+

√
βkc23h

T
k q̄+ νk (36)

and the eavesdropper receives

re =
√
βec21g

Twksk +
K∑

j=1,j 6=k

√
βec21g

Twjsj

+

√
βec22g

TSñ+
√
βec23g

T q̄+ νe (37)

where both νk , νe ∼ CN (0, 1), denoting the Gaussian noises
at the intercepted user and eavesdropper, respectively.

To obtain a lower bound on secrecy rate, we shall make two
main assumptions that have been considered in the literature,
serving as a worst-case scenario [1], [31]. First, to obtain
a lower bound on rate achievable by the legitimate user,
we assume the legitimate user has no access to its channel
realization and its beamforming vector, and thus the user
utilizes only its knowledge of the long-term statistics of the
channel for decoding. Second, to obtain an upper bound on
information leakage, we assume the eavesdropper has access
to its channel realizations and the beamforming vector of
intercepted user. Further, we assume that the eavesdropper
can cancel out all inter-user interference, which is conceiv-
able through collusion of other users with the eavesdropper.

Therefore, after ignoring the second term in (37),
we rewrite (37) as

re =
√
βec21g

Twksk +
√
βec22g

TSñ+
√
βec23g

T q̄+ νe (38)

and hence an upper bound on the ergodic information rate
leaked to the eavesdropper is given by1

Re = E

[
log

(
1+ c21βe

‖wHk g
∗
‖
2

σ 2
e

)]
(39)

where σ 2
e is the variance of the effective noise seen by the

eavesdropper, given by

σ 2
e = c22βeg

TSg∗ + c23βeσ
2
q ‖g‖

2
+ 1. (40)

To obtain a lower bound on achievable rate of legitimate
user k , we may express (36) as a sum of signal and uncorre-
lated noise [11], [37], i.e.,

rk = ask + neff (41)

1In (39) we have treated the quantization noise as Gaussian, which is a
technical assumption justified by the law of large numbers. Note that gT q̄
(third term in (38)) is a sum of N (large) random numbers and hence can be
well approximated as Gaussian random variable.
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where a is a deterministic constant which depends only on
the statistics of the channel and neff is an effective noise
uncorrelated with sk .
From (41) the variance of neff is given by

σ 2
neff = E

[
(rk−ask )(rk−ask )∗

]
. (42)

Thus, σ 2
neff is minimized by choosing a according to the

optimal estimator in the sense of MMSE which renders neff
uncorrelated with the signal sk . In the view of orthogonality
property of optimal estimator, i.e., E

[
(rk−ask )s∗k

]
= 0,

it follows that

a = E[s∗krk ] = c1
√
βkE[hTk wk ] (43)

Using this result in (42) yields

σ 2
neff = E[|rk |2]− |a|2

= c21βk Var(h
T
k wk )+

K∑
j=1,j 6=k

c21βkE[|h
T
k wj|

2]

+c22βkE[h
T
k Sh

∗
k ]+ βkσ

2
q pd + 1. (44)

where Var(·) is the variance operator. In (40) and (44) we
have used the fact that SSH = S for both R-AN and NS-AN
schemes.

Finally, a lower bound on the achievable rate Rk is obtained
by treating the non-Gaussian noise neff (which is uncorrelated
with signal) as independent Gaussian noise with the same
variance σ 2

neff [48]. Thus, we have

Rk = log

(
1+
|a|2

σ 2
neff

)
. (45)

For the convenience of exposition and analysis in this
paper, we summarize the results for the eavesdropper and
legitimate user in Lemmas 1 and 2 which will be used later in
Sec. III-D.
Lemma 1: An upper bound on the ergodic information

rate (leakage) of the eavesdropper is given by

Re = E

[
log

(
1+ c21βe

‖wHk g
∗
‖
2

σ 2
e

)]
(46)

where σ 2
e = c22βeg

TSg∗ + c23βeσ
2
q ‖g‖

2
+ 1.

Lemma 2: A lower bound on achievable rate of the legiti-
mate user k (intercepted) is given by

Rk = log

(
1+
|a|2

σ 2
neff

)
(47)

where a and σ 2
neff are given by

a = c1
√
βkE[hTk wk ] (48)

σ 2
neff = c21βk (Var(h

T
k wk )+

K∑
j=1,j 6=k

E[|hTk wj|
2])

+c22βkE[h
T
k Sh

∗
k ]+ βkσ

2
q pd + 1. (49)

C. IMPACT OF PILOT ATTACK
Because of the pilot attack, the estimated channel of the
legitimate user k will contain information (i.e., correlation)
about the channel of the eavesdropper. Here, we characterize
this information which turns to be useful in our analysis of
the main results.
Lemma 3: The eavesdropper’s channel vector can be

expressed as

g =
√
κRĥk + ε (50)

where κR is the received power ratio between the eavesdrop-
per and intercepted user k, i.e.,

κR =
p′e
p′k
=
βepe
βkpk

(51)

and ε is uncorrelated Gaussian (approximately) error vector
with covariance matrix given by

Cε = (1− κRσ 2
ĥk
)IN (52)

Proof: The proof is straightforward which follows from
the classical work on MMSE solution. Appendix A presents
the details. �
Although Lemma 3 is a straightforward result, however,

it is noteworthy. It can tell us how much information about
the eavesdropper’s channel g ∼ CN (0, IN ) is contained in
the channel estimate ĥk ∼ CN (0, σ 2

ĥk
IN ).

Using Lemma 3, the mutual information between eavesdrop-
per’s and legitimate user’s channels is obtained as follows:

I (g; ĥk ) = h(g)− h(g|ĥk )

= h(g)− h(ε)

= N log(πe)− N log
(
πe(1− κRσ 2

ĥk
)
)

= N log

 1

1− κRσ 2
ĥk

 ≥ 0, (53)

The intuitive result in (53) indicates that I (g; ĥk ) can grow
large and will be limited only by AWGN and quantization
noise when κR � 1. The equality in (53) is satisfied when
κR = 0, i.e., passive eavesdropping. Note that when κR � 1
(eavesdropper’s received power is much larger than received
power of legitimate user), σ 2

ĥk
becomes very small (i.e., chan-

nel estimate becomes unreliable) and vice versa. However,
the product κRσ 2

ĥk
is always less than unity.

Since in particular the nullspace noise is a function of ĥk ,
which is correlated with g, part of this noise lives in the
nullspace of the eavesdropper’s channel. Thus this part of
nullspace noise will be annihilated at the eavesdropper, giv-
ing rise to an increase in his information rate and hence a
significant reduction in secrecy rate.

D. MAIN THEORETICAL RESULTS
Here, we give a lower bound on the achievable secrecy rate
under different beamforming and artificial noise techniques.
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In the following, all derived information rates are given in
their normalized form.2

We state our findings in the following two theorems.
Theorem 1: Consider a one-bit quantized Massive MIMO

system with N antennas at the BS and K single-antenna users
in the presence of a single-antenna active eavesdropper. Also,
imperfect CSI is assumed to be available at the BS. If BS uses
MRT-BF, then a lower bound on the achievable rate of the
intercepted user k, is given by

RMRT
k = log

1+
2θπ−1 tr−1(6)βkσ 4

ĥk
pdN

2θβkpd/π + PANk + βkσ
2
q pd + 1

 .
(54)

Further, if the BS uses ZF-BF, then a lower bound on the
achievable rate is given by

RZFk = log

1+
2θπ−1 tr−1(6−1)βkpd (N − K )

2θβkpd (1−σ 2
ĥk
)/π+PANk +βkσ

2
q pd + 1


(55)

where PAN is the leakage power of artificial noise seen at the
intercepted user k defined as

PANk =

{
2θ̄βkpd/π R-AN
2θ̄βkpd (1− σ 2

ĥk
)/π NS-AN.

(56)

Proof: See Appendix B. �
Theorem 2: Consider the system model in Theorem 1.

When the number of base station antennas N is sufficiently
large, an upper bound on the ergodic information rate leaked
to the eavesdropper is given by (equal or approximate)

R
MRT
e
∼= log

1+
2θβepdσ 2

ĥk

(
κRσ

2
ĥk
N + 1

)
π tr(6)(PANe + βepdσ 2

q + 1)

 (57)

when the BS uses MRT-BF, and when the BS uses ZF-BF,

R
ZF
e
∼= log

1+
2θβepd

(
κR(N − K − 1)+ σ−2

ĥk

)
π tr(6−1)(PANe + βepdσ 2

q + 1)

 (58)

where κR is the receive power ratio defined in (51) and PANe is
the leakage power of artificial noise seen at the eavesdropper
defined as

PANe =

{
2θ̄βepd/π R-AN
2θ̄βepd (1− κRσ 2

ĥk
)/π NS-AN.

(59)

Proof: See Appendix C �
From (54) and (55) we identify the different components of

noise at the legitimate user k as follows. The term 2θβkpd/π
in (54) or 2θβkpd (1 − σ 2

ĥk
)/π in (55) captures the effect

of beamforming gain penalty 3plus inter-user interference,

2The normalization factor is (1 − τ/Tc), i.e., the fraction of time over
which downlink transmission is considered in this work.

3Beamforming gain penalty is due to CSI uncertainty at the user since user
relies on channel statistics rather than instantaneous channel realization.

the term PANk captures the leakage power of artificial noise,
and the term βkσ

2
q pd + 1 captures the effect of quantization

noise and AWGN. For more details, see Appendix B.
It is clear from (56) and (59) that both the legitimate user

and eavesdropper achieve higher data rates when the BS
employs NS-AN than R-AN. Furthermore, their information
rates increase with increasing the number of BS antennas N
and decrease with increasing the number of users K . Note
that the dependence of the rates on K when MRT-BF is used
is captured by tr(6), whereas captured by the factors N − K
and tr(6−1) when ZF-BF is used.

Also, by inspecting (56), it is obvious that when perfect
CSI is available at the BS, the nullspace noise seen by the
legitimate user becomes 0 due to σ 2

ĥk
= 1. That is to say,

the artificial noise is perfectly aligned with the nullspace of
the channel. Again, from (59), the assumption of perfect CSI
implies κR = 0 (passive eavesdropper), thus rendering both
the random and nullspace artificial noises have the same neg-
ative effect on the information rate from the eavesdropper’s
perspective.

E. ACHIEVABLE SECRECY RATE
From (55) and (58), we rewrite the respective
rates RZFk and R

ZF
e as follows:

RZFk = log
(
1+

2θβkpd (N − K )
A1

)
(60)

R
ZF
e
∼= log

1+
2θβepd (κR(N − K − 1)+ σ−2

ĥk
)

A2

 (61)

where A1,A2 are defined as

A1 = π tr(6−1)(PANk +
2θβkpd
π

(1− σ 2
ĥk
)+ βkσ 2

q pd + 1)

A2 = π tr(6−1)(PANe + βepdσ
2
q + 1). (62)

Using (23), we define RZFs (pd , θ,N ) =
[
RZFk − R

ZF
e

]+
as

a lower bound on secrecy rate4 when ZF-BF is used. Thus

RZFs (pd , θ,N )

=

[
log

(
1+

2θβkpd (N − K )
A1

)

− log
(
1+

2θβepd (κR(N − K − 1)+ σ−2
ĥk

)

A2

)]+

=

log
 2A2θσ 2

ĥk
pdβkN + C1

2A1θκRσ 2
ĥk
pdβeN + C2

+ (63)

where C1 and C2 are defined as

C1 = A2(A1 − 2θKpdβk )σ 2
ĥk

C2 = A1(A2σ 2
ĥk
− 2θpdβe(κR(K + 1)σ 2

ĥk
− 1)) (64)

4The explicit use of the parameters pd , θ and N in the secrecy rate is
introduced only for reasons of mathematical convenience.
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Likewise, from (54) and (57), we write the respective rates
RMRT
k and R

MRT
e as follows:

RMRT
k = log

1+
2θβkσ 4

ĥk
pdN

B1

 (65)

R
MRT
e
∼= log

1+
2θβepdσ 2

ĥk
(κRσ 2

ĥk
N + 1)

B2

 (66)

where B1 and B2 are defined as

B1 = π tr(6)(2θβkpd/π + PANk + βkσ
2
q pd + 1)

B2 = π tr(6)(PANe + βepdσ
2
q + 1). (67)

Denoting RMRT
s (pd , θ,N ) =

[
RMRT
k − R

MRT
e

]+
as a lower

bound on secrecy rate when MRT-BF is employed, thus we
write

RMRT
s (pd , θ,N ) =

[
log

1+
2θβkσ 4

ĥk
pdN

B1


− log

(
1+

2θβepdσ 2
ĥk
(κRσ 2

ĥk
N + 1)

B2

)]+

=

log
 2B2θσ 4

ĥk
pdβkN + C3

2B1θκRσ 4
ĥk
pdβeN + C4

+ (68)
where C3 and C4 are defined as

C3 = B1B2
C4 = B1B2 + 2B1θσ 2

ĥk
pdβe. (69)

Because of the concavity of the log(·) and the
non-monotonic behavior of RZFk −R

ZF
e and RMRT

k −R
MRT
e with

respect to θ , the lower bounds (63) and (68) can bemaximized
with respect to θ . The optimal θ maximizing the secrecy rates
RMRT
s (pd , θ,N ) and RZFs (pd , θ,N ) can be found by solving
dRMRT

s (pd , θ,N )/dθ = 0 and dRZFs (pd , θ,N )/dθ = 0 for
θ ∈ (0, 1).

Due to the cumbersome algebraic expressions of optimal θ ,
we omit them and hence compute the optimal values numer-
ically instead. As shown in the next section, it turns out that
when all parameters are fixed, the optimal policy is to allocate
almost all power to artificial noise (i.e., signal power becomes
infinitesimal) in the asymptotic limit of N .

F. SECRECY RATE UNDER PASSIVE EAVESDROPPING
Passive eavesdropping corresponds to the situation where the
eavesdropper does not transmit any signal (i.e., pe = 0,
κR = 0) to conceal himself and his harm is limited only by
eavesdropping on the downlink transmission to decode the
confidential message sent to the legitimate user. Based on
the CSI’s availability at the BS, we study the following two
scenarios.

Passive eavesdropping with imperfect CSI (P-ICSI): Per-
fect CSI is rarely available at the BS, and hence it needs
to be estimated beforehand. To specialize our results of the
quantized system to this scenario, we redefine the variance
of channel estimate σ 2

ĥl
and the diagonal matrix 6 derived

previously as follows:σ
2
ĥl

pe=0
−−−→ ξ2l =

γ 2p′lτ

γ 2p′lτ + γ
2 + σ 2

q

6
pe=0
−−−→ 5 = diag(ξ21 , ξ

2
2 , · · · , ξ

2
K ).

(70)

Substituting (70) in Theorem 1, (70) with κR = 0 in
Theorem 2, and using the definition (23), we obtain the
achievable secrecy rate RP-ICSIs shown in (71), as shown at
the bottom of the next page, where PANk,P-ICSI is defined as

PANk,P-ICSI =


2θ̄pdβk
π

R-AN

2θ̄pdβk
(
1− ξ2k

)
π

NS-AN.
(72)

Passive eavesdropping with perfect CSI (P-PCSI): The
assumption of perfect CSI at the BS corresponds to ξl = 1
and hence5 = IK . Thus, substituting ξk = 1 and5 = IK in
(71) and (72), the secrecy rate in (73), as shown at the bottom
of the next page, follows directly, where

PANk,P-PCSI =

{
2θ̄pdβk/π R-AN
0 NS-AN.

(74)

The result of ZF-BF in (73) can be directly obtained from
[ [44], eq. (27)].5

Finally, we remark that under passive eavesdropping, both
R-AN and NS-AN look like random noise from the perspec-
tive of eavesdropper and hence they have the same effect on
his rate. Further, while the achievable rate of legitimate user
increases with increasing N , however, the eavesdropper’s
rate is independent of the number of BS antenna. Therefore,
the secrecy rate steadily increases withN , contrary to the case
of active eavesdropping with a single-antenna eavesdropper.
This observation has already been reported in the literature
(i.e., see [4]) under unquantized systems and hence it holds
true for quantized systems as well.

G. SECRECY RATE IN UNQUANTIZED SYSTEM
With the unquantized system, it is assumed that the BS
has access to the original received signal (uplink) and the
transmitted signal (in downlink) undergoes no quantization,
i.e., the BS is assumed to have infinite-resolution ADCs and
DACs.

To specialize our results of the quantized system
to the unquantized system, we redefine the set of parameters

5More specifically, RP-PCSIk in (73) can be directly obtained from [ [44],
Eqs. (19) and (20)] and RP-PCSIe in (73) is obtained from [ [44], Eq.(23)] with
the assumption that the variance of AWGN at the eavesdropper is 0 and the
ratio α = K/N is set to 0 instead of being fixed as assumed in [44].
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{pd , σ 2
q , σ

2
ĥl
,6} as follows:

pd → pdπ/2, σ 2
q → 0 (Remark 1)

σ 2
ĥl

σ 2q=0,γ=1
−−−−−−→ ϑ2

l =
p′lτ

p′lτ + p
′
eτδ(l − k)+ 1

6 → 4 = diag(ϑ2
1 , ϑ

2
2 , · · · , ϑ

2
K ).

(75)

Considering the parameters’ replacement (75) in
Theorems 1 and 2 and using the definition (23) yields the
achievable secrecy rate as given in (82), as shown at the bot-
tom of page 37833, where PANk,UQ and PANe,UQ are, respectively,
given by

PANk,UQ =

{
θ̄βkpd R-AN
θ̄βkpd

(
1− ϑ2

k

)
NS-AN

(76)

PANe,UQ =

{
θ̄βepd R-AN
θ̄βepd

(
1− κRϑ2

k

)
NS-AN.

(77)

IV. ASYMPTOTIC PERFORMANCE COMPARISON
Inspecting the secrecy rates in (63) and (68) provides no
clear clue of how the performance of MRT-BF and ZF-BF
can be compared. Therefore, a better understanding of the
performance gap can be gained through asymptotic perfor-
mance. Our focus here will be on the asymptotic behavior
of the beamforming/artificial noise schemes as the number
of BS antennas increases with no limit. As shown next,
the asymptotic performance renders it easy to capture the
important parameters for a specific scheme to guarantee a
positive secrecy rate, which turns to be even very useful for
the non-asymptotic case.

In Massive MIMO the transmit power of the BS can be
cut down as the number of BS antennas grows large while
maintaining a nonzero data rate for each user in the system,
i.e., power-scaling law [26]. Since our concern is the secrecy

rate rather than the conventional rate, thus, it is of interest to
know whether the power-scaling law remains valid. That is
to say, we seek to see if it is possible to reduce the transmit
power at the BS as N → ∞ while maintaining a nonzero
secrecy rate.

In the following, we study the asymptotic behavior of
the secrecy rate in Massive MIMO system with and without
transmit power scaling at the BS.

A. MASSIVE MIMO WITH NO POWER SCALING
Here, we assume that the transmit power pd at the BS is not
scaled down as N grows large (independent of N ), i.e., no
power scaling (no-PS). In the following, we state our results
in the following corollary.
Corollary 1: Assume the BS uses MRT-BF or ZF-BF. Then

when R-AN is used, the maximum secrecy rate converges
to

Rno-PSs,R-AN→

[
log

(
βk (pdβe(πσ 2

q + 2)+ π )

κRβe(pdβk (πσ 2
q + 2)+ π )

)]+
(78)

and when NS-AN is used, the maximum secrecy rate con-
verges to

Rno-PSs,NS-AN→

log
βk (pdβe(πσ 2

q + 2− 2κRσ 2
ĥk
)+ π )

κRβe(pdβk (πσ 2
q + 2− 2σ 2

ĥk
)+π )

+
(79)

asymptotically as N →∞.
Proof: In the following we need to evaluate the secrecy

rate RZFs (pd , θ,N ) (63) and RMRT
s (pd , θ,N ) (68) as N →∞,

then maximize the resulting expressions with respect
to θ .

Consider the ZF-BF scheme. Taking the limit of (63) as
N → ∞ and using the definition of the leakage power of

RP-ICSIs =



log
1+

2 tr-1(5)ξ4k θpdβkN

pdβk
(
2θ + πσ 2

q

)
+π (PANk,P-ICSI + 1)

− log

(
1+

2 tr-1(5)ξ2k θpdβe

pdβe
(
2−2θ+πσ 2q

)
+π

)+ MRT-BF

log
1+

2 tr-1(5−1)θpdβk (N − K )

pdβk
(
2θ − 2ξ2k θ + πσ

2
q

)
+π (PANk,P-ICSI + 1)

− log

(
1+

2 tr-1(5−1)ξ−2k θpdβe

pdβe
(
2−2θ+πσ 2q

)
+π

)+ ZF-BF

(71)

RP-PCSIs =



log
1+

2θpdβkN/K

pdβk
(
2θ+πσ 2

q

)
+π (PANk,P-PCSI+1)

− log

1+
2θpdβe/K

pdβe
(
2− 2θ+πσ 2

q

)
+π

+ MRT-BF

log
(
1+

2π−1θpdβk (N/K − 1)

pdβkσ 2
q +P

AN
k,P-PCSI+1

)
︸ ︷︷ ︸

RP-PCSIk

− log

1+
2θpdβe/K

pdβe
(
2− 2θ+πσ 2

q

)
+π


︸ ︷︷ ︸

RP-PCSIe



+

ZF-BF

(73)
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artificial noise (56) and (59), we obtain

f1(θ )

:= lim
N→∞

RZFs (pd , θ,N )

=

 lim
N→∞

log

 2 A2θσ 2
ĥk
pdβkN + C1

2 A1θκRσ 2
ĥk
pdβeN + C2

+

=

[
log

(
A2βk
A1βeκR

)]+
=

log
 βk (PANe + pdβeσ

2
q + 1)

κRβe(PANk +
2θβkpd
π

(1− σ 2
ĥk
)+ βkσ 2

q pd + 1)

+

=



log
 βk

(
pdβe(2−2θ + πσ 2

q )+ π
)

κRβe(pdβk (2−2θσ 2
ĥk
+ πσ 2

q )+ π )

+
if R-ANlog
βk (pdβe(2(θ−1)(κRσ 2

ĥk
−1)+ πσ 2

q )+ π )

κRβe(pdβk (πσ 2
q −2σ

2
ĥk
+ 2)+ π )

+
if NS-AN.

(80)

When MRT-BF is used, we proceed as follows. Taking the
limit of (68) as N → ∞ and using the definition of the
leakage power of artificial noise (56) and (59), we obtain

f2(θ )

:= lim
N→∞

RMRT
s (pd , θ,N )

=

 lim
N→∞

log

 2 B2θσ 4
ĥk
pdβkN + C3

2 B1θκRσ 4
ĥk
pdβeN + C4

+

=

[
log

(
B2βk
B1κRβe

)]+
=

[
log

(
βk (PANe + βepdσ

2
q + 1)

κRβe(2θβkpd/π + PANk + βkσ
2
q pd + 1)

)]+

=



log
βk

(
pdβe(−2θ + πσ 2

q + 2)+ π
)

κβe(pdβk
(
πσ 2

q + 2
)
+ π )

+
if R-ANlog
βk (pdβe(2(θ − 1)(κRσ 2

ĥk
− 1)+ πσ 2

q )+ π )

κRβe(pdβk (2(θ − 1)σ 2
ĥk
+ πσ 2

q + 2)+ π )

+
if NS-AN.

(81)

Next, we maximize (80) and (81) with respect to θ . It is
easy to verify that the first derivatives d

dθ f1(θ ) and
d
dθ f2(θ )

have no critical points in θ ∈ (0, 1) for both R-AN and
NS-AN schemes, and f1(θ ) and f2(θ ) are decreasing functions
of θ . Thus the value of θ maximizing f1(θ ) and f2(θ ) coincides

with the left endpoint (θ → 0), i.e., power allocated to signal
becomes infinitesimal.

Substituting θ = 0 in (80) and (81), we obtain

Rno-PSs = f1(0) = f2(0)

=



log
 βk

(
pdβe

(
πσ 2

q + 2
)
+ π

)
κRβe(pdβk

(
πσ 2

q + 2
)
+ π )

+
if R-ANlog
βk (pdβe(πσ 2

q + 2− 2κRσ 2
ĥk
)+ π )

κRβe(pdβk (πσ 2
q + 2− 2σ 2

ĥk
)+ π )

+
if NS-AN

(83)

which is independent of the beamforming scheme. �
From (78) and (79), a positive secrecy rate is possible if

the transmit power ratio (during channel training) between
the eavesdropper and intercepted user satisfies

κT =
pe
pk
< 1+

πβk (βk − βe)(
pdβk

(
πσ 2

q + 2
)
+ π

)
β2e︸ ︷︷ ︸

1β

. (84)

Further, since (78) and (79) are positive under the same
condition (84), we have that

1no-PS
= Rno-PSs,NS-AN − R

no-PS
s,R-AN > 0. (85)

We summarize our conclusions from Corollary 1 as
follows:

1) The NS-AN outperforms R-AN asymptotically,
independent of the beamforming technique.

2) Using R-AN entails more BS antennas to achieve the
same performance of NS-AN.

3) Both NS-AN and R-AN are useless when the power
ratio constraint in (84) is violated.

B. MASSIVE MIMO WITH POWER SCALING
Here, we assume that as N → ∞, the transmit power at
the BS can be scaled down by a factor of 1/

√
N or 1/N .

In the sequel, we use PS1 and PS2 to denote the situations
where the transmit power is proportional to 1/

√
N and 1/N ,

respectively. Hence,

pd =

{
ρ
/√

N PS1
ρ
/
N PS2

(86)

where ρ is a fixed value (predetermined at the BS).
We state our results in the following two corollaries.
Corollary 2: Consider the BS’s transmit power is scaled

down by a factor of 1/
√
N. If the BS employs MRT-BF or

ZF-BF, then the maximum secrecy rate converges to

RPS1s →

[
log

(
βk

κRβe

)]+
(87)

irrespective of the artificial noise scheme.
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Proof: The result is established by taking the limits
of RZFs (ρ/

√
N , θ,N ) (63) and RMRT

s (ρ/
√
N , θ,N ) (68) as

N →∞ and then maximizing the resulting expressions with
respect to θ , following the same reasoning as the proof for
Corollary 1. �
Corollary 3: Consider the BS’s transmit power is scaled

down by a factor of 1/N. If the BS employs MRT-BF, then the
maximum secrecy rate converges to

RPS2, MRT
s →

log
 π tr(6)+ 2βkσ 4

ĥk
ρ

π tr(6)+ 2βeσ 4
ĥk
κRρ

+ (88)

and when the BS employs ZF-BF, the maximum secrecy rate
converges to

RPS2, ZFs →

[
log

(
π tr(6−1)+ 2βkρ

π tr(6−1)+ 2βeκRρ

)]+
(89)

irrespective of the artificial noise scheme.
Proof: The result is established by taking the limits

of RZFs (ρ/N , θ,N ) (63) and RMRT
s (ρ/N , θ,N ) (68) as

N →∞ and then maximizing the resulting expressions with
respect to θ , following the same reasoning as the proof for
Corollary 1. �

By inspection of Corollaries 2 & 3 we can observe that a
positive secrecy rate is possible if the transmit power ratio
satisfies

κT =
pe
pk
<

(
βk

βe

)2

. (90)

Since (88) and (89) are both positive under the same
condition (90), thus it is easy to show that

1PS2
= RPS2, ZFs − RPS2, MRT

s > 0 (91)

asymptotically.
We summarize our conclusions from Corollaries 2 & 3 as

follows:
1) When power scaling at the BS is considered, the asymp-

totic performance is independent of artificial noise,
contrary to the no-power-scaling regime.

2) Under PS1, MRT-BF and ZF-BF are equivalent while
under PS2 regime, ZF-BF outperforms MRT-BF,
asymptotically.

3) With power scaling at the BS, the asymptotic secrecy
rate drops to zero when (90) is violated.

Finally, we close this section with the following.
Remark 2: Corollaries 1–3 can be used to deduce the

asymptotic secrecy rate for the passive eavesdropping

case and the unquantized system, considering the variable
replacements as discussed in Sec. III-F and Sec. III-G.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we present some numerical results to verify
the analytical results in this work. We consider a single-cell
Massive MIMO system with K single-antenna users and a
single-antenna active eavesdropper. Without loss of gener-
ality, we assume β1 = β2 = · · · = βK = βe = 1
and all legitimate users transmit at the same power, i.e.,
p1 = p2 = · · · = pk = pu. Unless otherwise stated,
analytical results refer to the achievable secrecy rate using
(63) and (68) and Corollaries 1-3 whereas simulation results
refer to simulated achievable secrecy rate evaluated byMonte
Carlo simulation with quantization-noise correlation and
exact ergodic information rate leakage (39) are accounted.

In Fig. 3 we show the simulated and theoretical lower and
upper bounds on information rates of the legitimate user and
eavesdropper, respectively. We show the results assuming the
BS employs nullspace noise. The topmost and bottommost
plots compare the theoretical (using (54),(55), (57) and (58))
bounds with simulated ones under MRT-BF and ZF-BF,
respectively. As can be seen from Fig. 3 that there is a good
match between the analytical and the simulated results.

FIGURE 3. Theoretical and simulated lower bound on achievable user
rate and upper bound on eavesdropper rate under MRT-BF (topmost plot)
and ZF-BF (bottommost plot) with NS-AN. We use θ = 0.5, K = τ = 10,
pu = pd = 10dB and pe = 5dB. The theoretical results are obtained
by (54),(55), (57), and (58).

The achievable secrecy rate corresponding to MRT-BF and
ZF-BF is shown in Fig. 4 and Fig. 5, respectively, for a
different number of BS antennas (N = 32, 64, 128, 256)

RUQs =



[
log

(
1+

tr-1(4)ϑ4
k θβkpdN

θpdβk + PANk,UQ + 1

)
− log

(
1+

ϑ2
k θpdβe

(
ϑ2
k κRN + 1

)
tr(4)(PANe,UQ + 1)

)]+
MRT-BFlog(1+ θpdβk (N − K ) tr-1(4−1)

θpdβk (1− ϑ2
k )+ P

AN
k,UQ + 1

)
− log

1+
θpdβe

(
ϑ−2k + κR(N − K − 1)

)
tr
(
4−1

)
(PANe,UQ + 1)

+ ZF-BF

(82)
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FIGURE 4. Achievable secrecy rate of MRT-BF for different number of BS antennas, K = τ = 10,pu = pd = 10dB and pe = 7dB.

FIGURE 5. Achievable secrecy rate of ZF-BF for different number of BS antennas, K = τ = 10,pu = pd = 10dB and pe = 7dB.

and as varying θ (allocated power ratio of signal) between
0 and 1. The eavesdropper’s power is set to pe = pu/2 =
7dB. From Fig. 4, we can observe that the NS-AN (Fig. 4b)
always outperforms R-AN (Fig. 4a) due to a smaller leakage
power of the artificial noise. For example, when N = 256,
the performance gap between NS-AN and R-AN is about
0.1 bits/s/Hz. Likewise, it is evident from Fig. 5 that the
use of NS-AN (Fig. 5b) provides higher rates compared with
R-AN (Fig. 5a) under ZF-BF. Further, it is clear that ZF-BF
with NS-AN achieves the highest secrecy rate while MRT-BF
with R-AN provides the lowest secrecy rate, where the gap
between them is about 0.3 bits/s/Hz when N = 256. We can
observe that the analytical results serve as a good lower bound
on the secrecy rate compared with the simulated results. It is
worth noting that, in the neighborhood of the optimal value
of θ where the secrecy rate is peaked, the gap between the
analytical and simulated results is very small.

Moreover, we observe that in all simulated cases in
Figs. 4 and 5, the secrecy rate increases as the number of

BS antennas N increases, while the power fraction allocated
to signal is monotonically decreasing. As N increases, both
the intercepted user’s rate and information leakage increase,
thus in order to maintain a positive secrecy rate, more power
should be allocated to artificial noise to degrade the eaves-
dropper channel (see the proof of Corollary 1).

A. IMPACT OF NUMBER OF USERS
Fig. 6 depicts the impact of increasing the number of users on
the secrecy rate. As seen, the secrecy rate decreases steadily
as the number of users increases. This, in particular, fol-
lows from the increases of inter-user interference (in case of
MRT-BF) and the reduction in the array gain (in case of
ZF-BF), thus reducing the rate of the intercepted user.
As observed previously, ZF-BF with NS-AN provides a
higher secrecy rate, albeit at the price of a high compu-
tational burden when compared with MRT-BF combined
with R-AN.
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FIGURE 6. The impact of number of users on secrecy rate under ZF-BF
and MRT-BF, N = 128, τ = K , pu = pd = 10dB and pe = 5dB.

B. IMPACT OF TRANSMIT POWER RATIO
The effect of transmit power ratio κT = pe/pu during the
pilot attack is illustrated in Fig. 7. In all beamforming and
artificial noise schemes, we observe that the secrecy rate is
steadily reduced as κT increases. In general, ZF-BF with
NS-AN outperforms other schemes as observed previously.
However, the secrecy rate drops to zero for all schemes when
κT approaches 1 (0dB). This is in line with the asymp-
totic condition derived in (84). From (84), κT < 1 due to
βk = βe = 1 in our simulation. Thus in the absence of
an advanced secrecy protocol, active eavesdropping can be
deleterious to the secrecy rate.

FIGURE 7. The impact of transmit power ratio κT = pe/pu, during pilot
attack on secrecy rate, N = 64, K = τ = 10 and pu = pd = 10dB.

Fig. 8 depicts the cumulative distribution function (CDF)
of the secrecy rate when the BS employs ZF-BF and NS-AN,
where this scheme is chosen due to its high performance aswe
have shown before.We assume that the BS is positioned in the
center of a circle of radius 1km while the active eavesdropper
in a circle of radius 100m around the intercepted user, i.e., this
captures the situation when the eavesdropper is very close
to the intercepted user. The positions of users are assumed
random and uniformly distributed inside the circular cell.

FIGURE 8. CDF of secrecy rate for (ZF-BF, NS-AN)-scheme. The BS is
positioned in the center of a circle of radius 1km while the eavesdropper
is in a circle of radius 100m around the intercepted user. All users’
positions are random and uniformly distributed in the cell. N = 128,
K = τ = 10 and pd = pu = 10dB.

As seen in Fig. 8 the average secrecy rate decreases with
increasing the power of eavesdropper. When the eavesdrop-
per transmits at the same power level as the legitimate user,
the average secrecy drops to zero. This again confirms our
analysis and the transmit power-ratio threshold given in (84)
even in this non-asymptotic case.

C. ACTIVE VS. PASSIVE EAVESDROPPING
We plot in Fig. 9 the theoretical and simulated secrecy rate
versus the number of BS antennas in the presence of active
and passive eavesdropping. We show the results for the case
of ZF-BF andNS-AN.We can see that when the eavesdropper
is passive (i.e., Pe = 0 or κR = 0), the secrecy rate increases
monotonically with the number of BS antennas under both
perfect and imperfect knowledge of CSI at the BS. This
is in line with our analytical expressions in (71) and (73).

FIGURE 9. Passive vs. active eavesdropping performance comparison
under ZF-BF and NS-AN. K = τ = 10 and pd = pu = 10dB. For passive
eavesdropping, we show the results for perfect and imperfect knowledge
of CSI, i.e., P-ICSI and P-PCSI. The analytical results for passive
eavesdropping use (71) and (73).
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We remark again that in unquantized Massive MIMO sys-
tems, the monotonic increase of secrecy rate in the presence
of a passive single-antenna eavesdropper has been reported in
the literature (i.e., see [4]) and it also holds true for quantized
systems.

However, when an active eavesdropper exists, the secrecy
rate becomes drastically small and grows at a much slower
pace as the number of BS antennas N increases, especially
when the pilot attack is strong. Guided by (79) of Corollary 1,
the slow growth of secrecy rate with increasing N indicates
that the secrecy rate will finally saturate as N →∞. The per-
formance gap between the passive and active eavesdropping
scenarios is significant, even when the transmit power of the
eavesdropper is at the noise level.

Finally, the results of passive eavesdropping demonstrate
just how the assumption of perfect CSI may overestimate the
achievable secrecy rate.

D. QUANTIZED VS. UNQUANTIZED SYSTEMS
In Fig.10, we show the theoretical and simulated secrecy
rate for both the one-bit quantized and unquantized (i.e.,
infinite-resolution ADCs/DACs at the BS) systems. The
impact of quantization noise on the achievable secrecy rate
is captured by the performance gap between the two systems.
The larger the gap, the larger the effect of quantization noise
and vice versa. We show the results for MRT-BF (leftmost
plot) and ZF-BF (rightmost plot). It is clear that the secrecy
rate achieved by the unquantized system is larger for all
simulated N , especially when the ZF-BF is employed. For
example, compared with the unquantized system, the quan-
tized system requires roughly eight times the number of
antennas to achieve 0.8 bits/s/Hz when using ZF-BF and
NS-AN,while it requires four times the number of antennas to
achieve 0.6 bits/s/Hz when using MRT-BF and NS. However,
when R-AN is used, the performance gap becomes relatively
small, when compared with the gap resulting from using

FIGURE 10. Performance comparison between the one-bit quantized and
unquantized systems under MRT-BF (leftmost plot) and ZF-BF(rightmost
plot). K = τ = 10 and pd = pu = 10dB, Pe = 7dB. The analytical results
for the unquantized system use (82). Dash-dotted and solid lines refer to
the one-bit quantized and unquantized systems, respectively.

NS-AN. Thus the use of random artificial noise renders the
performance loss due to quantization noise smaller.

E. ASYMPTOTIC BEHAVIOUR OF SECRECY RATE
In this subsection, we demonstrate the behavior of secrecy
rate as N →∞. For all simulated results, it is entirely under-
stood that allowing high order of magnitudes of N is used
only to show the correct asymptotic behavior. The simulated
results are only shown for a conceivable number of BS anten-
nas, i.e., N = 32, 64, 128, 512. The asymptotes for the quan-
tized system are given in Corollaries 1-3. And the asymptotes
for the unquantized system is derived from Corollaries 1-3
while considering the parameters’ replacement in (75).

Fig. 11 illustrates the asymptotic behavior of the secrecy
rate as N → ∞. As seen, when no power scaling is used at
the BS (topmost plot), both MRT-BF and ZF-BF are asymp-
totically equivalent. As N gets larger and larger, almost all
power is allocated to artificial noise asymptotically (θ → 0),
thus the artificial noise being used dominates (determines)

FIGURE 11. The asymptotic behaviour of secrecy rate under no-PS
(topmost plot), PS1 (middlemost plot) and PS2 (bottommost plot) power
scaling regimes. We use K = τ = 10,pu = 10dB, ρ = 10 dB(fixed power
at BS) and κT = −2dB (pe = 8dB). The three scenarios, no-PS, PS1 and
PS2 correspond, respectively, to pd = ρ, pd = ρ/

√
N and pd = ρ/N .

Markers, solid lines and dotted lines represent simulated, analytical and
asymptotic results, respectively.
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the performance asymptotically. We can observe that under
the no-PS case, NS-AN outperforms R-AN.

When the BS’s power is scaled down by N (bottommost
plot), almost all power should be allocated to data (θ → 1)
to maintain a positive secrecy rate as N → ∞, rendering
both R-AN and NS-AN equivalent asymptotically, and hence
the beamforming scheme being used determines the perfor-
mance. It is evident that the ZF-BF outperforms MRT-BF.
When the power scales downwith

√
N (middlemost plot), any

combinations of beamforming and artificial noise schemes
are asymptotically equivalent. The reader will observe the
very large number of BS antennas for the no-PS and PS1 cases
to converge to the corresponding asymptotic values, com-
pared with the PS2 case which converges at a much faster
pace.

Fig. 12 shows the asymptotic performance gap between the
quantized system and its unquantized (i.e., infinite-resolution
ADCs/DACs) counterpart under no-PS and PS1 power scal-
ing regimes. For the no-PS case, we observe a comparably
larger gap when NS-AN is used whereas it is smaller when
R-AN is used, especially under MRT-BF. Thus when the
combination of MRT-BF and R-AN is considered, there is
not much loss in secrecy rate due to quantization noise.
We also observe from Fig. 12 (topmost) that both quantized
and unquantized systems are asymptotically equivalent under
R-AN, in contrast to NS-AN. This implies that the leak-
age power of R-AN dominates the power of quantization
noise, whereas the power of quantization noise dominates
the leakage power of NS-AN in the asymptotic limit. For

FIGURE 12. The asymptotic gap of secrecy rate between quantized and
unquantized systems under no-PS (topmost plot) and PS1 (bottommost
plot) power scaling regimes. We use K = τ = 10,pu = 10dB, ρ = 10 dB
(fixed power at BS) and κT = −2dB (pe = 8dB). The two scenarios, no-PS
and PS1 correspond, respectively, to pd = ρ and pd = ρ/

√
N .

the PS1 regime in Fig. 12 (bottommost), the gap diminishes
asymptotically under all schemes and hence quantization
noise is irrelevant.

To show that analytically, we present only the case of
ZF-BF with NS-AN. The asymptotic rate corresponding to
the unquantized system can be derived from (79) and (87)
in Corollaries 1 and 2, respectively, with parameters’ change
in (75). Thus using (75) in (79) and (87) we get

Rno-PS, UQs,NS-AN →

[
log

(
βk
(
pdβe

(
1− κRϑ2

k + 1
))

κRβe
(
pd
(
1− ϑ2

k

)
βk + 1

))]+ (92)

RPS1, UQs →

[
log

(
βk

κRβe

)]+
(93)

as N → ∞. It is clear that Rno-PS, UQs,NS-AN > Rno-PSs,NS-AN and

RPS1, UQs = RPS1s . Therefore, under the no-PS regime, both
secrecy rates of quantized and unquantized systems converge
to distinct limits while under PS1 regime, both systems con-
verge to the same limits, as N →∞.

Finally, for the case of PS2 which is not shown here,
one can verify that the secrecy rate for the unquantized sys-
tem converges to different asymptotic limits for ZF-BF and
MRT-BF where the artificial noise scheme is asymptotically
irrelevant.

VI. CONCLUSION
This paper has investigated the secrecy in the downlink
of Massive multiple-input multiple-output (MIMO) system
under the presence of a single-antenna active eavesdropper
and when the signal at the base station undergoes one-bit
quantization. We investigated the efficacy of two artificial
noise techniques; nullspace artificial noise (NS-AN) and
random artificial noise (R-AN). Thus, we have derived the
achievable secrecy rate when the BS uses the maximum-
ratio transmission beamforming (MRT-BF) and zero-forcing
beamforming (ZF-BF). Although the very coarse quanti-
zation and pilot attack, secure communication is possible,
where the best performance is achieved when ZF-BF is
combined with NS-AN. In fact, we showed analytically that
when the eavesdropper is sufficiently close to the intercepted
user, the average secrecy rate drops to zero as the transmit
power ratio between the eavesdropper and intercepted user
approaches 1. The practical scenario examined in the paper
has further corroborated our analysis.

It was shown that when the number of BS antennas N
grows large, the performance is independent of the beam-
forming technique and hence the NS-AN should be exploited
to maximize the performance. This observation has an impli-
cation for research into other possible schemes of artificial
noise to degrade the channel of the eavesdropper. Further,
it was shown that the total power at the BS can be reduced
proportional to 1/N or 1/

√
N while a positive secrecy rate

is maintained, given the ratio between the eavesdropper’s
power and intercepted use’s power is less than (βk/βe)2,
where βk and βe denote the large-scale fading coefficients of
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legitimate user (intercepted) and eavesdropper, respectively.
This observation suggests considering other approaches other
than artificial noise to enhance secrecy.

Due to the scope limitation of this work, a number of poten-
tial issues needs to be considered in the future, such as power
control and optimal design of beamforming. We believe our
findings add to the understanding of the impact of active
eavesdropping in quantized Massive MIMO systems.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
From (16), the channel estimate ĥk may be written as

ĥk = λk

(√
γ 2p′kτhk +

√
γ 2p′eτg+ γ z̃+ q̃

)
(94)

where z̃ ∼ CN (0, IN ) and q̃ ∼ CN (0, σ 2
q IN ). Further, since

the eavesdropper’s channel g and channel estimate ĥk are
correlated, we can express g as

g = ĝ+ ε (95)

where ĝ the optimal MMSE solution for g based on the
observation ĥk and ε is uncorrelated estimation error with
minimum variance. It follows that

ĝ = E
[
gĥ

H
k

] (
E
[
ĥk ĥ

H
k

])−1
ĥk (96)

From (94) we have

E[gĥ
H
k ] =

√
λ2kγ

2p′eτ IN (97a)

E[ĥk ĥ
H
k ] = λ

2
k (γ

2p′kτ + γ
2p′eτ + γ

2
+ σ 2

q )IN (97b)

Substituting (97a) and (97b) with the definition of λk (14)
in (96) yields ĝ =

√
κRĥk , i.e., the first term of (50).

From (95) we write ε = g − ĝ. From the orthogonality
principle, the covariance matrix of estimation error is given
by Cε = E[εεH ] = E[(g − ĝ)gH ] = (1 − κRσ 2

ĥk
)IN , which

is given in (52). This completes the proof.

APPENDIX B
PROOF OF THEOREM 1
In this section, we derive the two lower bounds (54), (55)
on the achievable data rate of legitimate user k (inter-
cepted) while assuming the BS employs MRT-BF and ZF-BF
schemes, respectively.

FromLemma 2, the achievable data rate for any beamform-
ing scheme is again given by

Rk = log

(
1+
|a|2

σ 2
neff

)
(98)

where a and σ 2
neff are defined by

a = c1
√
βkE[hTk wk ] (99)

σ 2
neff = c21βk Var(h

T
k wk )+

K∑
j=1,j 6=k

c21βkE[|h
T
k wj|

2]

+c22βkE[h
T
k Sh

∗
k ]+ βkσ

2
q pd + 1. (100)

wherewj is the j-th vector of the beamformingmatrixW and S
is the artificial-noise shaping matrix as defined previously.
In the proofs, we write the channel vector hk as a sum of

channel estimate and uncorrelated estimation error, i.e.,

hk = ĥk + ek (101)

where ĥk ∈ CN is the channel estimate with i.i.d. CN (0, σ 2
ĥk
)

components, and ek ∈ CN is uncorrelated estimation error
with i.i.d. CN (0, 1 − σ 2

ĥk
) components, i.e., E

[
ekeHk

]
=

(1− σ 2
ĥk
)IN .

In the following, we will evaluate (98) for MRT-BF and
ZF-BF. For each beamforming scheme, we evaluate the deter-
ministic constant a in (99) and variance of effective noise σ 2

neff
in (100).

A. MRT-BF
From (24), the MRT-BF matrix is given by Wmrt := W =
Ĥ∗. Let wmrt,j = ĥ∗j be the j-th column of Wmrt, i.e., the
beamforming vector of user j. In the following, we will
evaluate (99) and (100) and then substitute the results in (98).
From (99), we have

amrt = c1
√
βk E[hTk wmrt,k ]︸ ︷︷ ︸

I0

= c1
√
βkE[hTk ĥ

∗

k ]

= c1
√
βkE[(ĥk + ek )T ĥ

∗

k ]

= c1
√
βkE[‖ĥk‖2]+ c1

√
βk E[eTk ĥ

∗

k ]︸ ︷︷ ︸
=0

= c1
√
βk Nσ 2

ĥk︸ ︷︷ ︸
I0

(102)

and hence

|amrt|
2
=

2θβkpd
π tr(6)

σ 4
ĥk
N . (103)

Using (100) we write

σ 2
neff,mrt

= c21βk Var(h
T
k wmrt,k )+

K∑
j=1,j 6=k

c21βkE[|h
T
k wmrt,j|

2]

+c22βkE[h
T
k Sh

∗
k ]+ βkσ

2
q pd + 1

= c21βk Var(h
T
k ĥ
∗

k )︸ ︷︷ ︸
I1

+

K∑
j=1,j 6=k

c21βk E[|h
T
k ĥ
∗

j |
2]︸ ︷︷ ︸

I2

+c22βk E[h
T
k Sh

∗
k ]︸ ︷︷ ︸

I3

+βkσ
2
q pd + 1. (104)

The terms I1, I2 can be obtained as follows:

I1 = E[|hTk ĥ
∗

k |
2]− |I0|2

a
= E[|(ĥk + ek )T ĥ

∗

k |
2]− N 2σ 4

ĥk
b
= E[‖ĥk‖4 + E[|eTk ĥ

∗

k |
2]]− N 2σ 4

ĥk
= Nσ 2

ĥk
(105)
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I2
c
= E[hTk ĥ

∗

j ĥ
T
j h
∗
k ] = E[hTk E[ĥ

∗

j ĥ
T
j ]h
∗
k ]

= σ 2
ĥj
E[‖hk‖2] = Nσ 2

ĥj
. (106)

where in (a) we use I0 = Nσ 2
ĥk

evaluated in (102), in (b) we

use the fact that hk and êk are uncorrelated and E[‖ĥk‖4 =
N (N + 1)σ 2

ĥk
[11], and in (c) we make use of the statistical

independence of hk and ĥj.
Regarding I3:
Case 1: From (27), S = IN when R-AN scheme is used,

leading to

I3 = E[hTk Sh
∗
k ] = E[‖hk‖2] = N . (107)

Case 2: Again, from (27) we have S = IN − Pproj when
NS-AN scheme is used, where Pproj = Ĥ∗(ĤT Ĥ∗)−1ĤT

is
the projection matrix. Hence,

I3 = E[hTk (IN − Pproj)h∗k ]

= E[‖hk‖2]− E[hTk Pprojh∗k ]

= N − E[(ĥk + ek )TPproj(ĥk + ek )∗]

= N − E[(ĥ
T
k Pprojĥ

∗

k ]− E[e
T
k Pproje∗k ]

a
= N − E[‖ĥk‖2]−E[tr(Pproje∗ke

T
k )]

b
= N − Nσ 2−E

ĥk
[tr(PprojE[e∗ke

T
k ])]

c
= N − Nσ 2

ĥk
−K (1− σ 2

ĥk
)

= (N − K )(1− σ 2
ĥk
) (108)

where (a) follows due to Pprojĥ
∗

k = ĥ
∗

k (by definition),
i.e., channel estimate is projected onto itself (b) due to the
statistical independence between channel estimate and esti-
mation error, and in (c) we make use of E[tr(Pproj)] =
E[tr(IK )] = K .
Summarizing the above results for I3, we write

I3 =

{
N if R-AN
(N − K )(1− σ 2

ĥk
) if NS-AN.

(109)

Substituting (105), (106) and (109) with definitions of
c1 and c2 in (104) yields

σ 2
neff,mrt =

2θβkpd
π tr(6)

σ 2
ĥk︸ ︷︷ ︸

beamforing gain penalty

+
2θβkpd
π tr(6)

K∑
j=1,j 6=k

σ 2
ĥj︸ ︷︷ ︸

inter-user interference

+ PANk︸︷︷︸
artificial noise

+ βkσ
2
q pd + 1︸ ︷︷ ︸

quantization noise plus AWGN

=
2θβkpd
π
+ PANk + βkσ

2
q pd + 1. (110)

where

PANk =

{
2θ̄βkpd/π if R-AN
2θ̄βkpd (1− σ 2

ĥk
)/π if NS-AN.

(111)

In (110), the beamforming gain penalty is due to the
CSI uncertainty at the user. Substituting (103), (110) with
(111) in (98), the first part of Theorem 1 follows.

B. ZF-BF
From (24), the ZF-BF matrix is given by W zf := W =

Ĥ∗(ĤT Ĥ∗)−1 satisfying ĤTW zf = IK . Let wzf,j be the j-th
column ofW zf, i.e., the beamforming vector of user j. In our
analysis we need the following Lemma.
Lemma 4: The expected value of norm squared of j-th

column ofW zf is given by

E[‖wzf,j‖
2] =

σ−2
ĥj

N − K
(112)

Proof: Using the channel estimation decomposition
in (28), i.e., Ĥ = H̃61/2, the ZF-BF matrix W zf can be
expressed in terms of H̃ and 6 as follows:

W zf = Ĥ∗(ĤT Ĥ∗)−1

= H̃∗(H̃T H̃∗)−1 6−1/2 (113)

Thus we can write

E[‖wzf,j‖
2] = [WH

zfW zf]j

=

6−1/2 E[(H̃T H̃∗)−1]︸ ︷︷ ︸
=(N−K )−1IK

6−1/2


j

=

[
6−1

N − K

]
j

=

σ−2
ĥj

N − K
(114)

where [A]j is the j-th diagonal entry of A. The inner expec-
tation in the second line follows from the properties of the
K × K central Wishart matrix H̃T H̃∗ [47]. �
In the following, we will evaluate (99) and (100) and then

substitute the results in (98) to obtain the achievable rate
under ZF-BF.

From (99) we have

azf = c1
√
βk E[hTk wzf,k ]︸ ︷︷ ︸

J0

= c1
√
βkE[(ĥk + ek )Twzf,k ]

= c1
√
βk (E[ ĥ

T
k wzf,k︸ ︷︷ ︸

=1(by definition)

]+ E[eTk wzf,k ]︸ ︷︷ ︸
=0 (uncorrelated)

)

= c1
√
βk (115)

and hence

|azf|2 =
2θβkpd
π tr(6−1)

(N − K ) (116)

Using (100) we write

σ 2
neff,zf = c21βk Var(h

T
k wzf,k )︸ ︷︷ ︸
J1

+

K∑
j=1,j 6=k

c21βk E[|h
T
k wzf,j|

2]︸ ︷︷ ︸
J2

+c22βk E[h
T
k Sh

∗
k ]︸ ︷︷ ︸

J3=I3

+βkσ
2
q pd + 1. (117)

Note that we need to evaluate J1 and J2, while J3 = I3 is given
in (109).
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To evaluate the terms J1 and J2, we proceed as follows.

J1
a
= E[|hTk wzf,k |

2]− |E[hTk wzf,k ]︸ ︷︷ ︸
J0

|
2

b
= E[|hTk wzf,k |

2]− 1 = E[| ĥ
T
k wzf,k︸ ︷︷ ︸
=1

+eTk wzf,k |
2]− 1

c
= E[|eTk wzf,k |

2] = (1− σ 2
ĥk
)E[‖wzf,k‖

2]

d
=

(1− σ 2
ĥk
)σ−2
ĥk

N − K
(118)

where in (b) we use J0 = 1 evaluated in (115), (b) follows
because ek and wzf,k are independent and ĥ

T
k wzf,k = 1 (by

definition), and in (d) we use Lemma 4.
Next,

J2
a
= E[|hTk wzf,j|

2] = E[|(ĥk + ek )Twzf,j|
2]

b
= E[| ĥ

T
k wzf,j︸ ︷︷ ︸
=0

+eTk wzf,j|
2] = E[|eTk wzf,j|

2]

c
= (1− σ 2

ĥk
)E[‖wzf,j‖

2]

d
=

(1− σ 2
ĥk
)σ−2
ĥj

N − K
(119)

where in (b) ĥ
T
k wzf,j = 0 follows by definition of zero-forcing

solution, (c) follows because ek and wzf,j are independent
and (d) uses Lemma 4.

Substituting (118), (119) and (109) with the definitions of
c1 and c2 in (117), the variance of the effective noise can be
expressed by

σ 2
neff,zf =

2θβkpd (1− σ 2
ĥk
)

πσ 2
ĥk
tr(6−1)︸ ︷︷ ︸

beamforing gain penalty

+
2θβkpd
π tr(6−1)

K∑
j=1,j 6=k

1− σ 2
ĥk

σ 2
ĥj︸ ︷︷ ︸

inter-user interference

+ PANk︸︷︷︸
artificial noise

+ βkσ
2
q pd + 1︸ ︷︷ ︸

quantization noise plus AWGN

=
2θβkpd
π

(1− σ 2
ĥk
)+ PANk + βkσ

2
q pd + 1. (120)

Finally, substituting (116), (120) combined with (111)
in (98), the second part of Theorem 1 follows. This completes
the proof.

APPENDIX C
PROOF OF THEOREM 2
Herewe derive the upper bounds (57), (58) on the information
rate Re leaked to the eavesdropper under MRT-BF and ZF-BF
schemes.

From Lemma 1, by the concavity of log(·), applying
Jensen’s inequality to (46) yields

Re ≤ log
(
1+ c21βeE

[
wHk g

∗σ−2e gTwk
])
. (121)

where σ 2
e is the variance of effective noise given in Lemma 1,

which is rewritten again here:

σ 2
e = c22βeg

TSg∗ + c23βeσ
2
q g

T g∗ + 1. (122)

Since σ 2
e is dependent of artificial noise scheme (R-AN or

NS-AN), in the following we evaluate (122) for R-AN and
NS-AN schemes, respectively.
Case 1:When R-AN approach is used, from (27) we have

S = IN . Hence,

σ 2,R-AN
e = (c22βe + c

2
3βeσ

2
q )‖g‖

2
+ 1

a.s.
−→ (c22βe + c

2
3βeσ

2
q )N + 1

= 2θ̄βepd/π + βepdσ 2
q + 1 (123)

as N grows large which follows from the strong law of large
numbers.
Case 2: When NS-AN approach is used, from (27),

we have S = IN − Pproj. Using Lemma 3, we can
write

gTSg∗ = (
√
κRĥk + ε)TS(

√
κRĥk + ε)∗

= εTSε∗ = εT ŨŨH
ε∗ (124)

where Ũ ∈ CN×(N−K ) comprise (N − K ) eigenvectors
(each has norm 1) corresponding to the N − K repeated
unity eigenvalues of S. Since N � K (i.e., Massive MIMO
setting), ŨŨH

can be very well approximated by a scaled
identity matrix, where the magnitude of off-diagonal entries
of ŨŨH

are in fact much smaller than the diagonal entries.
Thus,

ŨŨH
≈

tr(ŨŨH
)

N
=

(
1−

K
N

)
IN (125)

Substituting (125) in (124) yields

gTSg∗ ≈ (1− K/N )‖ε‖2
a.s.
−→ (N − K )(1− κRσ 2

ĥk
) (126)

Therefore,

σ 2,NS-AN
e ≈ 2θ̄βepd (1− κRσ 2

ĥk
)/π + βepdσ 2

q + 1. (127)

We summarize,

σ 2
e ≈ (PANe + βepdσ

2
q + 1) (128)

where

PANe =

{
2θ̄βepd/π if R-AN
2θ̄βepd (1− κRσ 2

ĥk
)/π if NS-AN.

(129)

Substituting (128) in (121) yields

Re . log

(
1+

c21βeE[w
H
k g
∗gTwk ]

PANe + βepdσ 2
q + 1

)
. (130)

The expectation µ := E[wHk g
∗gTw] for both the MRT-BF

and ZF-BF cases is evaluated as follows.
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For MRT-BF, setting wmrt,k := wk = ĥ
∗

k (i.e., k-th
column of MRT-BF matrixWmrt = Ĥ∗ given in (24)). Using
Lemma 3, we write

µmrt

:= E
[
wHmrt,kg

∗gTwmrt,k

]
= E

[
ĥ
T
k g
∗gT ĥ

∗

k

]
= E

[
ĥ
T
k (
√
κRĥ
∗

k + ε
∗)(
√
κRĥ

T
k + ε

T )ĥ
∗

k

]
= κRE[‖ĥk‖4]+ 2

√
κR<{E[ĥ

T
k ĥ
∗

kε
T ĥ
∗

k ]︸ ︷︷ ︸
=0

} + E[ĥ
T
k ε
∗εT ĥ

∗

k ]

= κRσ
4
ĥk
N (N + 1)+ (1− κRσ 2

ĥk
)σ 2
ĥk
N

= σ 2
ĥk
(κRσ 2

ĥk
N + 1)N . (131)

where in the fourth line we make use of the fact that ε is
independent of ĥ each with zero-mean and E[‖ĥk‖4 =
N (N + 1)σ 2

ĥk
[11].

For ZF-BF, setting wzf,k := wk as the k-th column of
ZF-BF matrix (24) given by W zf = Ĥ∗(ĤT Ĥ∗)−1. Then by
using Lemma 3 we can write

µzf := E
[
wHzf,kg

∗gTwzf,k

]
= E

[
wHzf,k (

√
κRĥ
∗

k + ε
∗)(
√
κRĥ

T
k + ε

T )wzf,k

]
= κRE[‖wHzf,kh

∗
k︸ ︷︷ ︸

=1

‖
2]+ 2

√
κR<{E[wHzf,k ĥ

∗

kε
Twzf,k ]︸ ︷︷ ︸

=0

}

+E[wHzf,kε
∗εTwzf,k ] = κR + E[wHzf,kE[ε

∗εT ]wzf,k ]

= κR + (1− κRσ 2
ĥk
)E[‖wzf,k‖

2]

= κR +
σ−2
ĥk

(1− κRσ 2
ĥk
)

N − K
(132)

where in the derivation steps of (132) we have used the
zero-forcing property: wHzf,kh

∗
k = hTk wzf,k = 1, statisti-

cal independence of ε and wk , and in the last line we use
Lemma 4.

Finally, substituting (131) and (132) combined with (129)
and the definition of c1 in (130), (57) and (58) follow, respec-
tively. In (57) and (58) the notation. is replaced by∼= where
the notion of upper bound is understood from the bars over
the symbols. This completes the proof.
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