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ABSTRACT In this paper, we present a robust, model-predictive control scheme for the general class of
uncertain and constrained discrete-time nonlinear systems subject to noisy measurements. The relationships
between the system’s dynamics, uncertainties, disturbances and the measurement noise are nonlinear and
not necessarily additive. In particular, the disturbance is the output of an uncertain system with an unknown
input. This study serves the threefold ultimate objective of ensuring robust satisfaction of the state constraints,
recursive feasibility and stability. To satisfy state constraints, the proposed algorithms adopt a constraints
tightening approach using the restricted constraint sets computed online. Several bounds on the prediction
level and rate are derived and the size of the terminal region is maximized using polytopic linear differential
inclusions (PLDI). An explicit bound on the maximum allowable disturbance for recursive feasibility is also
derived based on optimization of the one-step ahead controllable set to the terminal region. The disturbance
and uncertainties are non-vanishing and therefore only Input-to-state practical stability (ISpS) can be
ensured. A simulation example demonstrates the efficacy of the mathematical framework and algorithms
developed in this work.

INDEX TERMS Nonlinear MPC, robust MPC, constraint tightening, convex optimization.

I. INTRODUCTION
Model predictive control (MPC) is a moving horizon control
approach that has been recognized as the most used control
strategy for systems under inputs and state constraints. MPC
is a model-based control and can be called either linear or
nonlinear depending on the nature of the model used in the
prediction of the system’s dynamics. In both linear MPC and
nonlinear MPC (NMPC) schemes, the closed loop system
is nonlinear due to the presence of constraints. Linear MPC
has become a preferred control strategy in many industrial
applications [24]. It is worthwhile noting that despite the fact
that industrial systems are inherently nonlinear, several fea-
tures, including the ability to handle constraints and balance
competing control objectives, contributed to the widespread
use of MPC strategy. However, there is a growing need
to operate the systems closer to the admissible operating
conditions for maximum efficiency and profit. Linear mod-
els are therefore no longer adequate to satisfy requirements
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that are more rigorous and the use of more representa-
tive nonlinear system models is necessary. In practice, due
to modeling errors all real-world systems suffer from sys-
tem uncertainties, exogenous disturbances and measurement
noise.

The idea behind the model predictive control strategy is
very well known, mature, and can be summarized as follows.
Based on the system’s information collected at time t , MPC
solves an online open-loop constrained optimal control prob-
lem over a predetermined finite-horizon at every sampling
instant. At each instant, the controller uses the system’smodel
to predict the dynamic of the real system under a set of control
actions up to a predetermined horizon Np. The control is
optimized over a horizonNc and only the first optimal control
action is implemented. These steps in the control strategy
repeat themselves over time at every single sampling period
and because the prediction and optimization are done open
loop, the stability and performance of the closed-loop behav-
ior can differ from what is expected. To overcome this weak-
ness, MPC applies the optimal control law obtained for only a
single sampling period and repeat the open loop optimization
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problem all over again. The addition of constraints in the
optimal control problem (OCP) and dynamic uncertainties
considerably affect the stability and performance of MPC.
The different robustness aspects expected from MPC algo-
rithms are defined as follows [34]:

1) robust feasibility: the guarantee to, both, satisfy the con-
straints at each sampling instance despite the uncertainty
and meet the terminal conditions. In other words,robust
feasibility if the answer for the following question: start-
ing from an initially feasible solution, can the algo-
rithm guarantee the existence of a feasible control input
sequence that constitutes the solution of the finite hori-
zon optimal control problem at all subsequent time
instances?

2) robust stability: the guarantee that the system remains
stable despite uncertainties, constraints and distur-
bances. Thus, it is how to guarantee the stability of
the system in closed loop based on the open-loop finite
horizon optimal problem solution [34].

3) Robust (closed-loop) performance: the guarantee that
the required performance specifications of the system in
closed loop system are met regardless of the uncertain-
ties and disturbances.

These three robustness aspects may influence each other.
Study [7] states that MPC has zero-robustness to uncertain-
ties if the optimal control problem (OCP) is constrained.
Likewise, feasibility is not ensured by the nominal cost con-
strained minimization for future state vectors under any dis-
turbance realization [4]. Therefore, if the system is uncertain
then stability as well as feasibility may be lost when using
nominal MPC making it necessary to include some knowl-
edge about the uncertainty in the optimization problem [29].
Three main techniques exist for Robust MPC (RMPC) in
the literature. The first is Min-Max optimization technique.
In this approach (see for example [11], [18], [31]), the con-
strained finite horizon open loop OCP is solved at each time
instant while considering the worst possible realizations of
the uncertainty for any possible disturbances. This results
in adopting a pessimistic control actions applied repeatedly.
Beside, being a computationally taxing approach [4], it can
also generate a high unjustified operational cost and cannot be
implemented in real world applications ( [25], [34]). The sec-
ond technique can also be classified as an open loop approach
and is originally introduced by [4]. The MPC (or nominal
MPC) algorithm uses the nominal model in the optimization
process but subject to tightened state constraints to guarantee
the original constraints satisfaction for the uncertain system.
Thus, if the perturbed system satisfies these tightened or con-
stricted constraints then it will automatically satisfy the origi-
nal constraints. The tightening of the constraints will increase
with time due to the increase of the predicted uncertainty. This
is also a conservative approach and leads to a large spread of
trajectories but it is more computationally efficient and can
be used for large systems (see for example [15], [16], [29]).
The third technique is Tube-based MPC. It is a closed loop

approach [26] used to ensure that the deviation of the actual
state from the nominal state is smaller than the one obtained
by open-loop nominal MPC. In Tube-MPC, the controller is
composed of two terms:

• the nominal control input, which is the online solution of
nominal finite horizon control problem when applying
nominal MPC and

• an additive state feedback law which is computed
off-line and guarantees that the real trajectory of the
closed-loop system will be within an envelope for all
possible trajectories called hyper-tube [27].

The center of the envelope is the nominal trajectory [29].
Several successful studies using Tube-MPC have been
reported in various literature (see [6], [12], [32], [33], [9],
[13], [21]). More recently, [38] addressed RMPC for con-
tinuous systems. In [1] and [41], tube-based RMPC for
time varying system is presented. There are 508 publications
since 2018, some with successful application of tube-based
MPC (see [21], [36], [22]). Tube-based MPC includes con-
straint tightening in the MPC optimization problem and
a simple constraint tightening formulation has been pro-
posed in [12]. Most of the available literature either for
nominal-MPC or Tube-based MPC have considered different
constraint tightening approaches for systems with additive
uncertainties ( [12], [17]). In [30], the study addressed uncer-
tainties which decay as function of the system states. In [28],
an output feedback model predictive controller (MPC) with
the integration of an extended state observer (ESO) is pro-
posed for hydraulic systems. The experimental application
shows an enhancement of the robusteness.

A. CONTRIBUTION
In this paper, we extend the work initially developed in [35]
and consider the system to be affected by an external dynamic
disturbance having its own exo-system dynamic model. Both
states and disturbance measurements needed for the control
action and also to initialize the prediction phase are con-
sidered imperfect and noisy. The robust MPC design takes
into account the bounds of the disturbance, the measurement
noise, and the dynamic uncertainty. Therefore, in the case
of this work, the tightened constraints sets are more general.
Asymptotic stability forMPC strategies can be proven in case
of additive and vanishing disturbance (decaying with state)
(see [23]), however, only ISpS can be guaranteed in case
the uncertainties are non-vanishing [18]. Likewise, in this
work, the uncertainties are also not decaying with the state
and hence only ISpS can be considered. Therefore, Input-
to-state practical stability (ISpS) framework is used to prove
the stability of the proposed algorithm. Moreover, stability
can also be guaranteed by imposing a terminal cost and
terminal constraint set [24], and the stability margin of the
system is established depending on the size of this termi-
nal set [3]. Several approaches can be used to maximize
the size of the terminal set (see for example [3], [42]).
To determine recursive feasibility, one needs to find the size
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of the l-step controllable sets to the terminal region, Cl(Xf ).
A conservative set-based estimation of C1(Xf ) by iteratively
computing convex inner approximations of C1(Xf ) is pre-
sented in [29], however, the sensitivity of the size of C1(·) with
respect to the disturbance has not been taken into account.
Another set-based approach [40] considersMinkowski differ-
ences of a collection of polytopes. This approach is applied to
determine the one-step ahead robust invariant sets in the case
of polytopic additive uncertainties. A similar approach solved
as a mixed-integer feasibility program is presented in [10].
Set-based techniques are recognized to be conservative and
provide only inner approximations. In this work, linear dif-
ferential inclusions (LDI) approach is adopted taking into
account the sensitivity of the size of C1(·) with respect to
the disturbance. In addition, the paper provides the following
contributions to the literature.

i. When using Lipschitz bounds, the literature mainly
considers either dynamic uncertainty assuming perfect
measurements [30] or measurement noise with perfect
model [8]. The present work is an attempt to develop a
unified framework to address both types of uncertainties.
The non-additive disturbance is generated by an uncer-
tain exo-system with an unknown input.

ii. The ISpS framework is extended to take into
account the different types of uncertainties considered
here.

iii. The prediction error grows exponentially. New upper
and lower bounds for the size and rate of the prediction
error value and rate are derived. In addition, constraint
tightening for robust satisfaction of original constraint
set in the presence of this variety of uncertainties is also
a new development.

iv. A newly developed theorem guarantees recursive feasi-
bility based on the size of the one-step ahead controllable
set to the terminal region.

v. The RMPC algorithm is composed of offline and online
procedures where two new algorithms for constraint
tightening and online optimization are presented.

B. ORGANIZATION
The paper is organized as follows. Some preliminary defini-
tions and a general ISpS result (Theorem 1) are introduced
in Section II-A. The problem is stated in Section III-A.
Subsequently, in Section III-B we derive explicit expressions
bounding either the error level or its growth rate along the
prediction horizon. In addition, we utilize the bounds to
tighten the constraints. Then, conditions on recursive fea-
sibility (Section and practical stability III-C) are derived.
The terminal constraint set and its associated control law are
optimized using PLDIs in Section III-D. The robust one-step
controllability set to the terminal region is calculated in
Section III-D, which is extended in Section III-E to find
the robust output feasible set. Finally simulation results are
presented in Section IV. The paper is concluded in Section V
with recommendations for future work.

II. PROBLEM FORMULATION
A. NOTATION
LetR,R≥0,Z,Z≥0 denote real, non-negative real, integer and
non-negative integer sets of numbers, respectively. For a set
A ⊆ Rn, the point to set distance from ζ ∈ R to A is denoted
by dist (ζ,A) , inf {| η − ζ |, η ∈ A}, and if A is a closed set,
its boundary is denoted by ∂A. The difference between two
sets A,B ⊆ Rn is denoted by A\B , {x : x ∈ A, x /∈ B}.The
Pontryagin (or Minkowski) difference between these sets is
defined as A ∼ B , {x ∈ Rn

: x + y ∈ A,∀y ∈ B}, while the
Minkowski sum of these two sets is defined as A⊕B , {x +
y ∈ Rn

∀x ∈ A, y ∈ B}. Let L2 Euclidean norm be denoted
by | · |. For a discrete-time series φ = [φ0, φ1, . . . . . . ]T ,
we define ‖φ‖ 1

= supl≥0 {|φl |} and
∥∥φ[t]∥∥ 1

=

sup0≤l≤t {|φl |}. We also use classK,K∞ andKL comparison
functions [37].

B. SYSTEM NOTATION AND PRELIMINARIES
Consider the discrete-time nonlinear system

xt+1 = f (xt , ut ) (1)

with f (0, 0) = 0, where xt ∈ Rn is the state, and ut ∈ Rp

is the control input. Given a signal x, let xt,t+N denote the
discrete-time realization of xt within the period t to t + N .
I : R → R is the identity function, γ1 and γ2 by γ1 ◦ γ2
is functional composition of γ1 and γ2. α−1 is the inverse
function of α.
Definition 1: If xt ∈ 4,∀t > t0 whenever xt0 ∈ 4 and

bounded input wt ∈ W, then 4 is called a Robust Positively
Invariant (RPI) set.

Moreover,
Definition 2: if 4 is compact, RPI and contains the origin

as an interior point, the system (1) is said to be regionally
Input-to-State practically Stable (ISpS) in 4 for x0 ∈ 4 and
w ∈ W, if there exists KL-function β, K-function γ and
constant c > 0 such that

|xt | ≤ β (|x0| , t)+ γ (||w||)+ c (2)

If c ≡ 0, then the system is said to be regionally Input-to-State
Stable (ISS) in 4 [37].
Definition 3: Function V : Rn

× Rn
→ R≥0 is an

ISpS Lyapunov function in 4, if for suitable functions α1,2,3,
σ3 ∈ K∞, σ1,2 ∈ K and constants c̄, ¯̄c > 0, there exists a
compact and RPI set 4 and another set � ⊂ 4 with origin
as an interior-point (� is also RPI), such that the following
conditions hold,

V (xt ,wt ) ≥ α1(|xt |), ∀ xt ∈ 4 (3)

V (f (xt ,wt) ,wt+1)− V (xt ,wt)

≤ −α2 (|xt |)+ σ1 (|wt |)+ σ2 (|wt+1|)+ c̄, ∀ xt ∈ 4

(4)

V (xt ,wt) ≤ α3 (|xt |)+ σ3 (|wt |)+ ¯̄c, ∀ xt ∈ � (5)

ISS implies ISpS, but converse is not true, since an ISS
system with 0−input, i.e. wk = 0,∀k ≥ 0 implies
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asymptotic stability to the origin, while for an ISpS system,
0−input implies asymptotic stability to a compact set (ball
of radius c) containing the origin. In this paper, the stability
analysis will demonstrate that according to the proposed
control approach, closed-loop dynamics is ISpS, not ISS,
due to uncertainty resulting from data compression. We also
state an important result in regional input-to-state practical
stability.
Theorem 1 (Ref. [5]): If system xt+1 = f (xt ,wt ) admits an

ISpS-Lyapunov function in 4, then it is regionally ISpS and
satisfies condition (2), with β(r, s) , α1

−1(3β̂(3α3 (r) , s)),

γ (s) , α1
−1(3(γ̂ (3

3∑
i=1
σi(s)) + β̂(3σ3 (s) , 0))) and c ,

α1
−1(3(β̂(3( ¯̄c + d), 0) + α1

−1γ̂ (µ(3 ¯̄c)) + α1
−1γ̂ (3c̄)),

where µ, γ̂ ∈ K∞ while β̂ ∈ KL for some d > 0.

III. ROBUST MODEL PREDICTIVE CONTROL
A. SETUP
The paper addresses NMPC of the following nonlinear
discrete-time system

xt+1 = f (xt , ut ,wt ),

wt+1 = g(wt , φt ), (6)

where states xt , controls ut and disturbance wt belong to
the following constrained convex sets: xt ∈ X ⊂ Rn,
ut ∈ U ⊂ Rm, wt ∈ W ⊂ Rp, bounded by some
maximum and minimum values. The dynamic of the system
f (., ., .) and the dynamic of the disturbance are both uncer-
tain. In addition, the states and disturbance are assumed to
have both inaccurate estimates x̂t and ŵt respectively such
that

x̂t = xt + ηxt , x̂t+1 = xt+1 + ηxt+1 ,

ŵt = wt + ηwt , ŵt+1 = wt+1 + ηwt+1 , (7)

ηxt ∈ Hx ⊂ Rn and ηwt ∈ Hw ⊂ Rp are bounded random
noise affecting the measurements of xt and wt respectively.
φ is an unknown input vector. Nominal states and disturbance
are denoted by x̃ and w̃, for which we have the following
nominal models used for prediction.

x̃t+1 = f̃ (x̃t , ut , w̃t ), w̃t+1 = g̃(w̃t ), (8)

Let

1x(x, u,w) = f (xt , ut ,wt )− f̃ (xt , ut ,wt ) (9)

1w(w) = g(wt , φt )− g̃(wt ) (10)

Therefore, equation 6 can be re-written as

x̂t+1 = f̃ (xt , ut ,wt )+1x(x, u,w)+ ηxt+1 ,

ŵt+1 = g̃(wt )+1w(w)+ ηwt+1 . (11)

In the remaining of the paper we will use x̂t and xt
as well as ŵt and wt interchangeably as x and w are

accessible only through measurements. The cost function
Jt
(
x, u,w,Nc,Np, kf

)
is defined by

Jt
(
x, u,w,Nc,Np, kf

)
=

t+Nc−1∑
l=t+1

[hl(xl, ul)+ ql(xl,wl)]

+

t+Np−1∑
l=t+Nc

[
hl
(
xl, kf (xl)

)
+ql(xl,wl)

]
+hf

(
xt+Np

)
, (12)

where Np and Nc are prediction and control horizons. Cost
function (12) consists of transition cost hl , terminal cost hf
and robustness cost ql . Control sequence ut,t+Np consists of
two parts, ut,t+Nc−1 and ut+Nc,t+Np−1. The latter part is gen-
erated by a terminal control law ul = kf (x̃l) for l ≥ t + Nc,
while the former is finite horizon optimal control ut,t+Np
which is the solution of the OCP 1.
Problem 1: At every instant t ≥ 0, given prediction and

control horizons Np, Nc ∈ Z≥0, auxiliary control kf (x̃) :
Rn
→ R, state x̃t and disturbance w̃t measurements, find

the optimal control sequence u0t,t+Nc−1, which minimizes the
finite horizon cost (12)

u0t,t+Nc−1
= argmin

ut,t+Nc−1∈UNc

Jt
(
x̃t,t+Np , w̃t,t+Np , ut,t+Nc−1,Nc,Np

)
,

(13)

subject to nominal plant model and nominal exo-system
model (8), tightened constraints x̃ ∈ X̃t,t+Np, and termi-
nal state x̃t+Np is constrained to an invariant terminal set
Xf ∈ X̃t+Nc, i.e.

x̃t+l ∈ Xf , ∀l = NC , . . . ,NP (14)

The loop is closed by implementing only the first element
of u0t,t+Nc−1 at each instant, such that the NLMPC implicit
control law becomes

2t (x̃, w̃) = u0t (x̃t,t+Np , w̃t,tNp ,Np,Nc) (15)

In the remaining of this paper,
• section III-B will go through al the details mentioned in
Step 2 in Algortithm 1.

• Guarantees for recursive feasibility will be detailed in
section III-C

• Determination of C1(Xf ) in Step 4 will covered in
section III-D.

• Determination of XMPC in Step 5 will covered in
section III-E.

• Robust Stability of Algorithm 1 will be discussed in I.

B. CONSTRAINT TIGHTENING
The system under consideration contains several possible
sources of uncertainty which is more representative to the
real word than those in the literature (e.g. [17] and [30]).
To ensure stability, an envelop similar to a growing tube will
be determined. The dynamic bounds take into accounts all

VOLUME 8, 2020 44849



S. El-Ferik: RMPC for Uncertain Nonlinear Systems With Non-Additive Dynamic Disturbances and Noisy Measurements

these type of uncertainties and unlike [12], they do not decay
exponentially. For that, a bound on the growth on uncertainty
will be determined first. Due to uncertainty, the constraint
sets x and w are ’larger’ than the constraint sets for x̃ and w̃,
such that x̃t ∈ X̃t ⊂ X , w̃t ∈ W̃t . Moreover, the tight-
ened constraint sets have the contractive property such that
X̃t+l ⊆ X̃t+l+1 for l ≥ 2. Since uncertainty grows with
horizon length, one needs to assume that measurements and
transition uncertainties are bounded (see Assumption 1). The
standard MPC assumptions of initial feasibility [29] is also
assumed.

Assumption 1:
i. Each prediction starts from the present state x̃t|t = x̂t =
xt + ηxt and w̃t|t = ŵt = wt + ηwt . where ηxt , |xt −
x̃t|t | ≤ η̄x and ηwt , |wt − w̃t|t | ≤ η̄w,

ii. The transition uncertainties |1x(x, u,w)| , |f̃ (x, u,w)−
f (x, u,w)| ≤ 1̄x and |1w(w)| , |g̃(w) − g(w, φ)| ≤
1̄w(w).

iii. The nominal maps are locally Lipschitz with con-
stants Lfx , Lfu, Lfw and Lgw with respect to x, u and w,
and f̃ (0, 0, 0) = 0, g̃(0) = 0.

iv. A compact robust output feasible set XMPC ⊆ X , defined
as the set of initial states for which optimal control
problem (Problem 1) is feasible, exists.

Lemma 1: Under Assumption 1, the l-step ahead pre-
diction errors ρ̂xt+l|t , |xt+l − x̃t+l|t | and ρ̂wt+l|t ,
|wt+l − w̃t+l|t |; l = 1, . . . ,Np are bounded by

ρ̂wt+l|t ≤ ρ̄wt+l|t

ρ̄wt+l|t = η̄w

(
L l+1gw − 1

)
(
Lgw − 1

) + 1̄w

(
L lgw − 1

)
(
Lgw − 1

) ,
ρ̂xt+l|l ≤ ρ̂xt+l|l

ρ̄xt+l|l = η̄x
L l+1fx − 1

Lfx − 1
+ 1̄x

L lfx − 1

Lfx − 1

+ η̄w
Lfw

Lgw − 1

(
Lgw

L lfx − L
l
gw

Lfx − Lgw
−
L lfx − 1

Lfx − 1

)

+ 1̄w
Lfw

Lgw − 1

(
L lfx − L

l
gw

Lfx − Lgw
−
L lfx − 1

Lfx − 1

)
, (16)

for l = 0, . . . ,NP, and Lfx ,Lgw 6= 1 and Lfx 6= Lgw.
Proof: From Assumption 1, for l = 1

|wt+1 − w̃t+1|t | =
∣∣g̃(wt )+1w(w)+ ηwt+1 − g̃

(
w̃t|t

)∣∣ ,
≤
∣∣g̃ (wt)− g̃ (w̃t|t)∣∣+ 1̄w + η̄w,

≤ Lgw
∣∣wt − w̃t|t ∣∣+ 1̄w + η̄w,

≤
(
Lgw + 1

)
η̄w + 1̄w.

Using similar arguments, |wt+l − w̃t+l|t | can be written for
l ≥ 1

|wt+l − w̃t+l|t | ≤ η̄w

(
k=l+1∑
k=1

Lk−1gw

)
+ 1̄w

(
k=l∑
k=1

Lk−1gw

)
,

|wt+l − w̃t+l|t | ≤ η̄w

(
L l+1gw − 1

)
(
Lgw − 1

) + 1̄w

(
L lgw − 1

)
(
Lgw − 1

) .
This proves the first part of (16). For the states, at l = 1,

|xt+1 − x̃t+1|t | = |f̃ (xt , ut ,wt )+1x(x, u,w)+ ηxt+1
− f̃ (x̃t , ut , w̃t) |

≤ |f̃ (xt , ut ,wt)− f̃
(
x̃t|t , ut , w̃t|t

)
|

+ 1̄x + η̄x

≤
(
Lfx + 1

)
η̄x + Lfwη̄w + 1̄x .

When l = 2,

|xt+2 − x̃t+2|t | ≤ Lfx |xt+1 − x̃t+1|t |

+Lfw|wt+1 − w̃t+1|t |

+ η̄x + 1̄x

≤

(
L2fx + Lfx + 1

)
η̄x

+ 1̄x
(
Lfx + 1

)
+ η̄wLfw

(
Lfx + Lgw + 1

)
+ Lfwēw

Using similar derivation, l-step ahead prediction error can
be written as

|xt+l − x̃t+l|t | ≤ η̄x
k=l∑
k=0

Lkfx + 1̄x

k=l−1∑
k=0

Lkfx

+ η̄wLfwL
l−1
fx

k=l−1∑
k=0

(
j=k∑
j=0

L jgw

)
Lkfx

+ 1̄wLfwL
l−1
fx

k=l−1∑
k=0

(
j=k−1∑
j=0

L jgw

)
Lkfx

(17)

Using nested geometric series’ sum will lead to the second
part of (16). �
In Lemma 1, Lfx and Lgw are assumed 6= 1 and Lfx 6= Lgw.

However, the result for the case where Lfx ,Lgw = 1 and Lfx =
Lgw is straight forward. Bounds (16) are conservative due
to the use of the Lipschitz constants and methods suggested
in [17] to reduce this conservatism can be used. A lower
bound on rate of convergence of the prediction error can be
established in the following claim.
Claim 1: There exists a terminal control ut = kf (x̃l) ∈

U , l = NC , . . . ,NP − 1 such that the solution Xf of the
nominal plant dynamic given in (8) is robust positively invari-
ant (RPI) i.e. xl ∈ Xf and x̃l ∈ Xf , ∀l = t+Nc+1, . . . , t+Np
for any x̃t+Nc ∈ Xf , such that,

i. The rate of convergence δρl+1 , |f̃ (x̃t+l|t+1, kf (x̃t+l|t+1,
0)) − x̃t+l+1|t | of nominal state under control kf (x̃) is
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lower bounded by

δρl+1 ≥ δ̄ρl+1

δ̄ρl+1 = η̄xL
l+1
fx + L

l
fx

(
1̄x + (η̄w + 1̄w)

Lfw
Lgw − 1

)
+
(
η̄wLgw + 1̄w

) Lfw
Lgw − 1

×

(
L lfx(Lfx − 1)− L lgw(Lgw − 1)

Lfx − Lgw

)
(18)

for l = Nc − 1 . . .Np − 2
ii. There exists a ∈ Z≥0 and 0 ≤ Qf ∈ Rn×n such that

x̃TQf x̃ ≤ a, ∀x̃ ∈ Xf (19)

Proof:
i. Using the definition of the prediction error ρ̂t+l|t =
xt+l−x̃t+l|t . δρl+1, |f̃

(
x̃t+l|t+1, kf (x̃t+l|t+1, w̃t+l|t+1)

)
−

x̃t+l+1|t | can bewritten as δρl+1 , |x̃t+L+1|t+1−x̃t+l+1|t |.
Adding and subtracting xt+l+1 leads to δρl+1 ≥ ρ̄xt+l+1|t−
ρ̄xt+l+1|t+1 . Using Lemma 1, the proof is complete.

ii. The proof for part ii) and the existence of kf (x̃l) ∈ U , l =
NC , . . . ,NP−1 is typical and based on linear theory anal-
ysis using a lineraized version of the nonlinear model.
Similar claim have been made in the litterature (see for
example [29] or [35]). It is omitted in this paper for the
benefit of the reader and a better management of the
paper length.

�
By taking into account the established prediction uncer-

tainty bounds and study their ipact on the constrained
FHOCP, it is possible to guarantee the admissibility of the
state/output dynamic behavior of the actual system.
Theorem 2: With nominal constraints X and W on the sys-

tem (6), let the tightened constraints for nominal
model (8) be given by

X̃t+l , X ∼ Bn
(
ρ̄xt+l

)
, (20)

for l = 0, . . . ,NP, and ρ̄x and ρ̄w are prediction error bounds
defined in (16). Bn (ρ̄) is an n-ball centered at the origin
and with a radius (ρ̄. Then, any admissible control sequence
[ut,t+Nc−1, kf (x̃t + Nc, t + Np − 1)] which is feasible with
respect to tightened constraints (20), guarantees the satis-
faction of original constraints, i.e. xt+l ∈ X for wt+l ∈ W,
l = 0, . . . ,NP and xt ∈ XMPC .

Proof: To prove the theorem, one needs to proceed in
two steps:
1) Let η′x < η̄x , η′w < η̄w, 1′x(x, u,w) ≤ 1̄′x <

1̄x and 1′w(w) ≤ 1̄′w < 1̄w. Then, follow-
ing the same procedure as in proof of Lemma 1,

one can find that |xt+l − x̃t+l | ≤ ρ′xt+l , η̄′x
Ll+1fx −1
Lfx−1

+

1̄′x
Llfx−1
Lfx−1
+η̄′w

Lfw
Lgw−1

(
Lgw

Llfx−L
l
gw

Lfx−Lgw
−

Llfx−1
Lfx−1

)
+1̄′w

Lfw
Lgw−1(

Llfx−L
l
gw

Lfx−Lgw
−

Llfx−1
Lfx−1

)
Since x̃t+l ∈ X̃t+l , therefore

xt+l ∈ X̃t+l ⊕ Bn
(
ρ′xt+l

)
. Comparing with (16) and

using (17), ρ′xt+l < ρ̄xt+l and hence Bn
(
ρ′xt+l

)
⊂

Bn
(
ρ̄xt+l

)
. This leads to xt+l ∈ X̃t+l ⊕ Bn

(
ρ̄xt+l

)
.

On the other hand, based on (20), one can state that
X = X̃t+l ⊕Bn

(
ρ̄xt+l

)
and xt+l ∈ X , for l = 0, . . . ,NC .

2) This part is similar to what was reported in the literature
(see for example [29]). The sektech of the proof is as
follows: Consider the prediction x̃t+l|t and x̃t+l|t+1 made
using the control sequence ut,t+Nc−1|t = kf (x̃t,t+Nc−1|t )
and ut,t+Nc−1|t = kf (x̃t,t+Nc−1|t+1) respectively and
with the initial conditions x̃t|t = x̂t = xt+ηt , x̃t+1|t+1 =
f̃ (x̃t|t , kf (x̃t|t , w̃t|t ) = xt + ηt for l = Nc . . .Np − 1.
Assuming x̃t+l|t ∈ X ∼ Bn(ρ̄t+l|t ). Let ξ = x̂t+l|t+1 −
x̂t+l|t + ε where ε ∈ Bn(ρ̄t+l|t+1). Using (16), |ξ | ≤
δρt+l|t + ρt+l|t+1 and in vue of (18), |ξ | ≤ ρt+l|t . This
leads to x̂t+l|t+1 ∈ X ∼ Bn(ρ̄t+l|t+1). �

�

C. RECURSIVE FEASIBILITY OF NMPC ALGORITHM
This section addresses the important issue of recursive
feasibility. Let the one-step controllability set towards the
terminal constraint set Xf be defined as C1(Xf , X̃t+Nc)

1
={

x̃t ∈ X̃t+Nc : f̃ (x̃t , ut , w̃t ) ∈ Xf , ut ∈ U , w̃t ∈ W̃t

}
. Let

us also define the minimum size of this set as d̄ ,
dist(X̃t+Nc\C1(Xf , X̃t+Nc),Xf ).
Theorem 3: Under Assumption 1, terminal control

(Claim 1) and tightened constraints (Theorem 2), given the
feasibility of initial state x̃t ∈ XMPC , Problem 1 is recursively
feasible, if the minimum size of C1(Xf ) upper bounds the
uncertainties as follows LNc−1fx

((
Lfx + 1

)
η̄x + Lfwη̄w + 1̄x

)
+

Lfw
LNc−1fx −LNc−1gw
Lfx−Lgw

((
Lgw + 1

)
ξ̄w + 1̄w

)
 ≤ d̄ (21)

Proof: The sketch of the proof is presented here. First,
one needs to show that starting at a time instant t from an
initially feasible state x̃t ∈ XMPC and a feasible control
input ut , a feasible control input solution of the FHOCP (1)
for t + 1 can be found. This will lead to the determina-
tion of the control input sequence for the entire horizon.
Assume that at t , a feasible control u0t,t+Nc−1|t exists. Let
u′t+1,t+Nc|t+1 = col [u0t+1,t+Nc−1|t , u

′

t+Nc|t ] be a possible
feasible control sequence for t+1, . . . , t+Nc. The objective
is to find (a) a feasible u′t+1,t+Nc−1|t+1 for the progressive
tightened constraints (20) for t + 1, . . . , t + Nc − 1, and
(b) u′t+Nc|t+1 at t + Nc.

(a) Given x̃t|t and w̃t|t at t , assume the existence of a
feasible control u0t,t+Nc−1|t with state and disturbance
predictions x̃t,t+Nc|t and w̃t,t+Nc|t respectively. At t +
1, new predictions generated using u′t+1,t+Nc−1|t+1 =
u0t+1,t+Nc−1|t are x̃t+1,t+Nc|t+1 and w̃t+l,t+Nc|t+1. Using
Assumption 1, x̃t+l|t+1 − x̃t+l|t ≤ Lfx |x̃t+l−1|t+1 −
x̃t+l−1|t | + Lfw|w̃t+l−1|t+1 − w̃t+l−1|t |. By induction,
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it follows that

x̃t+l|t+1 − x̃t+l|t
≤ L l−1fx

∣∣x̃t+1|t+1 − x̃t+1|t ∣∣
+Lfw

L l−1fx − L
l−1
gw

Lfx − Lgw

∣∣w̃t+1|t+1 − w̃t+1|t ∣∣ , (22)

for l = 1, . . . ,Nc − 1. Let δx̃1 , |x̃t+1|t+1 − x̃t+1|t |
and δw̃1 , |w̃t+1|t+1 − w̃t+1|t |. Now, based on the
assumption that x̃t+l|t ∈ X̃t+l|t , X ∼ Bn(ρ̄xt+l|t ),
and using (22), one gets x̃t+l|t+1 ∈ X ∼ Bn

(
ρ̄xt+l|t

)
⊕

Bn
(
L l−1fx |δx̃1 | + Lfw

Ll−1fx −L
l−1
gw

Lfx−Lgw
|δw̃1 |

)
. On the other hand,

x̃t+l,t+Nc|t+1 ∈ X̃t+l|t+1 , X ∼ Bn(ρ̄xt+l|t+1 )
requires that ρ̄xt+l|t+1 ≤ ρ̄xt+l|t − L l−1fx |δx̃1 | +

Lfw
Ll−1fx −L

l−1
gw

Lfx−Lgw
|δw̃1 |. In view of ρ̄xt+l|t+1 = ρ̄xt+l−1|t ,

it turns out that ρ̄xt+l|t − ρ̄xt+l−1|t ≥ L l−1fx |δx̃1 | +

Lfw
Ll−1fx −L

l−1
gw

Lfx−Lgw
|δw̃1 |. Using triangle inequality leads

to ρ̄xt+l|t − ρ̄xt+l−1|t ≥ L l−1fx

∣∣x̃t+1|t+1 − xt+1∣∣ +
Lfw

Ll−1fx −L
l−1
gw

Lfx−Lgw

∣∣w̃t+1|t+1 − wt+1∣∣. Knowing that 0 ≤∣∣x̃t+1|t+1 − xt+1∣∣ and 0 ≤
∣∣w̃t+1|t+1 − wt+1∣∣, one

gets ρ̄xt+l|t ≥ ρ̄xt+l−1|t , and hence, x̃t+l|t+1 ∈ X ∼

Bn(ρ̄xt+l−1|t ) ⊆ X ∼ Bn(ρ̄xt+l|t+1 )
δ
= X̃t+l|t+1 for

l = 1, . . . ,Nc.
(b) To prove x̃t+Nc+1|t+1 ∈ Xf ⊆ X̃t+Nc+1|t+Nc+1:

inequality (22) is written as x̃t+Nc|t+1 − x̃t+Nc|t ≤

LNc−1fx

(
ηxt+1 + ηxt

)
+Lfw

LNc−1fx −LNc−1gw
Lfx−Lgw

(
ηwt+1 + ηwt

)
. The

upper bounds on the accumulated prediction errors
are given by (16), therefore one has x̃t+Nc|t+1 −
x̃t+Nc|t ≤ LNc−1fx

∣∣(Lfx + 1)η̄x + Lfwη̄w + 1̄x
∣∣ +

Lfw
LNc−1fx −LNc−1gw
Lfx−Lgw

∣∣(Lgw + 1)η̄w + 1̄w
∣∣. In view of (21),

it follows that x̃t+Nc|t+1 − x̃t+Nc|t ≤ d̄ . Using
x̃t+Nc|t ∈ Xf , leads to x̃t+Nc|t+1 ∈ Xf ⊕ Bn(d̄) ,
C1(Xf ,X ).

�

D. DETERMINATION OF C1(Xf )
In this section, a method is presented to determine the min-
imum size d̄ of C1(Xf ) as given by (21). To find d̄ , the
topology of C1(Xf ) should be known. The proposed approach
uses min-max optimization to find the estimate of C1(Xf ).
Let ∂(Xf ) and ∂

(
C1(Xf )

)
be the boundaries of Xf and C1(Xf )

respectively.
Problem 2: Given target set Xf and tightened con-

straints (20), if the boundary of Xf is discretized appropri-
ately into N̄ point x̃ if ∈ ∂(Xf ) for i = 1, . . . , N̄ , then C1(Xf )
is the solution of the following N̄ min-max OCPs

x̃ ic1 = max
w̃

(
min
u

(
− log

(
x̃ ic1Qf x̃

i
c1

)))
(23)

for i = 1, . . . , N̄ , subject to

x̃ if = f̃ (x̃ ic1 , u, w̃) (24)

1− x̃ ic1Qf x̃
i
c1 ≤ 0 (25)

x̃ ic1 ∈ X̃Nc−1, u ∈ U , w̃ ∈ W̃Nc−1 (26)

Let ∂
(
C1(Xf )

)
denote the boundary of C1(Xf ), it follows that

∂
(
C1(Xf )

)
=
{
x̃ ic1 , ∀i = 1, . . . , N̄

}
.

Remark 1: • The cost functional (23) is convex by
design. However, the overall OCP may not be convex
due to the presence of the nonlinear constraints (24)(25).
To overcome this challenge and mainly avoid local min-
ima, a prior knowledge of an adequate initial guess is
required to converge to a feasible solution. (25) ensures
that is outside Xf .

• while computationally expensive, the determination of
Xf runs offline, therefore the complexity in terms of time
and memory is not of great concern.

E. DETERMINATION OF XMPC
In this section, the entire feasibility region of the MPC
algorithm will be presented. The following propositions are
needed and some of them will be stated without proof as they
are straightforward.
Proposition 1: Xf ⊂ C1(Xf ).
Proof: Xf is RPI if and only if Xf ⊂ C1(Xf ) (see for

example [19]). and since Xf is RPI, therefore Proposition 1
follows. � �
Proposition 2: C1(Xf ) is contained in the robust output

feasible set XMPC , i.e. C1(Xf ) ⊆ C1(XMPC )
Proof: According to [10], � ⊆ �̄ H⇒

C1(�) ⊆ C1(�̄). It follows that Xf ⊂ XMPC , and hence
C1(Xf ) ⊆ C1(XMPC ). �
Proposition 3: C1(Xf ) is a finite union of polyhedra.
Proof: Given Xf is convex (RPI) and Xf ⊂ C1(Xf )

according to Proposition 1, C1(Xf ) is compact and is the union
of intersecting polyhedra. �
Proposition 4: C1(Xf ) contains the boundary of the termi-

nal set, ∂(Xf ), i.e. ∂(Xf ) ⊂ C1(Xf ).
The following main theorem can now be stated
Theorem 4: Given the terminal set Xf , the tightened con-

straints (20) and the control u ∈ U, XMPC is obtained by
recursively applying the one-step controllable set operator
C1(·) to solve the OCP 2 as follows

XMPC =
l=Nc
∪
l=2

C1
(
Cl−1(Xf )

)
∪ C1

(
Xf
)
∪ Xf (27)

Proof: One can see that C2(Xf ) = C1
(
C1(Xf )

)
and C3(Xf ) = C1

(
C2(Xf )

)
which can be written as

C1(Xf ) = C1
(
C1
(
C1(Xf )

))
. Inference leads to XMPC =

C1
(
CNC−1(Xf )

)
= . . . = C1

(
C1
(
. . . C1(Xf )

))
. Similarly,

from Proposition 4, it follows that ∂(Xf ) ⊂ C1(Xf ). Hence,
∂
(
CNC−1(Xf )

)
⊂ C1

(
CNC−1(Xf )

)
and ∂

(
CNC−2(Xf )

)
⊂

C1
(
CNC−2(Xf )

)
, . . . , ∂(Xf ) ⊂ C1(Xf ). But, since XMPC =

C1
(
CNC−1(Xf )

)
, it follows that XMPC = C1

(
CNC−1(Xf )

)
∪

C1
(
CNC−2(Xf )

)
∪ . . . C1(Xf ) ∪ Xf . �

While computationally demanding, all these calculations
are also offline.
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F. ROBUST STABILITY
In this work, the uncertainties ηx and ηw are non-vanishing

and only ISpS can be proven as explained previously. In order
to state the main theorm characterizing ISpS of the proposed
control strategy, the following assumptions and properties are
introduced.
Assumption 2 (Cost Lipschitz Continuity): i. The cost

functions kf (·), h(·), q(·) and hf (·) are nonlinear, contin-
uous and locally Lipschitz with constants Lkf , Lhx , Lhu,
Lqx , Lqw and Lhf .

ii. |kf (x̃)| ≤ Lkf |x̃|, for x̃ ∈ X̃ft
iii. |h(x̃, u)| ≤ Lhx |x̃| + Lhu|u|, for x̃ ∈ X̃t and u ∈ U
iv. 0 ≤ |q(x̃, w̃)| ≤ Lqx |x̃|+Lqw|w̃|, for x ∈ X̃t and w ∈ W̃t
v. |hf (x̃)| ≤ Lhf |x̃| for x̃ ∈ X̃ft
vi. α1(|x̃t |) ≤ h(x̃t , ut ), for x̃ ∈ X̃t .
vii. α1,f (|x̃t |) ≤ hf (x̃t ) ≤ α2,f (|x̃t |), for all x̃t ∈ X̃t ,
Assumption 3 (Technical): Based on the definition of ISpS

Lyapunov functions given in Section II-A, the following
holds,
(i). α1(s) = α2(s) , min h(s, 0)

(ii). α3(s) , α2,f (L
Np
fx s)+ c1 s

(iii). σ1(s)
1
= (c2 + c3 + c4 + c5)Lfw

(
Lgws

)
(iv). σ2(s)

1
= σ1

(
Lgw−1s

)
+ ψ(s)

(v). σ3(s)
1
= Lqw

(
Lgw − 1

)−1 ((Lgw)Np − 1
)
s

(vi). c̄ , c6c7 + Lhu |umax − umin|

(vii) ¯̄c = 0,

where, c1 =
(
Lhx + LhuLkf + Lqx

) (Lfx)Np−1
Lfx−1

, c2 =

Lqx+Lhx
Lfx−Lgw

(
LNp−1fx −1
Lfx−1

−
LNp−1gw −1
Lgw−1

)
, c3 =

LNp−1gw −1
Lgw−1

Lqw
Lfw

, c4 =

LhuLkf
Lfx−Lgw

(
LNp−1fx −LNcfx
Lfx−1

−
LNp−1gw −LNcgw
Lgw−1

)
, c5 =

LNp−1fx −LNp−1gw

Lfx−Lgw
,

c6 = η̄x + Lfx η̄x + Lfwη̄w + 1̄x and c7 =

LNp−1fx −1
Lfx−1

(
Lqx + Lhx

)
+ LhuLkf

LNp−1fx −LNcfx
Lfx−1

+ LNp−1fx The fol-
lowing Theorem presents the main stability result.The proof
follows the standard approach used in the literature
Theorem 5: Let X̃f ⊂ X̃ , kf (x) as defined in Claim ??, and

ψ ∈ K. In vue of Assumptions 1-2 and under NMPC optimal
control (15) and cost (12), if the following condition holds
for all x̃ ∈ Xf and w̃ ∈ W̃ ,

hf
(
f̃
(
x̃, kf (x̃)

))
−hf (x̃)≤−h(x̃, kf (x̃))−q(x̃, w̃)+ψ (|w̃|) ,

(28)

then Vt , Jt (x̃t,t+Np , u
0
t,t+Np , w̃t,t+Np ) is an ISpS Lyapunov

function and the nominal system (8) is ISpS for all initial
states within XMPC ⊆ X.

Proof: From (12),it holds that Vt|t = h(x̃t|t , uot|t ) +

q(x̃t|t , w̃t|t ) +
t+Nc−1∑
l=t+1

[
h(x̃l|t , uol|t )+ q(x̃l|t , w̃l|t )

]
+

t+Np−1∑
l=t+Nc[

h(x̃l|t , uol|t )+ q(x̃l|t , w̃l|t )
]
+ hf (x̃t+Np|t ). Using (Assump-

tion 2), it turns out that α1(|x̃t|t |) ≤ Vt|t for x̃t|t ∈
X̃t|t ⊇ X , w̃t|t ∈ W̃t|t ⊆ W . The input sequence
ũt,t+NC−1|t = [kf (x̃t|t ), . . . , kf (x̃t+NC−1|t )]

T is feasible for

any x̃t|t ∈ Xf . From Assumptions 1-2, one gets Vt|t ≤

α2f

((
Lfx
)Np
|x̃t|t |

)
+

t+Np−1∑
l=t

[
c8L

l−t
fx

∣∣x̃t|t ∣∣+ LqwL l−tgw

∣∣∣w̃it|t ∣∣∣]
for c8 = Lhx + LhuLkf + Lqx . Summing the geomet-
ric series, we obtain Vt |t ≤ α3(|x̃t|t |) + σ3(|w̃t|t |) + ¯̄c,
with α3, σ3 and ¯̄c defined in Lemma 3. In vue of Theo-
rem 3, using the optimal control u0t,t+Nc−1|t and x̃t|t ∈ X̃t ,
it turns out that at least one feasible control u′t+1,t+Nc|t+1 =

[uot+1,t+N i
c−1|t

, u′t+Nc|t+1]
T at t + 1, where u′t+Nc|t+1 ∈ U

such that x̃t+Nc+1|t+1 ∈ Xf any xt ∈ X iMPC . it follows

that Vt+1|t+1 ≤
t+Nc−1∑
l=t+1

[
h(x̃l|t+1, uol|t )+ q(x̃l|t+1, w̃l|t+1)

]
+

h(x̃t+Nc|t+1, u′t+Nc|t+1)+q(x̃t+Nc|t+1, w̃t+Nc|t+1)+
t+Np∑

l=t+Nc+1[
h(x̃l|t+1, kf (x̃l|t+1))+ q(xl|t+1, w̃l|t+1)

]
+ hf (f̃ (x̃t+Np|t+1,

kf (x̃t+Np|t+1))). This will lead to

Vt+1|t+1 − Vt|t
≤ −h(x̃t|t , uot|t )− q(x̃t|t , w̃t|t )

+ h(x̃t+Nc|t+1, u′t+Nc|t+1)− h
(
x̃t+Nc|t , kf (x̃t+Nc|t )

)
+ q(x̃t+Nc|t+1, w̃t+Nc|t+1)− q(x̃t+Nc|t , w̃t+Nc|t )

+

t+Np−1∑
l=t+Nc+1

[
h(x̃l|t+1, kf (x̃l|t+1))− h

(
x̃l|t , kf (x̃l|t )

)
+q(xl|t+1, w̃l|t+1)− q

(
x̃l|t , w̃l|t

) ]
+ h(x̃t+Np|t+1, kf (x̃t+Np|t+1))+ q(x̃t+Np|t+1, w̃t+Np|t+1)

+ hf
(
f̃
(
x̃t+Np|t+1, kf (x̃t+Np|t+1)

))
− hf

(
x̃t+Np|t

)
+

t+Nc−1∑
l=t+1

[h(x̃l|t+1, uot|t )− h(x̃l|t , u
o
l|t )+ q(x̃l|t+1, w̃l|t+1)

− q(x̃l|t , w̃l|t )] (29)

To find the upper bounds of the different terms in (29), one
proceeds as follows. From (22) for l = 1, . . . ,NC − 1,
it follows that

∣∣h(x̃t+l|t+1, uol )− h(x̃l|t , uol )∣∣ ≤ c6LhxL
l−1
fx +

LhxLfw
Ll−1fx −L

l−1
gw

Lfx−Lgw

(∣∣w̃t+1|t+1∣∣+ Lfx ∣∣w̃t|t ∣∣). Similarly,∣∣q(x̃t+l|t+1, w̃t+l|t+1)− q(x̃t+lt , w̃t+l|t )∣∣ ≤
+LqwL l−1gw

(
Lgw

∣∣w̃t|t ∣∣+ ∣∣w̃t+1|t+1∣∣)+ c6LqxL l−1fx

+LqxLfw
L l−1fx − L

l−1
gw

Lfx − Lgw

(
Lgw

∣∣w̃t|t ∣∣+ ∣∣w̃t+1|t+1∣∣)
l = 1, . . . ,NP − 1. Similarly, for l = NC + 1, . . . ,NP − 1∣∣h(x̃l|t+1, kf (x̃l|t+1))− h (x̃l|t , kf (x̃l|t ))∣∣ ≤ c6c9L l−1fx

+c9Lfw
L l−1fx − L

l−1
gw

Lfx − Lgw

(
Lgw

∣∣w̃t|t ∣∣+ ∣∣w̃t+1|t+1∣∣)
for c9 = Lhx + LhuLkf . Similarly, at NC∣∣h(x̃t+Nc|t+1, u′t+Nc|t+1)− h (x̃t+Nc|t , kf (x̃t+Nc|t ))∣∣

≤ c6LhxL
Nc−1
fx + Lhu |umax − umin|

+LhxLfw
LNc−1fx − LNc−1gw

Lfx − Lgw

(
Lgw

∣∣w̃t|t ∣∣+ ∣∣w̃t+1|t+1∣∣)
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and finally, hf
(
x̃t+Np|t+1

)
− hf

(
x̃t+Np|t

)
≤ c6L

Np−1
fx +

Lfw
LNp−1fx −LNp−1gw

Lfx−Lgw

(
Lgw

∣∣w̃t|t ∣∣+ ∣∣w̃t+1|t+1∣∣). Using (29), and in
vue of (28), Vt+1|t+1 − Vt|t be writen as Vt+1|t+1 − Vt|t ≤
−α2(|x̃t |)+ σ1(|w̃t |)+ σ2(|w̃t+1|)+ c̄ for x̃t ∈ XMPC ,∀w̃t ∈
W̃t , w̃t+1 ∈ W̃t+1, with α2, σ1, σ2, and c̄ are given in
Lemma 3. Therefore, according to Theorem 1∣∣x̃t+l|t+l ∣∣ ≤ β̃ (∣∣x̃t|t ∣∣ , l)+ γ̃ (∥∥w̃[t+l|t+l]

∥∥)+ c̃ (30)

�
Stability of the uncertain system is always a concern. The

following theorem establishes the conditions that allow to
conclude about the stability of the uncertain system based on
the ISpS of the nominal model.
Theorem 6: If the nominal system (8) with tightened con-

straint set (20) is ISpS under the RH control law (15), then
the uncertain system (6) is also ISpS.

Proof: In vue of Assumption 1,
∣∣xt+l − x̃t+l|t+l ∣∣ ≤

η̄x , hence
∣∣x̃t+l|t+l ∣∣ ≥ |xt+l | − |η̄x |. Using (30), one

gets |xt+l | ≤ β̃
(∣∣x̃t|t ∣∣ , l) + γ̃

(∥∥w̃[t+l|t+l]
∥∥) + c̄ + η̄x .

Similarly,
∣∣x̃t|t ∣∣ ≤ |xt | + η̄x , therefore from the proof of The-

orem 5, |xt+l | ≤ β̃ (|xt | + η̄x , l)+γ̃
(∥∥w̃[t+l|t+l]

∥∥)+ c̄+η̄x ≤
β̃ (2 |xt | , l)+ γ̃

(∥∥w̃[t+l|t+l]
∥∥)+ c̄+ η̄x + β̃ (2 η̄x , 0). On the

other hand
∥∥w̃t,t+l|t+l∥∥ ≤ ∥∥wt,t+l∥∥ + η̄w, hence |xt+l | ≤

β̃ (2 |xt | , l) + γ̃
(∥∥wt,t+l∥∥+ η̄) + c̄ + ētax + β̃ (2 η̄x , 0) ≤

β̃ (2 |xt | , l)+γ̃
(
2
∥∥wt,t+l∥∥)+c̄+ξ̄x+β̃ (2 η̄x , 0)+γ̃ (2 ētaw).

This leads to

|xt+l | ≤ β (|xt | , l)+ γ
(∥∥wt,t+l∥∥)+ c (31)

with β(r, s) 1
= β̃ (2 r, s), γ (s) = γ̃ (2 s) and c 1

= c̄ +
η̄x + β̃ (2 η̄x , 0) + γ̃

(
2 ξ̄w

)
. Consequently, using (31), one

can conclude that the perturbed system (6) under RH control
law (15) is ISpS. �

The following algoritm 1 summarizes the robust nonlinear
model predictive control approach presented in this paper.
Two classes of optimization problems are solved: offline and
online.

IV. SIMULATION EXAMPLE
The numerical example of a simple nonlinear oscillator con-
isdered in this paper has been studied in the literature and
will be used here with an important modification to illus-
trate the main concepts proposed in this paper. The simu-
lation work used the semi-definite programming packages
SDPT3-4.0 [39] and PENBMI [14], running on the optimiza-
tion toolbox YALMIP [20]. The second order uncertain non-
linear ocillator system dynamic of interest has been modified
to include a non-additive nonlinear disturbance and is given
by

x1t+1 = x1t + a1
[
−x2t + a2

(
1+ x1t

)
ut
] (
1+ w1t

)
+ w1t

x2t+1 = x2t+a3
[
x1t+a4

(
1−4x2t

)
ut
] (
1+w2t

)
+w2t (32)

where the uncertain parmeters a1 = 0.051, a2 = 0.4902,
a3 = 0.049 and a4 = 0.5102. The external input w is driven

Algorithm 1 Robust NMPC

1: Define nominal model f̃ (x̃, u,w), the constraint sets X ,
U and W , nominal cost (12) and error bounds as in
Assumption 1.

2: Determine the tightned constraint sets using Algorithm .
3: Compute optimal terminal set Xf and terminal control
kf .

4: Compute One-step controllability set C1(Xf ) .
5: ComputeRobust output feasibility setXMPC using Algo-

rithm
6: Initialization at t , l = 0
7: while Target state is not reached do
8: Compute state x̃t+l and disturbance w̃t+l
9: Determine u0t+1,t+l+Nc solution the FHOCP 1
10: Check feasibility of the optimal solution.
11: Implement first the control action, u0t
12: end while

by the following exosystem

w1t+1 = 10−3w1t + φ1t

w2t+1 = 10−3w2t + φ2t

where |φt | ≤ 10−4 is a random noise. The constraints are
U = {u ∈ R : −2 ≤ u ≤ 2},
X = {x ∈ R : −0.125 ≤ x1 ≤ 0.125, −0.125 ≤ x2 ≤ 0.125}
and W =

{
w1,2 ∈ R : −5× 10−3 ≤ w1,2 ≤ 5× 10−3

}
. The

nominal model is given as

x̃1t+1 = x̃1t + ã1
[
−x̃2t + ã2

(
1+ x̃1t

)
ut
] (
1+ w̃1t

)
+ w̃1t

x̃2t+1 = x̃2t + ã3
[
x̃1t + ã4

(
1− 4x̃2t

)
ut
] (
1+ w̃2t

)
+ w̃2t

(33)

with the nominal parameters ã1 = 0.05, ã2 = 0.5, ã3 = 0.05
and ã4 = 0.5. On the other hand, the nominal dynamic model
of the exosystem causing the disturbance is

w̃1t+1 = 1.0110−3w̃1t

w̃2t+1 = 1.0110−3w̃2t

The random measurement uncertainties are not known but
bounded by |xt − x̂t|t | ≤ η̄x = 10−3 and |wt − ŵt|t | ≤
η̄w = 10−5. Let the cost functional be given by (??), with
Q = 0.1 × I2, R = 1, S = 10−3 I2, NP = 12 and Nc = 5.
The lipschitz constants are Lfx = 1.189, Lfu = 0.0801,
Lfw = 1.4142, Lgw = 1.01 × 10−3, α1(|r|) = α2(|r|) =
0.1|r|2, Lhx = 0.06325, Lhu = 2, Lqx = 6.325 × 10−4,
Lqw = 1.414 × 10−5, 1̄x = 6.237 × 10−4 and 1̄w =

5 × 10−8. The shrunk constraint sets are determined using
with (20). The exponential growth of the uncertainty, leads
to tighter constraint sets which may lead in turn to unfeasibal
solution of OCP. Therefore, as it is expected and known in
the literature, the maximum horizon which can be selected
and still ensures feasibility is limited. To determine the set
M ⊂ Z within which the OCP for maximum terminal region
is feasible, the algorithm starts from Z and makes progressive
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FIGURE 1. Warm start ellipsoids and the result of computing the
optimum terminal region.

FIGURE 2. Tightened constraint sets along the prediction horizon and the
optimal terminal region.

tightening of the constraints. Therefore, setM ⊂ Z is selected
as as −2 ≤ u ≤ 2, −0.1125 ≤ x̃1 ≤ 0.1125 and −0.1125 ≤
x̃(2) ≤ 0.1125. For that, the normalized set value is (v̂ = 6)

M =
{[
x̃1 x̃2 u

]T
∈ Rn+m

: c̄vx̃ + d̄vu ≤ 1
}

with c̄1 = c̄3 = [−8.89 0], c̄2 = c̄4 = [0 8.89],
c̄5 = c6 = [0 0], d̄1,2,3,4 = 0, d̄5 = −0.5 and
d̄5 = 0.5. The linearized nominal system is x̃t+1 =

Avx̃t + Bvu, with Av =
[
1+ 0.025ut −0.05

0.05 1− 0.1ut

]
and Bv =

0.025
[
1+ x̃1,t 1− 4x̃2,t

]T . There are v̄ = 8 vertices and S̃
has to be selected such that −q(x̃, w̃) > +ψ(|w̃|) ≤ x̃T S̃x̃.
So, let S̃ = 10 · S. Figure 4 illustrates the results where

Q∞f =
[
342.04 69.16
69.16 670.08

]
and K∞ =

[
−6.52 −10.45

]T .
Starting from the warm start results, the optimum terminal

region is computed for a = 1 as indicated in figure . Warm
starting generally helps to improve the determination of a
larger optimum terminal region. Figure 2 shows the evolution
of the tightned constraints sets during the the prediction hori-
zon. The exponential growth rate of the uncertainty depends
on the size of the bounds elative to the disturbance, dynamic
uncertainty and noise level.

Qf =
[
6222.7 631.1
631.1 3709.7

]
, K =

[
−11.66 −36.33

]
Determination of C1(Xf ) leads to x̃ ic ∈ ∂

(
C1(Xf )

)
for

i = 1, . . . , N̄ .The minimum size of C1(Xf ) is d̄ =

min
i

(∣∣∣x̃ ic1 − x̃ if ∣∣∣) ,∀i = 1, . . . , N̄ = 6.18 × 10−2. The left

FIGURE 3. Feasibility sets for Example 32.

FIGURE 4. Feasible set XMPC with tightened constraints
ˆrhot+NC = ρ̄t+Nc .

FIGURE 5. Optimal control input.

FIGURE 6. State trajectory solved with algorithm 1 using different initial
conditions.

side of inequality (21) gives 1.34 × 10−3 ≤ d̄ . Figure 3
displays the shape and evolution of the feasibility sets within
the state space based on an intial feasible solution in XMPC .
Recursive feasibility of OCP 1 is guaranteed. In Figure 4,
one can also observe that boundary of XMPC starts from the
boundaries of the tightened state constraint set ∂X̃t+Nc. This is
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FIGURE 7. Tube-based dynamic based on optimize final set.

because the uncertainty bound is set at ρ̄t+Nc. The generated
optimal control signal can be seen in Figure 5. The online part
ofAlgorithm 1 uses fmincon package ofMatlab [2]. Several
initial conditions has been tried as can be seen in Figure 7
shows state trajectories to the origin. Using the terminal set
size one can observe the equivalent Tube-based dynamic

V. CONCLUSION
This paper addressed the problem of robust model predictive
control of uncertain nonlinear system. Several sources of
uncertainties have been considered and algorithms that can
facilitate the implementation has been presented. Some of
these algorithms are offline, while others are online. They can
be used as a guideline to solve constraint tightening, termi-
nal region optimization, feasibility determination and online
optimization. The analysis confirmed several observations
seen in the literature especially those related to tightened con-
straints and uncertainty growth over the prediction horizon.
To maximize the terminal region and increase robustness,
polytopic linear difference inclusions (PLDI) based on LMI
formulation has been used. Only practical stability (ISpS)
can be ensured for this type of system and the limit of
disturbances’ levels that can be handled by the controller are
bounded by the size of the one-step controllability set to the
terminal constraint region. Simulations results confirmed the
theoretical analysis and showed performance of the proposed
approach.
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