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ABSTRACT In an assault on a military fortress, the attacking side often attacks the fortress through the use
of undergroundmining, so that the defensive side cannot be prepared. The existingmonitoringmethodsmake
it difficult to monitor such underground excavation. One effective way to monitor for tunneling activity is
to detect and identify seismic signals generated by underground excavation. However, the main problem
facing the practical application of this technology is that many behaviors on the ground may generate
seismic signals, and the monitoring system cannot identify whether a signal is generated by underground
excavation or by someone walking on the ground, resulting in a high false alarm rate. To effectively iden-
tify underground excavation signals, we propose an approach for estimating speed based on a double point
synchronization measurement. In our approach, we first formulate mathematical models of the velocities
of underground and ground-level objects. Then, signals acquired by different seismic detectors are used
to estimate the velocities of underground and ground-level objects. By analyzing the differences between
velocities, signals due to human movement and underground excavation are effectively identified. Lastly,
simulations and a field test are performed. It is found that the proposed approach can effectively distinguish
between signals generated by a human moving at ground-level and underground excavation. Our approach
can be helpful for reducing the false alarm rate of a monitoring system.

INDEX TERMS Identification method, underground excavation, velocity estimation, measurements.

I. INTRODUCTION
A. BACKGROUND
At present, there are several major types of equipment and
preventive measures used in the fields of military fortifica-
tion and security monitoring, including infrared detection,
video monitoring, microwave detection, acoustic detection,
ultrasonic detection, vibration detection, and so on. These
devices have important roles in preventing crime and pro-
viding early warnings. However, for new methods of crime,
such as stealing by digging a tunnel, the effectiveness of
these techniques is minimal. Moreover, this type of crime
not only appears in the banking, treasury and other civil
fields but also impacts areas like prisons and national borders.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

The necessity of discovering these criminal behaviors,
including illegal entry into another country, the invasion of
a bank’s vault, escape from prison, etc., committed using
underground excavation, highlights the need for new security
monitoring technologies.

The current monitoring method is image monitoring, and
the literature presents an interactive security monitoring sys-
tem based on passive infrared motion detection sensors,
which capture images of any intruding persons and provide
them to everyone using the system, both on an Android plat-
form and in an online portal [1]. There has been less research
on ground vibration monitoring in underground excavation.
Most studies have examined transverse and longitudinal
waves in strong earthquakes, such as the use of a small reflec-
tor for monitoring ground motion in SAR [2]. Some scholars
have studied anti-interference and new methods for detecting
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traveling wave signals [3]. Some authors use rotation and
translation ground motion sensors at the same location to
characterize the seismic scattering in a P-wave wake [4]. The
mixed anfis-pso model has also been used to predict over
break in underground caverns [5]. In addition, some studies
have been based on parameter sensitivity analysis of the
influence of underground excavation on slope stability by the
vector sum method [6]. Experimental data on the stress state
of salt rock in an underground cavern have been reported [7].

In this paper, shallow excavation is studied. The main
application is shallow ground to indicate the propagation of
Rayleigh waves. The propagation characteristics of the shear
wave, longitudinal wave and Rayleigh wave are different.

For underground excavation monitoring, the literature is
primarily focused on the application of monitoring combined
with numerical analysis in the safe excavation of large-scale
hydropower underground complexes. The literature discusses
the fact that these 3D analyses simulate step-by-step exca-
vation while predicting the stress-strain behavior [8]. The
literature investigates an approach to seismic pattern recog-
nition comprising wavelet-based feature extraction, feature
selection based on mutual information criteria, and neural
classification based on feed-forward networks [9].

At present, there is very little literature directly related to
the monitoring of underground excavation. There are many
studies on the recognition of people and vehicles on the
ground based on seismic information from a ground sensor
network system [10]–[13]. Advanced and complex signal
methods are often used to process ground motion informa-
tion, but the calculation amount is relatively large because
machine-aided learning is required [14], [15].

The environment of an underground excavation moni-
toring system is complex. Generally, the speed of under-
ground excavation is slow and is closest to the walking
speed of people. Other types of interference, such as driving
of vehicles, and the natural environment, such as wind or
rain, differ greatly from underground excavation in terms
of speed. Personnel are likely to walk within the monitor-
ing area. If the activity caused by personnel walking within
the monitoring area is detected as digging behavior, then
a false alarm will result. Moreover, if a person walks in
the monitoring area while underground excavation is taking
place, the system may determine that a person is simply
walking in the monitoring area, which could cause a missed
alarm [16], [17].

For ground target recognition, the traditional research
method is to use advanced signal processing algorithms
for pattern recognition. Based on data and experiments,
the present study finds that the most remarkable fea-
ture of underground mining is the slow speed of min-
ing (compared with the ground target), which is usually
implemented manually and limited by the geographical
environment. In view of this characteristic, modeling, sim-
ulation and experimental research were performed, and the
results revealed that the method mentioned in this paper is
feasible.

B. WORK AND CONTRIBUTION
(1)We propose amethod for estimating speed based on a two-
point synchronization measurement. Seismic signals are syn-
chronously obtained by two seismic detectors, and the target
speed is estimated. By applying the estimated target speed
and combining the speed difference between the ground-level
walking speed and the underground mining speed, an under-
ground excavation can be effectively identified.

(2)We analyze the formation and propagation principle of
seismic signals. Then, we estimate and predict a model for the
velocities of objects, including the expected value, variance
and confidence interval, and calculate and simulate these
values. By analyzing the simulation results, it is shown that
the errors of the statistical velocities are within the acceptable
range of an underground excavating system.

(3)We develop seismic detectors that meet the relevant
technical requirements. Furthermore, we implement experi-
ments using two seismic detectors. The experimental results
show that there exist great differences between the veloc-
ities of signals generated by underground excavation and
ground-level human movement. The feasibility of the pro-
posed approach for recognizing underground signals using
their velocity features is also verified.

II. MATHEMATICAL MODELING
A. FORMATION AND PROPAGATION PRINCIPLE OF
GROUND MOTION SIGNALS
Underground excavation and ground targets will stimulate
the ground during movement, causing deformation of the
surface medium, which can be propagated in the medium
to form seismic waves. The most common waves in seismic
wave detection are longitudinal waves, transverse waves, and
Rayleigh waves. Among these, the longitudinal wave, which
is the highest frequency wave, travels the fastest, while the
transverse wave, with less energy, goes slower. The Rayleigh
wave, which spreads along the free surface, is lower in fre-
quency, has the highest energy, and has the longest transmis-
sion distance. A large number of experiments have shown that
seismic waves are primarily composed of Rayleigh waves.
Therefore, Rayleigh waves are widely used in seismic signal
analysis [18]–[20].

B. TARGET VELOCITY INFORMATION MODELING
For convenience, the people excavating underground and the
people walking at ground level are collectively referred to as
the target; the underground excavation and personnel walking
speed information are collectively referred to as the target
speed information. Because the speed of the underground
excavation and that of the personnel walking at ground level
are quite different, we can use two groundmotion detectors to
obtainmonitoring information for calculating the target speed
and then determine whether the detected target corresponds
to underground excavation based on the target speed. The
calculation of the target velocity depends on four observa-
tions from two adjacent seismic detectors, shown as S1 and S2
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FIGURE 1. Two adjacent seismic detectors.

shown in Fig.1. Each seismic detector records the moment
when it first detects the target and the time at which the target
leaves its detection range.
D – The linear distance between two adjacent ground

motion detectors
Tm – The time in which the target passes two adjacent

ground motion detectors
T1 – The starting time of the target detected by S1
T2 – The departure time of the target detected by S1
T3 – The starting time of the target detected by S2
T4 – The departure time of the target detected by S2
R1 – The detection radius of S1 near the target side
R2 – The detection radius of S1 far from the target side
R3 – The detection radius of S2 near the target side
R4 – The detection radius of S2 far from the target side
V – The average speed of the target
∧

V – The estimated speed of the target
The estimation of target speed involves the distance and

time interval between the two seismic detectors. The calcula-
tion method of the estimated speed determined by the seismic
detector is given in formula (1).

∧

V =
D
Tm

(1)

1. Basic assumptions
∧

V
(i) The distance between the two seismic detectors is

knownwhen the detector of the underground excavationmon-
itoring system is laid.

(ii) The target moves at an average speed of V in a straight
line.

(iii) The detector is placed in an area with a homogenous
soil type. The detection area of the sensor is circular, and the
sensor is placed in the center of the area. In practice, because
the position of the ground motion detector after installation
is fixed, the error caused by soil inhomogeneities can be
overcome by increasing the correction coefficient. Therefore,
it is assumed that the consistency of soil properties will not
have a significant impact on the engineering of this method.

(iiii) No other interference (such as wind, rain, driving
vehicles, etc.).

2. The estimation model of target velocity
Tm is the time in which the target passes the two adja-

cent ground motion detectors. The calculation is shown in

equation (2).

Tm =
[
T3 +

(
T4 − T3

2

)]
−

[
T1 +

(
T2 − T1

2

)]
(2)

The time is measured in minutes. The detection cycle
begins when the target is detected by the seismic detectors for
the first time, designated as T1, which serves as the baseline
time during the whole process of monitoring. Based on the
relationship between time, distance and speed, we can define
other times by using formula (3).

T2 = T1 +
R1 + R2 + LC

V
(3)

T3 = T1 +
R1 + D− R3

V
. (4)

T4 = T1 +
R1 + D+ R4 + LC

V
(5)

Tm can also be expressed as a function of R, which is
derived as follows.

Tm =
[
T3 +

(
T4 − T3

2

)]
−

[
T1 +

(
T2 − T1

2

)]
=

T4 + T3 − T2 − T1
2

=
1
2

[(
T1 +

R1 + D+ R4 + LC
V

)
+

(
T1+

R1+D−R3
V

)
−

(
T1+

R1+R2+LC
V

)
−(T1)

]
=

R1 − R2 − R3 + R4 + 2D
2V

(6)

Formula (6) is the basis of the estimation
∧

V .
3. The statistical model of target velocity
Assuming that Rj is constant and independent of the dis-

tribution of random variables regardless of the distance from
a given vibration detector, the distribution of R correspond-
ing to S1 and the distribution of R corresponding to S2 are
independent. The target speed V can be estimated by

E [Tm] =
D
V

(7)

σ 2
k is the variance of R with respect to Sk , as described in

formula (8).

Var (Tm) =
σ 2
1 + σ

2
2

2V 2 (8)

(i)
∧

V represents the second-order Taylor expansion of µTm .

∧

V ≈
D
µTm
−

(
D

µ2
Tm

) (
Tm − µTm

)
+

1
2

(
2D

µ3
Tm

) (
Tm − µTm

)2
(9)

µTm – The time in which the target passes two adjacent
ground motion detectors (variable of a function).

In order to solve the problem more accurately, the second-
order Taylor expansion value is used. From another point of
view, the variance is only used as an auxiliary index, and
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the first-order expansion is used to reduce the complexity of
calculation on the basis of not affecting the research results.

Because E
[(
Tm − µTm

)]
= 0 the expected value can be

expressed as formula (10).

E
[
∧

V

]
≈

D
µTm
+

D

µ3
Tm

σ 2
Tm

=
D(D
V

) + 1(D
V

)3
(
σ 2
1 + σ

2
2

2V 2

)

= V

(
1+

σ 2
1 + σ

2
2

2D2

)
(10)

Formula (10) shows that the estimate
∧

V is too large. The
deviation can be controlled by selecting the sensitivity of
the ground vibration detector and increasing the distance
between the detectors. The parameters of the combined seis-
mic detector can be calculated from σ 2

c , and the unbiased esti-

mate of velocity V is recorded as
∧

V ′.
∧

V ′ can be estimated by
∧

V ′ =
(
D
Tm

)(
1+ σ 2

c

)−1
(11)

(ii)
∧

V is the first-order Taylor expansion of µTm.
∧

V ≈
D
µTm
−

D

µ2
Tm

(
Tm − µTm

)
(12)

Using the deviation correction factor in formulas (11) and
(12), the corrected variance is formula (13).

Var
(
∧

V ′
)
≈

(
1+ σ 2

c

)−2
σ 2
Tm

(
D2

µ4
Tm

)

=

(
1+ σ 2

c

)−2 (σ 2
1 + σ

2
2

2V 2

)(
D2(D
v

)4
)

= V 2σ 2
c

(
1+ σ 2

c

)−2
(13)

(iii) For any given V , because the distribution R is
unknown, the Chebyshev inequality is used to set the optimal
boundary of the velocity estimate.

Pr

(∣∣∣∣ ∧V ′−µ ∧V ′
∣∣∣∣ ≤ t) ≥ 1−

σ 2
∧

V ′

t2
≈ 1− α (14)

This formula allows a confidence interval of 2t for the
expected probability. We can obtain a confidence interval

of (1 − α)100% for V by applying formula (14), and
∧

V ′ is
computed by following the reduction.

Pr

(∣∣∣∣ ∧V ′−µ ∧V ′
∣∣∣∣ ≤ t)

≥ 1−
σ 2
∧

V ′

t2
≈ 1− α

⇒ Pr

(∣∣∣∣ ∧V ′−V ∣∣∣∣ ≤ t) ≥ 1−
σ 2
∧

V ′

t2
≈ 1− α (15)

Using µ ∧
V ′
= V , the inequality can be deduced as follows.

t =
σ ∧
V ′
√
α

⇒ Pr

(∣∣∣∣ ∧V ′−V ∣∣∣∣ ≤ σ ∧
V ′
√
α

)
≥ 1− α (16)

Then, the upper and lower bounds of the target speed
confidence interval can be deduced by using formula (16),
where the upper bound is formula (17).

V −
∧

V ′ ≤
Vσc

(
1+ σ 2

c
)−1

√
α

⇒ V −
Vσc

(
1+ σ 2

c
)−1

√
α

≤

∧

V ′

⇒ V <

∧

V ′(
1− σc(1+σ 2c )

−1
√
α

) (17)

The lower bound of the confidence interval is formula (18).

V >

∧

V ′(
1+ σc(1+σ 2c )

−1
√
α

) (18)

III. SIMULATION AND EXPERIMENTAL ANALYSIS
A. SIMULATION ANALYSIS
This simulation analyzes the accuracy of the statistical model
and the influence of the distance between the two seismic
detectors on the accuracy. The range of a normal human’s
walking speed is 1.2m/s to 1.6m/s. According to engineering
practice, the detection radius of the seismic detector can vary
from 9m to 10m. For the tests, the distance between the two
seismic detectors has been set for three different scenarios,
with distances of 5m, 10m, and 15 m. The simulation is
illustrated in Figures 2-4, and the data are shown in Table 1.

FIGURE 2. Walking simulation results (D=5 m).
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TABLE 1. Simulation data statistics of walking.

TABLE 2. Simulation data statistics of underground excavation.

FIGURE 3. Walking simulation results (D=10 m).

The plots shown in Figures 2-4 reveal that the difference
between the true value and the estimated value is not large.
Table 1 lists the statistics of the data range in Figures 2-4.
As shown in Table 1, when the distance between the two
ground motion detectors is 5m, the relative deviation range
for the walking speed and the mathematical model for the
velocity estimation is (0.071%∼13.98%). The relative devi-
ation of the estimated velocity and velocity expectation is
(0.12%∼13.62%). The range of variance is (00039∼0.0090).
When the confidence interval is 95%, the optimal boundary of
the velocity estimate is (0.97m/s∼1.61m/s), and the estimated
speed range is (1.11 m/s∼1.69 m/s).

When the distance between the two ground motion detec-
tors is 10m, the relative deviation range of the walking speed
and the mathematical model for the velocity estimation is
(0.042%∼7.74%). The relative deviation of the estimated

FIGURE 4. Walking simulation results (D=15 m).

velocity and velocity expectation is (0.047%∼7.66%). The
range of variance is (0.0010∼0.0022). When the confidence
interval is 95%, the optimal boundary of the velocity estimate
is (1.08 m/s∼1.82 m/s), and the estimated speed range is
(1.14 m/s∼1.70 m/s).

When the distance between the two ground motion detec-
tors is 15m, the relative deviation range of the walking
speed and the mathematical model for velocity estimation
is (0.034%∼4.04%). The relative deviation of the estimated
velocity and velocity expectation is (0.0050%∼4.07%). The
range of variance is (0.00050∼0.00090). When the confi-
dence interval is 95%, the optimal boundary of the velocity
estimate is (1.10m/s ∼1.75m/s), and the estimated speed
range is (1.20 m/s ∼1.71 m/s).
The plots shown in Figures 5-7 show that the differ-

ence between the true value and the estimated value is
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FIGURE 5. Underground excavation simulation results (D=5 m).

FIGURE 6. Underground excavation simulation results (D=10 m).

not large. Table 2 shows the statistics for the data range
in Figures 5-7. As shown in Table 2, when the distance
between the two ground motion detectors is 5m, the rela-
tive deviation range of the excavation speed and the math-
ematical model for velocity estimation is (0.075%∼16.30%).
The relative deviation of the estimated velocity and veloc-
ity expectation is (0.015%∼15.90%). The range of vari-
ance is (3.35e-7∼0.00015). When the confidence interval
is 95%, the optimal boundary of the velocity estimate is
(0.0087 m/s∼0.27 m/s), and the estimated speed range is
(0.014 m/s∼0.23 m/s).
When the distance between the two ground motion detec-

tors is 10m, the relative deviation range of the excavation
speed and the mathematical model for velocity estimation
is (0.028%∼7.00%). The relative deviation of the estimated
velocity and velocity expectation is (0.0026%∼7.10%).The
range of variance is (1.09e-7∼3.20e-5). When the confidence

FIGURE 7. Underground excavation simulation results (D=15 m).

interval is 95%, the optimal boundary of the velocity estimate
is (0.01 m/s∼0.23 m/s), and the estimated speed range is
(0.010 m/s∼0.20 m/s).
When the distance between the two ground motion detec-

tors is 15m, the relative deviation range of the excavation
speed and the mathematical model for velocity estimation
is (0.020%∼4.12%). The relative deviation of the estimated
velocity and velocity expectation is (0.060%∼4.08%). The
range of variance is (6.83e-7∼0.00020). When the confi-
dence interval is 95%, the optimal boundary of the velocity
estimate is (0.010m/s∼0.22m/s), and the estimated speed
range is (0.010 m/s∼0.20 m/s).

B. EXPERIMENTAL ANALYSIS
The ground motion detector primarily consists of a mov-
ing coil speed sensor and the necessary signal condition-
ing circuit. Before the experiment, referring to the test
standard of seismic exploration instruments, the indexes of
the ground motion detector were tested. The test results
show that the experimental equipment meets the relevant
requirements.

1) SINE WAVE TEST
We use a signal generator as a signal source to output two
kinds of sine signals. The frequencies of the sine signals are
30Hz and 50Hz, with a1-V peak-to-peak value. The sampling
frequency of the single-chipmicrocomputer is 610Hz, and the
gain is 0dB, as the signal is not amplified. The two sampling
curves and their spectral analysis curves in Figures 8 show
that the seismic detectors’ test frequency and the signal gen-
erator’s output frequency are the same.

2) CONSISTENCY TEST OF THE SEISMIC DETECTORS
Because multiple seismic detectors are employed in under-
ground excavation systems, each with a separate signal con-
ditioning circuit, it is necessary for the detectors to have good
consistency: the acquisition of signals, gain and delay should
be consistent. In this paper, two sets of independent seismic
detectors were utilized and connected to the power supply.
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TABLE 3. Test conditions.

TABLE 4. Main test equipment and tools.

FIGURE 8. Test results for a sine signal at 30 Hz.

The two channels of the oscilloscope are used to collect the
seismic signals with a sampling frequency of 1kHz in the
indoor test.

FIGURE 9. First 100 sampling points of the signal for two devices.

The collected waveforms are shown in Figure 9 and
Figure 10, and it can be seen that the signal waveforms
collected by the two sets of seismic detectors are basically
the same.

FIGURE 10. First 5000 sampling points of the signal for two devices.

3) TEST CONTENTS AND EQUIPMENT
The ground motion signals caused by personnel under dif-
ferent working conditions are shown in Table 3. A list of the
main test equipment and tools is given in Table 4.

4) EXPERIMENTAL PROCEDURE
To satisfy ideal conditions such as geological coincidence,
isotropy, ideal elastic medium and so on, this paper uses a
site with good geological conditions for testing. According
to the field data, a flat grassland was chosen.

The test site is shown in Figure 11, and the target source
moved at a certain rate on a predetermined trajectory. For
the differences in the seismic signal strength caused by the
distance of the target, the target moved as much as pos-
sible toward the center of the sensor from far away and
nearby. When the target source enters the detection range,
the ground motion detector starts to collect data, sending
information to the monitoring terminal in real-time through
wireless communication. After the acquisition is completed,
the collected ground motion signals are processed at the
monitoring terminal.
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TABLE 5. The test results.

FIGURE 11. Test site.

After the information measured by the two ground motion
detectors is processed, we can see that (as shown in Table 5)
when D=5m, the relative deviation between the walking
speed measured by the detector and the actual speed is 15%.
When D=10m, the relative deviation between the measured
walking speed and the actual speed is 0. When D=15m,
the relative deviation between the measured walking speed
and the actual speed is 0.

After the information measured by the two ground motion
detectors is processed, we can see that when D=5 m, the rel-
ative deviation between the artificial excavation speed mea-
sured by the detector and the actual speed is 50%. When
D=10m, the relative deviation between the artificial exca-
vation speed measured by the detector and the actual speed
is 50%. When D=15m, the relative deviation between the
artificial excavation speed measured by the detector and the
actual velocity is 0.

Although the experimental results and theoretical calcula-
tion are slightly different, the trend of the theoretical calcula-
tion is correct. The main reason for the difference is that the
detection accuracy of the ground motion detector is limited,
the number of effective digits is small, and there is a certain
delay in the test. There are some delays in the synchronization
of the two ground motion detectors. These reasons lead to
a certain deviation between the simulation analysis and the
experimental results.

IV. CONCLUSION
In this paper, a method for estimating velocity based
on a two-point synchronization measurement is proposed.

The method uses the simultaneous detection of two seismic
detectors to obtain ground motion signals and to estimate
the target’s velocity. The established target speed estima-
tion model, statistical model, simulation analysis and field
experiment show that this method can effectively identify
underground mining. This method can be applied to under-
ground excavation monitoring systems that protect military
fortifications, enabling defenders to efficiently and accu-
rately determine whether the attacking side is attacking by
excavation.

In the future, speed-based information recognition will be
combined with an advanced signal processing algorithm and
machine learningwith the aim of achieving better engineering
application results.
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