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ABSTRACT The current thinking concerning computations required by Internet of Things (IoT) applications
is shifting toward fog computing instead of cloud computing, thereby achieving most of the required
computations at the network edge of the IoT devices. Fog computing can thus improve the quality of service
of delay-sensitive applications by allowing such applications to take advantage of the low latency provided
by fog computing rather than the high latency of the cloud. Therefore, tasks in various IoT applications must
be effectively distributed over the fog nodes to improve the quality of service, specifically the task response
time. In this paper, two nature-inspired meta-heuristic schedulers, namely ant colony optimization (ACO)
and particle swarm optimization (PSO), are used to propose two different scheduling algorithms to effectively
load balance IoT tasks over the fog nodes under communication cost and response time considerations. The
experimental results of the proposed algorithms are compared with those of the round robin (RR) algorithm.
The evaluations show that the proposedACO-based scheduler achieves an improvement in the response times
of IoT applications compared to the proposed PSO-based and RR algorithms and effectively load balances
the fog nodes.

INDEX TERMS Fog computing, Internet of Things, quality of service, task offloading and scheduling.

I. INTRODUCTION
The Internet of Things (IoT) will dominate urban cities and
transform overcrowded cities into smart cities. The aim of a
smart city is to use cutting-edge IT technology to improve
the quality of services offered to residents. To achieve the
goal of the smart city, the IoT consists of a large number
of geographically distributed nodes. Each node contains a
number of smart sensors, where each sensor senses a physical
parameter of the surrounding environment within its trans-
mission range. An aggregation and analysis are performed
on the collected data to generate decisions and coordinated
actions to be performed. IoT application areas are diverse and
include smart homes, health care, traffic control, smart trans-
portation, video surveillance and emergency response [1].

Cloud computing is used as a backend layer for data storage
and data analysis because the cloud can provide enormous
storage and processing capabilities that are otherwise not
available to the IoT devices. This is called task offloading,
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where the workload, the large amount of data that the IoT
devices generate, is transferred to the cloud for processing
[2]–[4]. However, it is inefficient to offload tasks to the cloud
layer because this will cause network bandwidth overhead,
as much of the data can be filtered due to high redundancy.
Furthermore, IoT task offloading to the cloud delays the
response time of the data analysis as a result of the relatively
high network latency. Therefore, the fog computing concept
was developed to bring computing capabilities closer to the
IoT devices [5].

IoT task offloading to fog computing instead of the cloud
avoids high network congestion and reduces the data analysis
response time by taking advantage of low network latency.
This concept is also called edge computing because it pro-
vides computing capabilities, including better response times
and low latencies, at the edge of the network near the IoT
devices. Yet, there is a distinction between fog computing and
edge computing. Fog computing provides computing, net-
working, and storage services to IoT devices using network
devices, such as routers and gateways, within the LAN of
the IoT devices. On the other hand, edge computing provides
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computing and storage services using small data centers close
to the IoT devices via WiFi access points [6].

Fog computing provides the quality of service (QoS)
required by certain smart applications such as traffic control,
health care applications, and autonomous driving. However,
it is important to effectively select the proper fog nodes for
task offloading and load balance the tasks over the fog nodes
while satisfying the required QoS requirements of the tasks,
including the response times of the tasks.

The aim of this research is to satisfy the QoS require-
ments of IoT delay sensitive applications by offloading tasks
on the data generated by IoT sensor nodes onto the fog
nodes, therein considering the communication costs and the
existing load on the fog nodes. Furthermore, it is essential
to effectively load balance the tasks over the fog nodes
to improve the QoS of IoT applications, specifically the
response time, and to improve the utilization of the fog
nodes. However, this problem is NP-hard problem where the
difficulty increases exponentially as the number of sensors
and fog nodes increases. Therefore, it is challenging to use
the traditional greedy search methods [7]. To overcome this
problem and to achieve the goals of this research, two evolu-
tionary meta-heuristic task offloading scheduler, namely, ant
colony optimization (ACO) and particle swarm optimization
(PSO), are proposed. The experimental evaluation results
show that the proposed ACO-based scheduler achieves an
improvement compared to the proposed PSO-based scheduler
and the round robin (RR) algorithm in terms of the IoT
application response time and effective use of fog nodes.

The remainder of this paper is organized as follows.
Section II discusses relatedwork. Section III outlines a formal
model of the research problem, while Section IV presents the
proposed meta-heuristic algorithms for solving the problem.
Section V describes the experimental results and the evalua-
tion of the proposed approach. Finally, Section VI concludes
the paper with outlines for future research.

II. BACKGROUND AND RELATED WORK
Task offloading is the process of delegating computations
from devices with low computational capacity and power,
such as IoT devices, to remote powerful servers to satisfy
certain QoS requirements [8], [9]. Sending the data generated
by IoT devices to the cloud for aggregation and analysis
produces network overhead and delays the response times.
Hence, fog computing technology moves computations to
the edge of the network near the IoT devices. This enables
improvements in the response times by taking advantage of
the low latency. This is particularly important for real-time
applications such as video streaming, intelligent transporta-
tion, and autonomous vehicles [1].

There have been a number of studies on task offloading to
the edge of the IoT network. For example, the research in [10]
proposes a framework for task offloading to minimize the ser-
vice delay of IoT-fog-cloud applications. The framework uses
a delay-minimizing policy that considers the loads on the fog
nodes and the type of workloads generated by the IoT devices.

If the calculated service delay based on the current load on
the fog node is less than a threshold, the task will be accepted
at the fog node; otherwise, the task will be forwarded to the
best neighboring fog node. The best neighboring node is cal-
culated using the expected service delay and the propagation
delay of all neighbor nodes. Finally, if the task reaches the
maximum amount of offloading, the task will be offloaded
to the cloud. However, this work assumed that the fog
nodes are directly connected to each other; hence, the delay-
minimizing policy does not consider the communication
cost.

In [11], the researchers proposed a heuristic based on linear
programming for task distribution of medical cyberphysical
systems. The proposed algorithm considers the deployment
of virtual machines for virtual medical devices and pro-
vides the required QoS of real-time medical applications
by considering the communication cost, computation cost,
virtual machine placement, and task distribution cost. How-
ever, the proposed algorithm is based on a cellular network
architecture where the fog nodes are represented as cellular
network base stations. Moreover, no actual task offloading
or load balancing capabilities are considered, only virtual
machine placement. Hence, themethod cannot be generalized
to a fog computing architecture.

In [12], an analysis of the workload allocation between the
fog nodes and the cloud nodes is investigated to minimize
the power consumption under service delay constraints. How-
ever, this analysis assumed that the fog nodes are connected
to the cloud nodes through a single point of communication.
Further, the study focused on the cooperation between the fog
nodes and the cloud computing servers. In our study, we focus
on the task offloading between the IoT devices and the fog
nodes.

In [13], a task offloading and management between the
embedded devices and the fog nodes is proposed. The aim
is to minimize the computation time of software-defined
embedded systems. The proposed strategy usesmixed-integer
non-linear programming joint optimization of task schedul-
ing and storage placement.

In [14], a simple task offloading architecture for
information-centric IoT applications is developed based on
task classification and a simple cost function. The pro-
posed architecture does not consider the communication
cost. In [15], a heuristic algorithm is proposed to determine
task offloading placement on the fog nodes based on a cost
function that considers the communication cost, computation
cost, and power consumption.

In [16], an IoT-mobile edge computing task offloading
service orchestration scheme is proposed. The service orches-
tration scheme uses software defined networking (SDN)
technology to reduce the network transmission load. Fur-
ther, a heuristic algorithm for the differentiated cloud-edge
offloading decisions is proposed using an optimization func-
tion based on communication energy consumption, compu-
tation energy consumption, task delay models. Also, in [17]
the SDN scheme is proposed to reduce the service response
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delay and data redundancy in the cloud-edge layer to meet the
requirement of the network.

In [18], [19], a cloud-fog-based architecture is proposed
for a resource management in a smart grid (SG) scenario.
Different algorithms are used for scheduling requests from
smart devices, such as smart meters, on the virtual machines
of the fog nodes, including round robin, throttled, particle
swarm optimization (PSO), ant colony optimization (ACO),
and a hybrid artificial bee colony and ACO algorithm that
outperformed the other algorithms. However, the focus of the
research is mainly on the cloud-fog architecture of a smart
grid scenario, and there is neither a clear description of the
proposed algorithms nor a load balancing mechanism. Sim-
ilar research is conducted in [20] where the ACO algorithm
is used for scheduling IoT tasks on the fog nodes in a SG.
The proposed algorithm focused on minimizing the response
time of the IoT tasks. However, the proposed ACO algorithm
depends on profiling the IoT tasks. In [21], a graph-based
heuristic is proposed to load balance tasks over the fog nodes.
However, the proposed heuristic is impractical because of
the dynamic nature of the loads on the fog nodes. In [22],
a bee life algorithm is proposed to schedule IoT tasks on
the fog nodes with the aim of achieving a trade-off between
computation time and memory. In [23], a genetic algorithm
is proposed to schedule IoT tasks on the fog nodes with the
aim of achieving a trade-off between computation time and
the operational cost. A similar work is proposed in [24] using
a PSO algorithm. However, none of these studies considers
the communication cost.

A similar research problem considers the optimal place-
ment of fog devices over a specified large area for the
optimization of fog node power consumption while sat-
isfying the QoS requirements of IoT-based applications.
For example, in [25], genetic algorithms are used to find
a trade-off between fog node placement, power consump-
tion and the QoS for task offloading. The study in [26]
investigates the edge server placement problem, where PSO
based on a multi-objective function is used to reduce
the total energy consumption and maintain an acceptable
access delay. In [7], a hybrid genetic-simulated annealing
latency-minimum offloading decision algorithm in IoT-fog
computing is designed to find the best offloading decision
with minimum latency. Also, in [27], a genetic algorithm is
proposed for the offloading decisions in IoT-fog computing.
However, these algorithms do not consider the balancing the
load balancing on the fog nodes.

In this paper, we investigate the problem of IoT task
offloading to the fog with the main goal of reducing the
IoT-based application response time by load balancing the
tasks on the fog nodes while considering the communication
cost, computation time and the existing load conditions on the
fog nodes.

III. IoT-FOG SYSTEM MODEL
This paper investigates an efficient task offloading algo-
rithm in the fog computing infrastructure using the

TABLE 1. Main notation and descriptions.

ACO meta-heuristic. The main goal is to minimize task
response times while considering the network bandwidth,
network latency, and existing load on the fog devices.

A. IoT-FOG NETWORK ARCHITECTURE
The IoT-fog network architecture used in this paper consists
of three layers, the IoT layer, the fog layer, and the cloud
layer, as shown in Figure 1. The same architecture is used
in [7], [27]. In the bottom layer, the IoT layer, a number of
geographically distributed sensor nodes are connected using
a local network. The IoT layer collects different data from
different applications such as weather, air quality, and traffic
intensity [28]. The IoT layer is connected to a fog layer that
contains a number of fog nodes. Each fog node is used for
aggregating, filtering, and light processing of the collected
sensor data. Each fog node has a local agent that is respon-
sible for collecting performance data, such as sensor data
arrival rate and sensor service rate. The sensors send the
task offloading requests to the fog nodes, and the fog nodes
forward the requests to a master fog node that is responsible
for scheduling the offloaded tasks to the fog nodes using the
collected data from the fog agents. Finally, the cloud layer
provides powerful computing and storage capabilities. The
fog layer is connected to the cloud layer through the Internet
rather than the local network. The cloud layer is used for
heavy processing and data storage.

B. IoT-FOG MODEL FORMULATION
The IoT layer consists of a number of distributed sen-
sors S1, S2, . . . ., Sm, where each sensor Si produces data at
rate λi. The fog layer consists of a number of fog nodes
fg1, fg2, . . . ., fgn. Table 1 presents the notation used in this
section.

VOLUME 8, 2020 37193



M. K. Hussein, M. H. Mousa: Efficient Task Offloading for IoT-Based Applications in Fog Computing Using ACO

FIGURE 1. Layered fog computing infrastructure.

The data communication cost between the sensor Si and
the fog node fgj, as shown in Equation (1), is the sum of the
network latency Lij between sensor Si and fog node fgj and
the data transfer time between Si and fgj, which is calculated
as Dsizei/BW l , where Dsizei is the size of the data generated
by sensor Si and BW l is the local network bandwidth.

FogCCostij = Lij +
Dsizei
BW l

(1)

The communication cost between fog node fgj and the
cloud, as shown in Equation (2), is the sum of the cloud
latency Ljc and the data transfer time between fog node fgj
and the cloud is calculated as Dsizei/BW c, where BW c is the
cloud network bandwidth.

CloudCCostij = Ljc +
Dsizei
BW c

(2)

The total communication cost for sensor Si offloading is
calculated using Equation (3).

CommCostij = CloudCCostij + FogCCostij (3)

Each sensor, Si, generates data following a Poisson dis-
tribution with a rate λi. The generated data are sent to

the fog nodes to perform filtering, aggregation, and simple
analysis. Finally, the fog nodes send the data to the cloud
where heavier analysis, expensive processing, and storage are
performed.

The service time of task offloading of sensor Si to fog nodes
fgj is calculated according to the M/M/1 queuing model
using Equation (4).

STij =
1

µij − λi
(4)

whereµij is the service rate and λi is the data arrival rate from
sensor Si.

For a large number of sensors, where each sensor belongs
to a specific application class c, the service time is calculated
using Equation (5).

STjc =
1

µjc − λjc
(5)

where µjc is the service rate at fog node fgj for a specific
class of application c and λjc is the total arrival rate of data
from sensors belonging to a certain application c, which is

37194 VOLUME 8, 2020



M. K. Hussein, M. H. Mousa: Efficient Task Offloading for IoT-Based Applications in Fog Computing Using ACO

calculated using Equation (6).

λjc =
∑
i∈c

λji (6)

The utilization of fog node fgj, Uj, is the sum of the uti-
lizations of offloaded tasks from all sensors Si, as calculated
using Equation (7).

Uj =
∑
c

Ujc =
∑
c

∑
i∈c

xij ×
λji

µij
(7)

where xij = 1 if sensor Si tasks are offloaded to fog node fgj.
The overall response time of the sensor Si workload as a

result of task offloading is the sum of the IoT-fog communica-
tion cost, fog-cloud communication cost and average service
time on the fog nodes, which is calculated using Equation (8).

Rij = CommCostij + STjc

= Ljc +
Dsizei
BW c

+ Lij +
Dsizei
BW l

+
1

µjc −
∑

i∈c λji
(8)

The average response time of fog node fgj as a result of all
tasks offloaded to that node is calculated using Equation (9).

Rj =
∑
c

Rjc
1− Ujc

(9)

The load loadj on fog node fgj relative to all fog nodes is
calculated using Equation (10).

loadj = 1−
Rj − Raverage∑

j Rj
(10)

IV. EVOLUTIONARY ALGORITHMS FOR IoT-FOG
TASK OFFLOADING
The IoT-fog task offloading problem is critical for real-time
sensitive IoT applications. The data generated by the IoT
devices must be balanced across the fog nodes while con-
sidering network latency, network bandwidth, processing
times of the fog nodes, and the existing load on the fog
nodes. Therefore, the task offloading solution must choose
the fog device target that is guaranteed to satisfy the defined
QoS constraints, specifically the response time, considering
the network characteristics and the current load on the fog
nodes. This problem is NP-hard problem where the difficulty
increases exponentially as the number of sensors and fog
nodes increases. Therefore, it is challenging to use the tradi-
tional greedy search methods. We propose two evolutionary
meta-heuristics algorithms, using the ant colony optimization
and particle swarm optimization, to over come this chal-
lenge [7]. This section presents the proposed evolutionary
algorithms, namely ACO and PSO, for handling the optimiza-
tion problem of this research.

A. THE PROPOSED ACO TASK OFFLOADING ALGORITHM
ACO is a probabilistic meta-heuristic method inspired by
ants’ capabilities to find the shortest path between their
colony and a food source. Such collective foraging behav-
ior for food sources by actual ants is used to solve several

optimization problems such as finding the shortest path in
a graph [29]. Initially, an ant leaves its colony and moves
along a randomly selected path to search the surrounding
neighborhoods for food sources. Ants indirectly communi-
cate with each other through the release of a chemical signal,
called pheromones. On the way back to the colony, the ant
releases an amount of pheromone along the path proportional
to the quantity and quality of the found food. Subsequently,
other ants will have high probability of following paths that
have high pheromone concentrations. Eventually, all ants
will follow the shortest best path for the food-home journey
[30], [31]. For m ants and n possible paths, each ant selects
a possible path according to the highest concentration of
pheromones on all possible paths.

The ACO algorithm has been proven effective as an
optimization meta-heuristic for several NP-hard research
problems, including the traveling salesman and job shop
scheduling problems [32]. Furthermore, the ACO algorithm
has been used in similar scheduling problems in the cloud,
including scheduling virtual machines on cloud resources
[33], [34] and scheduling tasks on virtual machines with the
goal of load balancing the tasks on the virtual machines and
reducing the response time of the tasks [35], [36]. More-
over, the ACO algorithm is used for scheduling IoT tasks
on the cloud [37]. Additionally, the ACO algorithm has been
used for deadline-aware task scheduling for fog computing
in a tiered IoT infrastructure [38]. The proposed algorithm
focuses on maximizing the profits of a fog service provider
while considering the completion deadline constraints of the
IoT tasks.

In a search for task offloading of the workload of sensor
Si onto fog nodes fgj with the objective of minimizing the
response time, the k th ant chooses fog node fgj for task
offloading of the workload generated by sensor Si with the
probability given by Equation (11).

Pkij(t) =
(τij(t))α(ηij(t))β∑
s(τis(t))α(ηis(t))β

(11)

where α and β are heuristic constants; α ≥ 0 is a heuristic
parameter that controls the effect of the pheromone quantity
and β ≥ 1 is a heuristic parameter that determines the
importance of the task offloading quality. ηij(t) is a heuristic
function that represents the quality of task offloading and is
calculated using Equation (12).

ηij(t) =
loadj
Rij

(12)

where Rij is calculated using Equation (8) and loadj rep-
resents the load on the fog node j and is calculated using
Equation (10). Clearly, as Rj increases, the loadj decreases
and ηij(t) decreases. As a result, the probability of offloading
the computations of sensor i to fog node fgj will be small.
τ kij (t) represents the pheromone trail quantity for task

offloading for an ant k in iteration (t), and τ kij (t + 1) is the
pheromone trail of that task offloading for an ant k in iteration
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t + 1, determined using Equation (13).

τ kij (t + 1) = (1− ρ)τ kij (t)+ ρ1τ
k
ij (t) (13)

where 1τ kij (t) = 1/Rij and ρ is a constant that represents the
rate of pheromone evaporation, which simulates the effect of
the evaporation of the pheromones at each step.

Additionally, the pheromone trail is globally updated after
all ants have completed their possible task offloading, i.e., a
complete iteration. The global pheromone update is per-
formed using Equation (14).

τ kij (t + 1) = (1− ρg)τ kij (t)+ ρg1τ
k
ij (t) (14)

where 1τ kij (t) = 1/Lbest , Lbest is the best floading task
discovered, and ρg is a global evaporation rate.

The initial value of the pheromone trail is calculated using
Equation (15).

τ kij (0) =
Rij

Raverage
(15)

Algorithm 1 The Proposed ACO Task Offloading Algorithm
1: Initialize the parameters
α, β, ρ, ρg,Mants,Niter ,Nnodes,Nkλi, µij

2: Calculate Rij using Eq. (8)
3: Initialize the pheromone matrix τ kij (0)
4: Calculate ηkij(t) using Eq. (15)
5: while iter ≤ Niter do
6: Place all ants at the starting nodes randomly
7: for antk = 1 to Nk do
8: for Si = 1 to Nnodes do
9: Calculate Pkij(t) using Eq. (11)
10: antk chooses fgj for Si using the roulette method
11: Add the selected node to the taboo table of antk
12: end for
13: Update τ kij (t + 1) using Eq. (13)
14: end for
15: Compare with the previous best solution and update

the best solution
16: if current solution is the best then
17: Update τ kij (t + 1) using Eq. (14)
18: end if

iter = iter + 1
19: end while
20: Clear taboo table

Algorithm 1 shows the proposed meta-heuristic algorithm
using ACO to find an efficient task offloading for the IoT
sensors on the available fog nodes that guarantees that
the defined QoS constraints, specifically the response time,
are satisfied while considering the network characteristics,
the service time and the current load on the fog nodes. The
proposed algorithm starts by setting the values of the heuristic
parameters α, β, ρ, ρg, the number of ants Mants and set-
ting the maximum number of iterations Niter . Additionally,
the algorithm initializes the number of sensor nodes Nnodes,

the workload production rate of each sensor λi, and the fog
node service rate µij.
Step 2 calculates Rij the response time of fog node fgj using

Equation (8). Steps 3 and 4 initialize the initial pheromone
trail τ kij (0) and the task offloading heuristic η

k
ij(t) for each ant

antk using Equations (12) and (15). During each iteration,
each ant antk offloads the workload computation of sensor
Si to the fog node fgj with probability Pkij(t) calculated using
Equation (11). The selection of fog node fgj is performed
using the roulette wheel method [39]. The roulette wheel
method calculates the probability for each solution, and the
cumulative probabilities are arranged in ascending order.
A random number ∈ [0, 1] is generated and compared against
the calculated cumulative probabilities. Finally, the appropri-
ate solution that corresponds to the generated random number
is selected. Thismethod has been proven effective in selecting
potentially useful solutions and is frequently used in genetic
algorithms [40].

When an ant finishes all the task offloading of all the
sensors, the local pheromone trail matrix is updated using
Equation 13. After each iteration, the ACO algorithm updates
the global pheromone trail matrix τ kij (t) using Equation (14).
The algorithm iterates until the maximum number of itera-
tions is reached.

B. THE PROPOSED PSO TASK OFFLOADING ALGORITHM
PSO is a meta-heuristic optimization algorithm that is based
on a cooperating population of individuals, called a swarm,
of sizeNswarm. Each individual in the swarm, called a particle,
represents a solution that is a position in the search space.
A particle Pi in a D-dimensional search space is expressed
as a D-dimensional vector Pi = {pi1, pi2, . . . ., pid }. The
particles search randomly for a feasible solution to a given
problem. The search movement of each particle depends on
the local optimal of its historical search and the found global
optimal of all particles [41]. During the search process, each
particle, Pi, updates its new position, Xi(t + 1), based on
calculating the velocity, Vi(t+1), as shown in Equations (16)
and (17).

Vi(t + 1) = ω × Vi(t)+ C1 × α × (Pli − Pi)

+C2 × β × (Pg− Pi(t)) (16)

Pi(t + 1) = Pi(t)+ Vi(t + 1) (17)

where i = 1, 2, . . . ,Nswarm and t = 1, 2, . . . ., itermax is
the iteration number. ω is the initial velocity inertia weight,
which balances exploration and exploitation. If a large inertia
weight value is used at the beginning of the search process,
exploration is favored, whereas a smaller inertia weight value
facilitates more exploitation. C1 and C1 are learning coeffi-
cients. α and β are random numbers uniformly distributed
∈ [0, 1]. PSO was initially proposed for solving problems
in continuous domains. Since the scheduling of mobile task
offloading occurs in a discrete search space, PSO must be
modified to suit domain [42].
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1) DISCERETE PSO ALGORITHM
The position of particle pij represents the offloading of sensor
node Si to fog node fgj. The representations of the offloaded
sensor tasks and fog nodes are discrete. Figure 2 shows an
example of a particle encoding. In the example, the task of
sensor node S1 is offloaded to fog node fg3, that of S2 is
offloaded to fg1, that of S3 is offloaded to fg2, that of S4 is
offloaded to fg2, and that of S5 is offloaded to fg1.

FIGURE 2. An example of a particle encoding.

During each iteration, the particle position and velocity are
updated using Equations (16) and (17). However, each parti-
cle position value must be converted into a discrete numerical
value using Equation (18).

pij =

{
b|pij|c if 0 > pij ≤ Nnodes
b|pij|c%Nnodes otherwise

(18)

where Nnodes is the number of fog nodes and b|pij|c is the
ceiling of the absolute value of pij for particle pj.
The overall proposed PSO is shown in Algorithm 2. The

algorithm starts by initializing the maximum number of
iterations Niter , the velocity update parameters, including
α, β, andω, and the mutation probability Pmutation. Further,
the proposed PSO algorithm initializes the particle positions
Pi and velocities Vi to random values. Each particle is evalu-
ated through a fitness function that represents the quality of
the solution that the particle encoding expresses. the fitness
value is calculated using Equation (19).

Maximizef =
Nnodes∑
j=1

loadj
Rj

(19)

The higher the value of the fitness function is, the better
the solution. After calculating the fitness of each particle,
the local optimum of each particle is set. The best fitness
among the swarm is set as the global optimum. The algo-
rithm iterates for a defined number of iterations Niter . During
each iteration, each particle velocity and position is updated
using Equations (16) and (17), and each particle position is
converted to a discrete value using Equation (18). The PSO
algorithmmaintains the new local and global optima. Finally,
a randommutation is applied to each particle. In the mutation
process, the values of two randomnodes of a particle are inter-
changed to generate a new task offloading of the particles,
as shown in Figure 3. The mutation improves the local search
capability and maintains the diversity of the generated new
task offloading decision.

V. EXPERIMENTAL EVALUATION
This section presents the experiments conducted to eval-
uate the proposed ACO task offloading algorithm for

FIGURE 3. An example of particle mutation.

Algorithm 2 The Proposed Discrete PSO Algorithm
1: Set the parameters Niter ,NParticles, α, β, ω, andPmutation
2: Initialize each particle position Pi with random task

assignments
3: Initialize each velocity Vi with random values
4: Calculate the fitness function for particle Pi using

Eq. (19)
5: Set the local optimum Pli, best behavioral solution, for

each particle Pi
6: Set the global optimum Pg, best social solution for the

swarm
7: for each iter in Niter do
8: for each particle Pi in NParticles do
9: Calculate Vi(t) for each particle using Eq. (16)
10: Calculate Pi(t) for particle Pi using Eq. (17)
11: Convert Pi(t) to discrete values using Eq. (18)
12: Calculate the fitness function for particle Pi using

Eq. (19)
13: if current solution is the best among the previously

explored solutions of Pi then
14: Update the local optimum Pli
15: end if
16: if Pli < Pg then
17: Update the global optimum Pg = Pli
18: end if
19: Apply the mutation operator on particle Pi as fol-

lows:
20: for each nodej in the particle Pi do
21: if rand() < Pmutation then
22: nodek = random index
23: Mutation(nodek , nodej)
24: end if
25: end for
26: end for
27: end for

IoT-fog-cloud environments. A simulation is designed and
developed using MATLAB to evaluate the proposed ACO
task offloading algorithm. A simulation-based evaluation is
adopted because it allows the environment parameters to
be controlled and for the experiments to be repeated under
different scenarios and constraints. The following subsec-
tions discuss the test scenario implemented in the simula-
tion, the parameter setup, the evaluation criterion, and the
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evaluation of the proposedACO-based algorithm for effective
task offloading of IoT-fog-cloud environments against the RR
algorithm.

A. IoT-FOG TEST-CASE ARCHITECTURE
An IoT test-case scenario is used to test the effectiveness
of the proposed algorithm. The IoT-fog-cloud scenario con-
sists of three layers, in which the first layers are composed
of a large number of sensors. The sensors include three
different IoT sensors sensing different task data such as
temperature, traffic conditions, and surveillance video. 200-
2000 IoT sensors are randomly distributed within a range
of 100-300 meters of the fog nodes. Each sensor generates
250-1024KB data according to the sensor task. The tolerance
delay of the tasks are 100 milliseconds. The second layer
consists of 8-20 fog nodes that are used for data aggregation
and the processing of the data workload generated by the
first layer. It is assumed that on each fog node, there is a
number of virtual machines for task offloading, where each
virtual machine is used for offloading a certain class of IoT
application. Finally, the cloud layer consists of one data center
connected to the fog layer through the Internet.

B. PARAMETERS SETTING
The simulation was run on a PC with an
Intel Core i7-4510 CPU at 2.60 GHz and 8 GB of RAM.
In the experiments, the parameter settings are set to the values
described in Table 2. The parameter settings are obtained by
conducting several preliminary experiments.

TABLE 2. Parameter setting of the conducted experiments.

C. EVALUATION CRITERION
The experiments are conducted to evaluate the proposed
ACO task offloading algorithm in terms of several evaluation
metrics, namely, the average response time, the degree of

FIGURE 4. The average response time of the offloaded tasks.

imbalance, and the standard deviation of the load imbalance.
The degree of imbalance shows the imbalance among the
available fog nodes and is calculated using the following
equation:

DI =
Max(Rj)−Min(Rj)

Raverage
, j = 1, 2, . . . .,Nnodes (20)

The standard deviation of the response times of the
offloaded tasks is used to evaluate the load distribution among
the fog nodes, where a smaller value means highly balanced
nodes and is calculated using the following equation:

SD =

√∑
j(Rj − Raverage)2

Nnodes
(21)

D. EXPERIMENTAL RESULTS
The first test scenario shows the behavior of the proposed
algorithms for small number of fog nodes, Nnodes = 8. The
parameter settings are as follows: c = 1, λi = 30, and
µij = 200. Figure 4 shows the average response times of the
offloaded tasks for the proposed PSO and ACO offloading
algorithms with different numbers of sensors, and the pro-
posed algorithms are compared with the RR scheduler. In this
scenario, the average average response time increases as the
number of tasks is increased by adding more IoT sensors.
The RR scheduler violates the set tolerant delay 100ms. The
proposed ACO offloading algorithmmaintains lower average
response times than the PSO algorithm.

The next test scenario shows the behavior of the proposed
algorithms using larger number of fog nodes, Nnodes = 20,
and larger data rates, λi = 50. The experiment is set for one
application class c = 1, fog node service rate µij = 200.
Figure 5 shows that the proposed ACO offloading algorithm
maintains lower response times as the number of IoT sensors
increases, and does not violate the set tolerant delay.

Figure 6 shows the average response times of the
offloaded tasks during the iterations of a single run of
the proposed algorithm with the following settings: c = 3,
λi = 10 for c = 1, λi = 5 for c = 2, λi = 1 for
c = 3, Nnodes = 20, µij = 100 for c = 1, µij = 50 for
c = 2, and µij = 10 for c = 3. The average response
times of all the ants are recorded during each iteration.
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FIGURE 5. The average response time of the offloaded tasks.

FIGURE 6. The values of the objective function during a single run of the
proposed algorithm.

The convergence of the proposed ACO algorithm is faster
than that of the PSO algorithm: the best value is reached
immediately after iteration number 17. This result indicates
that the proposedACO algorithm explored the search space of
possible solutions and reached the best value in a reasonable
amount of time compared to the PSO algorithm.

In the following test scenario, three different sensors tasks
belonging to three different application classes, c = 3. Each
task has different data rates λi = 10 for c = 1, λi = 20 for
c = 2, λi = 40 for c = 3. The number of fog nodes is
Nnodes = 10. The service rate for each task is µij = 150 for
c = 1, µij = 100 for c = 2, and µij = 50 for c = 3. Figure 7
shows that the proposed ACO offloading algorithmmaintains
lower response times as the number of IoT sensors increases
compared to both the PSO and the RR algorithm. In this
scenario, both RR and PSO violates the set tolerant delay.
This scenario shows that the proposed ACO task offloading
algorithm is able to make the best offloading decision com-
pared to the proposed PSO algorithm.

Figure 8 shows the standard deviation of the response
times with increasing number of IoT nodes using the pre-
vious parameter settings. The standard deviation of the
response times is the variation among response times of all
offloaded tasks from the average response time. The fig-
ure clearly shows that the proposed ACO task offloading
algorithm enhanced the standard deviation compared to the
RR algorithms.

FIGURE 7. The average response time of the offloaded tasks.

FIGURE 8. The standard deviation of the response times on the fog nodes.

FIGURE 9. The degree of the imbalance of the offloaded tasks.

Figure 9 shows the degree of imbalance for the RR algo-
rithm and the proposed algorithm with increasing number
of IoT nodes using the same previous parameter settings.
The figure shows that the proposed ACO algorithm main-
tains fewer values. This means that the proposed algorithm
balances the workload over the fog nodes effectively.

VI. CONCLUSION AND FUTURE WORK
This paper is motivated by a smart city scenario in which
a large number of distributed IoT sensors produce a large
amount of data to be processed tomake decisions and perform
coordinated actions. Fog computing is presented as essential
in the smart city scenario because the fog provides a better
response time for IoT applications by allowing such appli-
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cations to take advantage of fog computing’s low latencies
rather than using the cloud for processing. A formal model
of IoT task offloading on the fog nodes is provided. The
formal model considers the network latency and the service
rate of the fog nodes. Furthermore, two nature-inspired meta-
heuristic task offloading algorithms, namely, ACO and PSO,
are proposed based on the provided formal model. The exper-
imental results show that the proposed ACO task offloading
algorithm provides a significant improvement in IoT appli-
cation response times and effectively balances the tasks over
the fog nodes.

In future work, this research can be extend in two ways.
First, a multi-objective optimization that includes power con-
sumption, communication cost, and computation cost will
be explored. Furthermore, future research will consider IoT
application that may involve a collaboration betweenmultiple
IoT sensors. As a result of such collaboration, there will be
dependencies between the IoT tasks produced by multiple
IoT sensors. In that case, the optimization objective should
consider the dependencies between the IoT tasks. Second,
considering a dynamic scenarios which considers dynamic
changes in the sensor nodes or the produced data rates. The
IoT sensor nodes can be non-stationary and mobility is intro-
duced. Further, the data production rate of the IoT sensor node
can be dynamic as well where adaptive sampling techniques
at the sensor level might produce dynamic data rate.
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