
Received February 5, 2020, accepted February 17, 2020, date of publication February 21, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975650

One Edge at a Time: A Novel Approach Towards
Efficient Transitive Reduction
Computation on DAGs
XIAN TANG 1, JUNFENG ZHOU 2, YAXIAN QIU2, XIANG LIU 1,
YUNYU SHI1, AND JINGWEN ZHAO1
1School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2School of Computer Science and Technology, Donghua University, Shanghai 201620, China

Corresponding author: Junfeng Zhou (zhoujf@dhu.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61472339 and Grant 61303040.

ABSTRACT Given a directed acyclic graph (DAG) G, G’s transitive reduction (TR) Gtr is the unique
DAG satisfying that Gtr has the minimum number of edges and has the same transitive closure (TC) as G.
TR computation has been extensively studied during the past decades and was used in many applications,
where the main problem is how to compute TR efficiently for large graphs. However, existing approaches
have either large space complexity or higher time complexity, which makes them cannot compute TR
efficiently on large dense graphs. We propose a novel approach for TR computation, which takes every
single edge as the basic processing unit, and utilizes existing reachability algorithms to test whether it
is redundant or not. In this way, we avoid the costly graph traversal operation of existing approaches.
We identify the performance bottleneck and propose a set of heuristics to sort edges, such that to reduce
the average processing cost of each edge. We show by experimental results that our approach works much
better than all the existing approaches, and can be faster than the state-of-the-art approach by more than two
orders of magnitude on large dense graphs.

INDEX TERMS Graph data management, directed acyclic graph, transitive reduction.

I. INTRODUCTION
Transitive reduction (TR) is a classical problem in graph
theory. Given a directed acyclic graph (DAG) G = (V ,E),
where V is the set of nodes and E the set of edges, G’s TR
is Gtr = (V ,E tr), where E tr is the set of edges of Gtr ,
which is the unique DAG that has the least number of edges
and same transitive closure (TC) as that of G [1]. Assume
that for ∀u, v ∈ V , u v(u 6 v) denotes that there
exists at least (does not exist) one directed path from u
to v, i.e., u can (cannot) reach v. Considering reachability
relationship, both G and Gtr satisfy that either u v or
u 6 v. For example, Figure 1(a) is a DAG excerpted from
the interaction network of Kyoto Encyclopedia of Genes and
Genomes,1 its TR is shown in Figure 1(b). The red dotted
arrows in Figure 1(a) are redundant edges. Here, we say an

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .
1http://www.genome.jp/kegg/

edge e = (u, v) is redundant if u can reach v through other
nodes, which means that removing this edge from G does not
change the TC of G. TR computation is to find and delete all
redundant edges from the given DAG G, such that to get the
unique DAG Gtr .
TR computation was one of the hot research issues dur-

ing the past decades [2]–[13] and was used extensively in
many applications [14]–[22] to simplify the computation or
analysis, such as TC computation, reachability, citation net-
work, social network, bioinformatics network and temporal
network, etc. For example, by computing the TR of citation
network, we may reveal the real cross-domain impact of a
paper, patent or court judgement, which cannot be observed
by the previous approach [14]. For another example, in [23],
the authors proposed to compress a DAG based on equiva-
lence relationship between nodes, the time complexity is as
high as O(|V |(|V | + |E|)) and cannot scale to large graphs.
After computing TR, however, we can simplify the equiv-
alence relationship [12], [13]. Given the TR of the input

38010 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2311-2860
https://orcid.org/0000-0001-6494-5319
https://orcid.org/0000-0002-6420-9298
https://orcid.org/0000-0002-5196-8148

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

FIGURE 1. DAG G and its TR Gtr , where the integer on the right of each
node v is v ’s topo-order.

DAG, the time complexity of performing the compression
based on simplified equivalence relationship can be reduced
to O(|V | + |E|).

However, for existing approaches, the cost of TR computa-
tion is high in both time and space.When considering only the
number of nodes, the best approach that computes TR using
matrix multiplication [7] has time complexity O(|V |2.3727)
and space complexityO(|V |2), therefore cannot scale to large
graphs. Considering this problem, researcher proposed sev-
eral approaches for TR computation based on graph traver-
sal [2], [3], [5], [11]–[13]. These approaches usually have
smaller space complexity, therefore can be used to process
larger graphs. The naive approach is DFS, which processes
each node v separately to find all redundant edges starting
from v. Although space complexity is O(|V |), DFS suffers
from the highest time complexityO(|V |(|V |+|E|)). To reduce
the time complexity, PTR [3] first decomposes the given
graph into k paths, then processes all nodes in descending
topological order to compute the TR. The time complexity
is O(|E| + k|V | + k|E tr |). Compared with the approach
that uses matrix multiplication [7], the space complexity is
reduced to O(k|V |). In practice, k could be as large as |V |,
which makes the space complexity of PTR degenerate to
O(|V |2) and cannot scale to large graphs. The most recent
approach is buTR [12], [13], which identifies the overlap
between TCs of nodes, and makes improvements by avoiding
processing the overlapping repeatedly. The time complexity
of buTR is O(|V | + |E| + d4|V |)), where d = |E|/|V | is
the average degree and 4 is the average number of visited
nodes for each processed node in computing, i.e., 4 is the
average size of non-overlapping part, or the average size of
TC difference. As d |V | = |E|, the average cost of processing
each edge by buTR is 4. Even though buTR was shown to be
much more efficient than previous approaches [12], [13], its
performance is dominated by the size of the non-overlapping
part, i.e., 4, which is small only when the given graph is

sparse. When the given graph becomes dense, the size of
non-overlapping part, i.e., 4, increases dramatically, and the
performance of buTR degenerates significantly.
Considering the above problems, we propose to compute

TR in a completely reverse direction. Different from exist-
ing approaches that compute TR based on graph traversal,
the basic idea of our approach is computing TR by processing
each edge separately without graph traversal. We make the
following contributions.
1) We propose a general framework that takes existing

algorithms for reachability queries answering as a plu-
gin to avoid expensive graph traversal operation when
computing TR. The space complexity isO(|V |), and the
time complexity is O(dθ |E|), where θ is the average
cost of answering a reachability query by the underly-
ing reachability algorithm.

2) We identify that the performance bottleneck of our
approach lies in the calling times of the underlying
algorithm to answer reachability queries. We then pro-
pose several heuristics to significantly reduce the call-
ing times of the underlying reachability algorithm, such
that our approach can scale to large and dense graphs.

3) We conduct rich experiments on both real and synthetic
datasets. The experimental results show that compared
with existing approaches, our algorithm works much
better on both sparse and dense graphs, and can scale
to large graphs.

The remain of this paper is organized as follows.
In Section II, we discuss the preliminaries and related work.
In Section III, we discuss the baseline approach for TR
computation, and discuss two optimizations in Section IV.
We show the detailed experimental results in Section V, and
conclude our work in Section VI.

II. BACKGROUND AND RELATED WORK
A. PRELIMINARIES
Given a directed acyclic graph (DAG) G = (V ,E), where V
is the set of nodes and E the set of edges, we use inG(u) =
{v|(v, u) ∈ E} to denote the set of in-neighbors of u in G,
and outG(u) = {v|(u, v) ∈ E} the set of out-neighbors of u.
We use in∗G(u) to denote the set of nodes in G that can reach
u where u 6∈ in∗G(u), and out

∗
G(u) the set of nodes in G that u

can reach where u 6∈ out∗G(u).
We use X = {1, 2, . . . , |V |} to denote a topological order

(topo-order) of G, which can be got by a topological sorting
(topo-sorting) on G. A topo-sorting of G is a mapping t :
V → X , such that ∀(u, v) ∈ E , we have tu < tv, where tu(tv)
is the topo-order of u(v) w.r.t. X . A topo-order X of G can be
got in linear time O(|V | + |E |) [3].
The transitive closure (TC) of G is G∗ = (V ,E∗), where

E∗ = {(u, v)|u, v ∈ V , v ∈ out∗G(u)}. For simplicity, we use
TC(v) to denote out∗G(v), which we call as the transitive
closure of v. G’s TR Gtr = (V ,E tr) is the unique DAG [1]
that has least number of edges and the same TCG∗ = (V ,E∗)
with G, satisfying E tr ⊆ E ⊆ E∗. Given an edge e = (u, v),
if u can reach v through other nodes, we say e is redundant.

VOLUME 8, 2020 38011

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

TABLE 1. Table of notations.

Therefore, each edge in E \ E tr is a redundant edge, and
each edge in E tr is not a redundant edge. We show important
notations in Table 1 for ease of reference.
Problem Statement: Given a DAG G, return its TR Gtr .

B. RELATED WORK
Existing approaches on TR computation can be generally
divided into two categories: (1) matrix multiplication [1], [7]
and (2) DAG traversal [2], [3], [5], [11]–[13]. We discuss the
details below.

1) MATRIX MULTIPLICATION
In [1], the authors proposed algorithms for TR computation
based matrix multiplication, and proved that both TR and TC
computation share the same time complexity.

Following this research direction, many works made
improvements on the time complexity of TR computation,
they try to make it close to O(|V |2). The best known algo-
rithm using matrix multiplication is CWO [7], which made
improvements on CW [24]. The time and space complexities
of CWO are O(|V |2.3727) and O(|V |2), respectively.

Obviously, given limited memory size, these algorithms
cannot scale to large graphs, due to higher time and space
complexities.

2) DAG TRAVERSAL
The naive approach to compute TR by DAG traversal will
process each node v separately. For the node v processed
in each iteration, we perform depth-first-search (DFS) or
breadth-first-search (BFS) from v to visit nodes in out∗G(v),
such that to find all redundant edges starting from v. After
performingDFS/BFS on all nodes, we get the TR Gtr . We call
the two approaches DFS and BFS, respectively. Even though
DFS and BFS reduce the space complexity to O(|V |), they
suffer from higher time complexity O(|V |(|V | + |E|)), which
makes them cannot scale to large graphs either.

To improve the time complexity for TR computation,
GK [11] processes all nodes in descending topo-order. For
each node v, it quickly computes TC(v) by the transitive
closures of v’s out-neighbors, which is used to quickly find
redundant edges. The time complexity is O(|V ||E tr |), which
is smaller than O(|V ||E|). However, as GK needs to use bit
vector to maintain the TC of each node, its space complexity
is as high as O(|V |2) and cannot scale to large graphs.

In [3], the authors proposed a path decomposition based
approach, namely PTR, for TR computation. The basic idea
is to first divide the given DAG into k paths, then process all
nodes in descending topo-order, during which it represents
each node’s TC by at most k nodes. For each processed node
v, PTR visits v’s child nodes in ascending topo-order. It finds
redundant edges starting from v based on the help of TCs of
v’s child nodes, and computes v’s TC incrementally. Assume
that the cost of checkingwhether an edge is redundant isO(1).
For each non-redundant edge starting from v, PTR needsO(k)
time to update the TC of v. Therefore, the time complexity
of PTR is O(|E| + k|V | + k|E tr |). For each node v, PTR
needs k nodes to maintain v’s TC, thus its space complexity
is O(k|V |). In practice, k could be as large as |V |, thus the
space complexity degenerates to O(|V |2), which still makes
PTR cannot scale to large graphs.

The most recent algorithm on TR computation is
buTR [12], [13], which makes improvements by avoiding the
processing of the overlapping between TCs of nodes. The idea
is based on the fact that if u v, then out∗G(u) ⊃ out∗G(v).
Therefore, if we first process v and remember out∗G(v), when
processing u, we do not need to visit nodes in out∗G(v).
That is, buTR avoids processing the overlapping part out∗G(v).
When processing u, buTR only visits the non-overlapping part
out∗G(u) \ out

∗
G(v). buTR processes all nodes in a bottom-up

manner. Its time and space complexities are O(|V | + |E| +
d4|V |) andO(|V |), respectively. For each node,4 is the aver-
age size of the non-overlapping part, i.e., |out∗G(u) \ out

∗
G(v)|.

It was shown in [12], [13] that buTR is much more efficient
than other existing approaches and can scale to large graphs
for TR computation. However, this is only true for sparse
graphs where4 is small. For graphs where4 becomes large,
such as dense graphs, buTR is not efficient anymore.
Summarization: Table 2 shows the comparison of several

algorithms on TR computation, from which we know that for
existing algorithms, buTR has the best time and space com-
plexities. As d |V | = |E|, the time complexity of buTR can
be represented as O(4|E|). Obviously, the performance of
buTR is dominated by the average size of the non-overlapping
part 4, which denotes the average processing cost of each
edge. Compared with buTR, our approach TR-O belongs to
neither ‘‘Matrix’’, nor ‘‘Traversal’’. As it processes each edge
independently without graph traversal, we put it into a new
category ‘‘Edge’’. As shown in Table 2, the processing cost
of each edge for our approach TR-O in the ‘‘worst’’ case is
θdSmax. From Table 2 it is difficult to tell which one is better,
as it shows the average cost for buTR and ‘‘worst’’ cost for
TR-O+, we will show in the experiment that the ‘‘average’’
processing cost of TR-O+ is much less than that of buTR,
especially when the graph becomes dense.
Other TR Algorithms: Besides the above two kinds of

approaches, there are many works that focus on other
aspects of TR computation. For example, [6] studied the
problem of approximate TR computation. Reference [10]
studied TR computation in parallel. Reference [9] studied
TR computation for dynamic graphs. References [2], [5]

38012 VOLUME 8, 2020

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

TABLE 2. Comparison of algorithms for TR computation.

proposed linear-time algorithm for TR computation based on
the assumption that the input DAG G is N -free, however,
a linear-time recognition algorithm for N -free graphs is still
an open problem, and G is usually not N -free in practice [5].
Reachability Index: During the past decades, researchers

have proposed many reachability indexes, which can be
used in TR computation to help check the redundancy of
each edge. Following [25], [26], the existing approaches are
classified into two categories: Label−Only and Label+G.
By Label−Only, it means that the index conveys the complete
reachability information, and the given query u? v can
be answered by comparing labels of u and v. By Label+G,
it means that the index covers partial reachability information,
and we may need to conduct DFS/BFS from u to check
whether u can reach v, if we cannot get the result by com-
paring labels of u and v.

The Label−Only approaches try to compress TC to get a
smaller index size to facilitate queries answering. The recent
work includes TF [27], DL [28], PLL [29] and TOL [30]. The
idea is to assign each node u a label Lu = {Lout (u),Lin(u)},
where Lout (u)(Lin(u)) is the out (in) label of u consisting of a
set of nodes that can reach (be reached by) u. Then, u? v
can be answered by computing the result of Lout (u)

⋂
Lin(v).

If Lout (u)
⋂
Lin(v) 6= ∅, then u v, otherwise u 6 v.

The Label+G approaches assign each node u a label Lu that
covers partial reachability information. The recent Label+G
approaches include GRAIL [31], [32], Yes-GRAIL [33],
FERRARI-G [34], FELINE [35], IP+ [25] and BFL+ [26].
Given a query u? v, if comparing the labels of u and v
cannot tell the result, Label+G algorithms need to perform
BFS/DFS to get the final answer.

Here, the usability of a reachability algorithm for checking
the redundancy of each edge lies in whether the reachabil-
ity index can be efficiently constructed. If the reachability
index cannot be constructed efficiently, it is meaningless to
use it for TR computation. For existing reachability indexes,
as Label−Only approaches need to compute the complete
reachability information, they usually consume much longer
time than Label+G approaches w.r.t. index construction.
In this paper, we adopt BFL+, which is a Label+G approach
and the index can be constructed more efficiently than other
Label+G approaches [26].

III. THE BASELINE ALGORITHM FOR TR COMPUTATION
According to the definition of TR, we need to identify all
redundant edges to get the TR. Assume that we can correctly
judge whether a given edge is redundant or not, the basic

idea of our approach is directly based on the definition. That
is, given a DAG G, we check whether each edge of G is
redundant or not, and delete all redundant edges from G to
return its TR Gtr .

Here, the key problem is how to checkwhether a given edge
is redundant or not. Our approach is based on the following
result.
Theorem 1: Given an edge e = (u, v), we say e is a

redundant edge iff there exists a node w ∈ outG(u),w 6= v,
such that w can reach v. �
Proof 1: According to the definition of redundant edge,

e is redundant iff there exists a node x(6= v), such that u
can reach x(x ∈ out∗G(u)) and x can reach v (v ∈ out∗G(x)).
We prove it from two aspects.

First, by w ∈ outG(u), we know that w ∈ out∗G(u). By w
can reach v, we know that v ∈ out∗G(w). Therefore, if there
exists a node w ∈ outG(u),w 6= v, and w can reach v, then e
is redundant.

Second, if e is redundant, it means that there exists a node
x(6= v), such that u can reach x(x ∈ out∗G(u)) and x can reach
v (v ∈ out∗G(x)). As u can reach x, we know that there exists at
least one node w ∈ outG(u), such that w can reach x. As x can
reach v, we know that w can reach v. That is, if e is redundant,
we know that there exists a node w ∈ outG(u),w 6= v, and w
can reach v.

Therefore, e is a redundant edge iff there exists a node
w ∈ outG(u),w 6= v, such that w can reach v. �
According to Theorem 1, we know that if we can correctly

identify the reachability relationship between two nodes, then
we can correctly tell whether a given edge is redundant or not.
This can be done by directly calling either one of the existing
reachability query algorithms.

Algorithm 1 TR-B (G = (V ,E))

1 construct a certain reachability index RI for G
2 E ← sortEdge(G)
3 while (¬ isEmpty(E) do
4 (u, v)← deQueue(E) /*remove an edge from E*/
5 if (isRedundant(u, v) = TRUE) then
6 delete (u, v) from G
7 Function sortEdge(G)
8 for each (u ∈ V) do
9 for each (v ∈ outG(u)) do

10 enQueue(E, (u, v))
11 return E
12 Function isRedundant(u, v)
13 for each (w ∈ outG(u),w 6= v) do
14 if (RI (w, v) = TRUE) then
15 return TRUE /*w v, and (u, v) is

redundant*/
16 return FALSE

As shown by Algorithm 1, we first construct a certain
reachability index RI in line 1, which is used to check the
reachability relationship between two nodes in isRedundant()
function. In line 2, we sort all edges according to a certain

VOLUME 8, 2020 38013

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

FIGURE 2. The statuses of the adjacency list of G in Figure 1.

metric, such that edges are processed in a special order. After
that, we process all edges one by one in lines 3-6. In each
iteration, we pick up an edge in line 4, then check whether
it is redundant or not in line 5. If the edge is redundant,
we delete it in line 6. In Algorithm 1, all edges are processed
in the order same as they are maintained in the adjacency
lists, as shown by the sortEdge() function. For each edge,
we check whether it is redundant or not by calling Function
isRedundant(), which works based on Theorem 1. Assume
that RI can correctly identify the reachability relationship
between two nodes, the correctness of Algorithm 1 for TR
computation can be guaranteed by Theorem 1 and the defini-
tion of TR.
Example 1: Assume that the adjacency list of G

in Figure 1(a) is show as the one in Figure 2(a). Without
loss of generality, assume that the edges are processed in
a top-down manner from left to right. The first processed
edge is (a, b). By Algorithm 1, we need to check whether
there exist a node x(6= b) in a’s out-neighbors {d, i, e, f },
such that x can reach b. After calling RI (x, b) four times,
we know that none of a’s out-neighbors can reach b, thus
(a, b) is a not a redundant edge. The second processed edge is
(a, d). Similarly, we need to check whether there exist a node
x(6= d) in a’s out-neighbors {b, i, e, f }, such that x can reach
d . After calling RI (x, d) three times to check the reachability
between b and d , i and d , and e and d , we find that e can
reach d , thus (a, d) is a redundant edge. The following edges
are processed similar. After processing all edges, we find all
redundant edges shown as the dotted arrows in Figure 1(a).
Then we delete them from G and get the TR Gtr of G shown
in Figure 1(b). �
Analysis: In Algorithm 1, we construct BFL+ [26] index

as RI , the time cost of index construction is O(s(|V | + |E|)),
where s is small user-given parameter. In line 2, we output
all edges to a queue, the cost is O(|V | + |E|). In lines 3-6,
we check for each edge, whether it is redundant or not. For
each edge (u, v), the time cost of checking its redundancy is

O(|outG(u)|θ), where θ is the cost of answering a reachability
query by RI (). Therefore, the cost of processing all edges
in the worst case is O(θ

∑
u∈V |outG(u)|

2) ≤ O(θdmax|E|),
where dmax = max{|outG(v)||v ∈ V }. Note that in lines 3-6,
when we find a redundant edge, we only need to mark it.
The deletion of all edges can be done after processing all
edges, and the time cost of deletion all redundant edges is
O(|V | + |E |). As usually in practice, s is a small integer
and dmax < θdmax, the time complexity of Algorithm 1 is
O(θdmax|E|).

For space complexity, the index size of BFL+ is O(s|V |),
the size of the queue E is O(|E|). In fact, we do not need to
maintain E during the computation, we only need to process
edges in the order as they are pushed into E . Since s is a small
integer, the space complexity of Algorithm 1 is O(|V |).

IV. OPTIMIZATION
Consider the time complexity of Algorithm 1 again. Given a
certain graph and a reachability approach, as the cost θ of
answering a reachability query by RI () and the number of
edges |E| cannot be changed, we know that for Algorithm 1,
the dominating factor that affect the performance is the call-
ing times of RI () function for each edge. For Algorithm 1,
the calling time of RI () for each edge (u, v) is |outG(u)| − 1.
And for G in Figure 1(a), Algorithm 1 calls RI () function
46 times to get the TR of G.

To reduce the calling times of RI () function to improve
the performance of TR computation, the basic idea of our
approach is sorting all the edges, such that the edges can be
processed in a certain order to avoid the unnecessary call of
RI () function. In this section, we discuss two kinds of sorting
techniques to make optimization.

A. TOPO-SORTING BASED PROCESSING ORDER
Given a DAG G, we can assign each node u a topo-order tu
by performing a topo-sorting on G. With the topo-orders of
all nodes, we have the following results.

38014 VOLUME 8, 2020

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

Theorem 2: Given two nodes u and v, if tu > tv, then u
cannot reach v. �
Proof 2: Assume that u can reach v, then there exists, from

u to v, at least one path p = v0, v1, v2, . . . , vi−1, vi(v0 = u ∧
vi = v), where each pair of adjacent nodes vj−1(j ∈ [1, i]) and
vj are the two nodes of edge (vj−1, vj). As tvj−1 < tvj , we know
that tu = tv0 < tvi = tv, which contradicts the assumption.
Therefore, if tu > tv, then u cannot reach v. �

According to Theorem 2, for a given edge (u, v), to check
whether it is redundant or not, we do not need to check
whether v can be reached from all nodes of outG(u) \ {v}.
Instead, we only need to check whether v can be reached from
nodes in outG(u) \ {v} satisfying topo-order < tv. To do this,
we need to first perform topo-sorting to assign each node a
topo-order. Then, edges need to be sorted in the order that
can utilize Theorem 2 to reduce the calling times of RI ().
Theorem 3: Given an edge e = (u, v), if ∀w ∈

outG(u)(w 6= v), tv < tw, then e is not a redundant edge. �
Proof 3: Assume that e is a redundant edge, then there

must exist at least one node w′ ∈ outG(u), such that w′ can
reach v. According to the proof of Theorem 2, we know
that tw′ < tv, which contradicts the assumption that ∀w ∈
outG(u)(w 6= v), tv < tw. Therefore, if ∀w ∈ outG(u)(w 6= v),
tv < tw, we know that e is not a redundant edge. �

According to Theorem 3, for a given edge e = (u, v),
if v has the smallest topo-order among u’s out-neighbors,
then e is not a redundant edge. Based on the above results,
we have Algorithm 2 for TR computation, where changes
over Algorithm 1 are marked with underlines. In line 8,
we perform topo-sorting to get the topo-order. In lines 10-11,
we push edges that have the same starting node into queue
E in ascending topo-order w.r.t. the ending node. After that,
we process all edges one by one in lines 14-17 by calling
isRedundant() function, which works based on Theorem 2
and Theorem 3.

It is worth noting that in Function isRedundant(), if (u,w)
is a redundant edge, we do not need to call RI (w, v) to check
whether w can reach v. The correctness is guaranteed by the
following result.
Theorem 4: Given a node u, assume that all nodes in

outG(u) = {v1, v2, . . . , v|outG(u)|} are sorted in ascending
topo-order, and (u, vk) is a redundant edge, where vk ∈
outG(u). When checking the redundancy of edge (u, vj),
where k < j ≤ |outG(u)|, we do not need to check whether
vk can reach vj. �
Proof 4: As (u, vk) is a redundant edge, according to The-

orem 1, we know that there exists a node vx ∈ outG(u)
satisfying that x < k and vx can reach vk . Therefore, if vk can
reach vj, we know that vx can reach vj. Since vx is processed
before vk , we do not need to check whether vk can reach vj.�
Example 2: Assume that the adjacency list of G

in Figure 1(a) is shown in Figure 2(a). To reduce the calling
times of RI (), we first perform topo-sorting in line 8 in Algo-
rithm 2. After that, the adjacency list is shown in Figure 2(b).
Then, we push edges that have the same starting node into
queue E in ascending topo-order w.r.t. the ending node.

Algorithm 2 TR-O (G = (V ,E))

1 construct a certain reachability index RI for G
2 E ←

::::::::::::
sortEdge-O(G)

3 while (¬ isEmpty(E) do
4 (u, v)← deQueue(E) /*remove an edge from E*/
5 if (

::::::::::::::::
isRedundant-O(u, v)= TRUE) then

6 delete (u, v) from G
7 Function sortEdge-O(G)
8

::::::
perform

::
a
::::::::::
topo-sorting

:::
on

::
G

9 for each (u ∈ V) do
10 for each (v ∈ outG(u) :

in
:::::::::
ascending

:::::::::
topo-order) do

11 enQueue(E, (u, v))
12 return E
13 Function isRedundant-O(u, v)
14 for each (w ∈ outG(u)::::::::

satisfying
::::::
tw < tv) do

15 if (RI (w, v) = TRUE) then
16 return TRUE /*w v, and (u, v) is

redundant*/
17 return FALSE

Consider a, the edges that start from a are pushed into E
in the order (a, b), (a, e), (a, d), (a, f), (a, i). To check their
redundancy, we first process edge (a, b). According to The-
orem 3, it is not a redundant edge. The second processed
edge is (a, e). According to Theorem 2, we only need to
check whether b can reach e. As b cannot reach e by calling
RI () function, we know that (a, e) is not a redundant edge.
The third processed edge is (a, d). By Theorem 2, we know
that we only need to check whether b or e can reachd . As e
can reach d , we know that (a, d) is redundant. The fourth
processed edge is (a, f). Since both b and d cannot reach f ,
we know that (a, f) is not a redundant edge. Note that when
processing (a, f), we do not need to check whether d can
reach f or not according to Theorem 4. The last processed
edge is (a, i). To check whether it is redundant or not, we need
to check whether b, e or f can reach i. As f can reach
i, we know that (a, i) is a redundant edge. The following
processing is similar. Compared with Algorithm 1 that needs
to call RI () 46 times to process all edges, RI () has been called
21 times in Algorithm 2. �
Analysis: Given a DAG G, the cost of performing

topo-sorting in line 8 of Algorithm 2 is O(|V | + |E|) [3].
Thus the cost of line 2 is O(|V | + |E|). Lines 3-6 enumer-
ate every edge and check whether it is redundant or not.
As we delete all redundant edges after processing all edges,
for each processed edge (u, v), we need to scan all nodes
vi ∈ outG(u) satisfying tvi < tv, and call RI () function
only if the edge (u, vi) is not a redundant edge. Therefore,
the time complexity of Algorithm 2 is O(θd trmax|E|), where
d trmax = max{|outGtr (v)||v ∈ V }. Besides, both Algorithm 1
and Algorithm 2 have the same space complexity.

B. DEGREE BASED PROCESSING ORDER
By performing topo-sorting, Algorithm 2 reduces the calling
times of RI () function. In Algorithm 2, all edges with the

VOLUME 8, 2020 38015

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

same starting node are clustered together, and are sorted in
ascending order w.r.t. the topo-orders of their ending nodes.
Therefore, edges starting with the same node are processed
together, and the processing cost will increase when the start-
ing node has many out-neighbors, i.e., TR-O works well only
when all nodes have small number of out-neighbors.
Example 3: Consider G in Figure 1(a). The four edges

starting from node j are processed together. The process-
ing order is (j, k), (j, l), (j,m) and (j, n). To process (j,m),
we need to call RI () two times to check whether k and l can
reach m. To process (j, n), we need to call RI () three times
to check whether k, l and m can reach n. Obviously, given a
node u, assume that there is no redundant edge starting from
u, Algorithm 2 will call RI () function |outG(u)| − 1 times to
process the last edge. And RI () will be called O(|outG(u)|2)
times to process all edges starting from u. �
Theorem 5: Given an edge e = (u, v), we say e is a

redundant edge iff there exists a node w ∈ inG(v),w 6= u,
such that u can reach w. �
Proof 5: According to the definition of redundant edge,

e is redundant iff there exists a node x, such that u can reach
x(x ∈ out∗G(u)) and x can reach v (v ∈ out∗G(x)), which also
means that u ∈ inG(x) ∧ x ∈ inG(v). Similar to the proof of
Theorem 1, we prove it from two aspects.

First, by w ∈ inG(v), we know that w ∈ in∗G(v). By u can
reach w, we know that u ∈ in∗G(w). Therefore, if there exists
a node w ∈ inG(v),w 6= u, and u can reach w, then e is
redundant.

Second, if e is redundant, it means that there exists a node
x, such that u can reach x(u ∈ in∗G(x)) and x can reach v
(x ∈ in∗G(v)). As x can reach v, we know that there exists at
least one node w ∈ inG(v), such that x can reach w. As u can
reach x, we know that u can reachw. That is, if e is redundant,
we know that there exists a node w ∈ inG(v),w 6= u, and u
can reach w.
Therefore, e is a redundant edge iff there exists a node w ∈

inG(v),w 6= u, such that u can reach w. �
According to Theorem 5, we know that for an edge e =

(u, v), if u cannot reach any parent of v, then e is not a
redundant edge. By combining Theorem 1 and Theorem 5
together, we have two different ways to check the redundancy
of each edge. That is, e = (u, v) is redundant iff either one of
the following conditions holds.

(C1) There exists a node w ∈ outG(u),w 6= v, such that
w can reach v, or,

(C2) There exists a node w ∈ inG(v),w 6= u, such that u
can reach w.

Given an edge e = (u, v), if we use the first condition
C1 to check the redundancy of e, we will need to call RI ()
function |outG(u)| − 1 times in the worst case. On the other
hand, if we use the second condition C2, we need to call
RI () function |inG(v)| − 1 times in the worst case. Therefore,
to further reduce the calling times of RI () function to improve
the overall performance, for each edge e = (u, v), we need
to first make comparison between |outG(u)| and |inG(v)|.

If |outG(u)| > |inG(v)|, then we should use the second con-
dition C2, otherwise use the first condition C1. For instance,
consider processing edge (j, l) in G of Figure 1(a). If we use
the first condition C1, we need to call RI () once to check
whether k can reach l. As a comparison, we do not need to
call RI () if we use the second condition C2.

When using the above idea to make optimization, it seems
that we do not need to sort all edges e = (u, v) in advance,
due to that we know |outG(u)| and |inG(v)|. However, if edges
are not sorted, we cannot reduce the redundant call of RI ()
as Algorithm 2 does. Furthermore, to facilitate processing
edges based on the second condition C2, we need to use the
inverse adjacency list, which also should be sorted already
after performing topo-sorting.
Definition 1: Given a node u, we divide u into two nodes,

u↑ and u↓, where u↑(u↓) is called the UP-node (DOWN-
node) of u considering only u’s in-neighbors (out-neighbors),
and d(u↑) = |inG(u)|(d(u↓) = |outG(u)|) is called the degree
of u↑(u↓).
By Definition 1, for all nodes in the given DAG G =

(V ,E), we have two sets of nodes, one is V↑ =

{v↑1 , v
↑

2 , ·, v
↑

|V |} containing only UP-nodes, the other is V↓ =

{v↓1 , v
↓

2 , ·, v
↓

|V |} containing only DOWN-nodes. Obviously,
first processing nodes with smaller degree means less calling
times to the RI () function.

Based on the above discussion, we have Algorithm 3 for
TR computation. Compared with Algorithm 2, the differ-
ences lie in functions sortEdge-O+() and isRedundant-O+().
In Function sortEdge-O+(), we first perform a topo-sorting.
Here, different with Algorithm 2 that only produces the sorted
adjacency list, Algorithm 3 produces both adjacency list and
inverse adjacency list, as shown in Figure 2(b) and (c). Then,
in line 10, we sort all the 2|V | nodes in V = V↑ ∪ V↓ in
ascending order w.r.t. node degrees. After that, in lines 11-19,
we push all edges into queue E by visiting nodes of V one
by one. In this way, for any pair of edges e1 = (u1, v1) and
e2 = (u2, v2), if e1 is pushed into E before e2, then we know
that min{|outG(u1)|, |inG(v1)|} ≤ min{|outG(u2)|, |inG(v2)|}.
That is, the calling times of RI () to process e1 guarantees to
be no more than that of e2, if there is no redundant edge. It is
worth noting that even though there are 2|V | nodes in V , and∑

v∈V d(v) =
∑

v∈V↑ |inG(v)| +
∑

v∈V↓ |outG(v)| = 2|E|,
we only push |E| edges into E , which can be guaranteed by
line 14 and 18.

After sorting all edges and push them into E , Function
isRedundant-O+() is used to check whether a given edge
e = (u, v) is redundant or not. In line 22, we determine to
use which condition to check e’s redundancy. If |outG(u)| >
|inG(v)|, we use condition C2 in lines 23-25 to check e’s
redundancy, otherwise, we use condition C1 in lines 27-29 to
check e’s redundancy.
Example 4: Assume that the adjacency list of G

in Figure 1(a) is shown in Figure 2(a). Algorithm 3 will
perform topo-sorting in line 8 and produce the adjacency
list and the inverse adjacency list in Figure 2(b) and (c),

38016 VOLUME 8, 2020

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

Algorithm 3 TR-O+ (G = (V ,E))

1 construct a certain reachability index RI for G
2 E ←

::::::::::::::
sortEdge-O+(G)

3 while (¬ isEmpty(E) do
4 (u, v)← deQueue(E) /*remove an edge from E*/
5 if (

:::::::::::::::::
isRedundant-O+(u, v)= TRUE) then

6 delete (u, v) from G
7 Function sortEdge-O+(G)
8 perform a topo-sorting on G
9 let V↑ = {v↑1 , v

↑

2 , ·, v
↑

|V |}, V
↓
= {v↓1 , v

↓

2 , ·, v
↓

|V |}

10 sort all nodes in V = V↑ ∪ V↓ in ascending degrees
11 for each (u ∈ V in ascending degrees) do
12 if (u ∈ V↑) then
13 for each (v ∈ inG(u) in descending topo-order)

do
14 if ((v, u) /∈ E) then
15 enQueue(E, (v, u))
16 if (u ∈ V↓) then
17 for each (v ∈ outG(u) in ascending topo-order)

do
18 if ((u, v) /∈ E) then
19 enQueue(E, (u, v))
20 return E
21 Function isRedundant-O+(u, v)
22 if (|outG(u)| > |inG(v)|) then
23 for each (w ∈ inG(v) satisfying tw > tv) do
24 if (RI (u,w) = TRUE) then
25 return TRUE /*u w, and (u, v) is

redundant*/
26 else
27 for each (w ∈ outG(u) satisfying tw < tv) do
28 if (RI (w, v) = TRUE) then
29 return TRUE /*w v, and (u, v) is

redundant*/
30 return FALSE

respectively. Then in line 10, it sorts all the 2|V | nodes
in V in ascending order w.r.t. their degrees. The result-
ing ordered list is ‘‘V = {o↓, a↑, d↓, f ↓, k↓, l↓,m↓,
n↓, b↑, c↑, e↑, f ↑, g↑, h↑, l↑, c↓, e↓, g↓, h↓, i↓, d↑, i↑, k↑,
m↑, b↓, n↑, j↓, a↓, j↑, o↑}’’. Then, we have the ordered edges
in E = {(d, j), (f , h), (k, o), (l, o), (m, o), (n, o), (a, b), (b, c),
(a, e), (a, f), (b, g), (j, l), (c, j), (c, k), (e, d), (e, n), (g, j),
(g, o), (h, i), (h, n), (i, j), (i,m), (a, d), (a, i), (j, k), (j,m),
(b, j), (j, n)}. After that, we are ready to process all edges.
Consider processing edge (a, i). Algorithm 2 will call RI ()
three times to check whether b, e and f can reach i. As a
comparison, due to |outG(a)| = 5 > |inG(i)| = 2 and
h ∈ inG(i), Algorithm 3 will call RI () once in lines 23-25 to
check whether a can reach h according to Theorem 5. As a
result, to process all edges in E , Algorithm 3 only needs to
call RI () 8 times. Specifically, no one of the non-redundant
edges needs to call RI () function, and each redundant edge
needs to call RI () only once. As a comparison, to process all

these edges, Algorithm 2 needs to call RI () 21 times, and the
number for Algorithm 1 is 46. �
Analysis: We discuss the time and space complexities of

Algorithm 3.
Definition 2: (Minimum Degree Cover Set (MDCS))

Given the set of all UP-nodes and DOWN-nodes V = V↑ ∪
V↓ ofG = (V ,E) sorted in ascending degrees, we say S ⊆ V
is a minimum degree cover set (MDCS) of V if the following
conditions hold.
1) S = {v1, v2, . . . , v|S|} consists of the first |S| nodes of

V ,
2)

⋃
v∈S adjEdges(v) = E ,

3)
⋃

v∈S\{v|S|} adjEdges(v) ⊂ E , where adjEdges(v) is
defined as Equation 1.

adjEdges(v) =
{
inG(v), v ∈ V↑

outG(v), v ∈ V↓
(1)

According to Definition 2, we only need to process
all edges adjacent to nodes in S for TR computation,
due to that

⋃
v∈S adjEdges(v) = E . Let dSmax =

max{|adjEdges(v)||v ∈ S} be the maximum degree for all
nodes in S, then we know that the calling times of RI ()
function to process any edge in Algorithm 3 is dSmax − 1 in
the worst case. For instance, for the sorted V in Example 4,
we know that S = {o↓, a↑, d↓, f ↓, k↓, l↓,m↓, n↓, b↑, c↑,
e↑, f ↑, g↑, h↑, l↑, c↓, e↓, g↓, h↓, i↓, d↑, i↑, k↑,m↑, b↓, n↑},
for which dSmax = 3. Thus for any edge, the calling times
of RI () function is at most twice in the worst case.

In Algorithm 3, the sorting operation in line 10 can be done
in linear time O(|V |) using radix sorting. In lines 14 and 18,
we use a hash map to check whether an edge is contained in
E or not, thus the cost is O(1). Since the cost of processing
each edge isO(θdSmax), the time complexity of Algorithm 3 is
O(θdSmax|E|). And Algorithm 3, Algorithm 2 and Algorithm 1
have the same space complexity.

TABLE 3. The comparison of time and space complexities.

We show the comparison of the time and space complexi-
ties of our approaches in Table 3, from which we know that
the three algorithms have the same space complexity. For time
complexity, as dSmax ≤ d trmax ≤ dmax, we know that TR-O+

should work best in practice. For G in Figure 1(a), the values
of d for the three algorithms in Table 3 are shown in the last
column.

V. EXPERIMENT
In this section, wemake comparison with existing approaches
for TR computation, including CWO [7], PTR [3], DFS,
and buTR [12]. We implemented all algorithms using C++
and compiled by G++ 6.2.0. All experiments were run on
a PC with Intel(R) Core(TM) i5-3230M CPU @ 3.0 GHz
CPU, 16 GB memory, and Ubuntu 18.04.1 Linux OS. For

VOLUME 8, 2020 38017

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

TABLE 4. Statistics of datasets, where d = |E |/|V | is the average degree of G, dmax = max{|outG(v)||v ∈ V }, d tr
max = max{|outGtr (v)||v ∈ V },

dS
max = max{|adjEdges(v)||v ∈ S} is the maximum degree for all nodes in the minimum degree cover set S.

algorithms that run ≥ 24 hours or exceed the memory limit
(16GB), we will show their results as ‘‘–’’ in the tables.
Datasets: Table 4 shows the statistics of 15 real datasets

and 9 synthetic datasets. For real datasets, the first five are
small datasets (|V | ≤ 100, 000) and are downloaded from
the same web page2. The following 10 datasets are large
ones (|V | > 100, 000). These datasets are usually used in
the recent works [12], [25]–[30], [32], [34], [35]. Among
these datasets, amaze is a metabolic network, agrocyc and
mtbrv are both graphs describing the genome and biochemi-
cal machinery of E. coli K-12 MG1655. xmark is an XMark
document, email3 is an email network. As indicated by [32],
go2 and 10go-unip4 (10go-uniprot) are the joint graphs
of Gene Ontology terms and the annotations file from the
UniProt5 database. uniprot150m2 (uniprotenc_150m) is a
DAG that is a subgraph of the RDF graph of UniProt, which
contain many nodes without incoming edges and few nodes
without outgoing edges. 05cit-Patent4 (05cit-Patent) and
cit-Patents2 (cit-Patents) are both citation networks with
out-degree of non-leaf nodes ranging from 10 to 30. LJ is
an online social network soc-LiveJournal13. go_uniprot2
(go_uniprot) is a DAG transformed from the joint graph
of Gene Ontology terms with the annotations file from the
UniProt. dbpedia6 is a knowledge graph Dbpedia. web is
a web graph web-Google.7 twitter7 is a large-scale social
network [36]. For these real datasets, the first 4 small datasets

2https://code.google.com/archive/p/grail/downloads
3http://snap.stanford.edu/data/index.html
4http://pan.baidu.com/s/1bpHkFJx
5http://www.uniprot.org/
6http://pan.baidu.com/s/1c00Jq5E
7https://code.google.com/p/ferrari-index/downloads/list

and three large datasets, including email, LJ and web, are
direct graphs initially. We transform each of them into a
DAG by coalescing each strongly connected component into
a node. Note that this can be done in linear time [37]. All other
datasets are DAGs initially. The statistics in Table 4 are that
of DAGs.

Besides real ones, we also generate 9 synthetic datasets
shown in Table 4. The synthetic datasets are used to test
the scalability of the algorithms on TR computation with the
change of the average degree and the number of nodes in
the graph. These datasets are generated as follows. We first
fix the number of nodes |V |. Then, we randomly generate
two integers between 1 and 1,000,000 representing two nodes
u and v. If u > v and edge (v, u) does not exist, then we
insert an edge from v to u; otherwise, we insert an edge (u, v),
if (u, v) does not exist. We perform this operation repeatedly
until the number of edges satisfies our requirement.

A. COMPARISON ON REAL DATASETS
Table 5 shows the running time of different approaches on TR
computation, from which we know that CWO cannot scale to
large graphs due to large space complexity.

Similar to CWO, PTR cannot compute TR successfully
on several datasets. The reason lies in that the time and
space complexities of PTR is determined by the number of
decomposed paths k and in practice, k is usually large that
approaches the number of nodes in the given graph. For exam-
ple, for amaze, 10go-unip and email, k > 0.8|V |, which
makes PTR cannot scale to large graphs, and is inefficient on
datasets it can process. When the given graph becomes large,
PTR fails to get the result in limited time due to large space
consumption.

38018 VOLUME 8, 2020

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

TABLE 5. Comparison of running time on real datasets (ms), where the number in the parentheses of each row of the last column is the index
construction time for reachability index of BFL+.

TABLE 6. Comparison of average processing cost for each edge on real
datasets, where for buTR, it means the average number of visited nodes
for each processed edge, and for other approaches, it means the average
number of calling times of the BFL+ algorithm for each processed edge.

An interesting thing is that even though DFS is proposed
earlier than PTR, it can work successfully on more datasets
than CWO and PTR. The reason lies in that DFS has linear
space complexity w.r.t. the number of nodes in the graph.
However, as DFS computes TR based on each node with
traversal, its performance is greatly affected by the size of the
average transitive closure |out∗G(·)|. When |out∗G(·)| increases,
such as for twitter where |out∗G(·)|/|V | = 0.15, DFS fails to
get the result in limited time.

The state-of-the-art approach buTR outperforms DFS on
most datasets, because it has linear space complexity and its
performance is not affected by the size of transitive closure.

As a comparison, our TR-B does not show better per-
formance even compared with DFS. TR-O works better
than TR-B, but it is still beaten by buTR on most datasets.
Even though, TR-O can work more efficient than both DFS
and buTR on cit-Patents dataset. This is because for the
cit-Patents dataset, there does not exist nodes with much
larger number of in- or out-neighbors than other nodes.

FIGURE 3. Impacts of degrees on the performance of buTR and TR-O+,
where the number of nodes |V | = 1, 000, 000, for buTR, the processing
cost means the average number of visited nodes for each processed edge,
and for TR-O+, it means the average calling times of the BFL+ algorithm
for each processed edge.

Compared with the state-of-the-art approach buTR, our
TR-O+ is more efficient. The reason is that by using a new
edge processing strategy, we can greatly reduce the average
processing cost of each edge, which can be further explained
by the average processing cost of each edge shown in Table 6.
From Table 6 we know that for each edge, the average calling
times of the BFL+ algorithm by TR-O+ is much less than
TR-B and TR-O. The number in Table 6 for buTR is the

VOLUME 8, 2020 38019

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

FIGURE 4. Impacts of the number of nodes on the performance of buTR
and TR-O+, where the average degree k = 5, for buTR, the processing
cost means the average number of visited nodes for each processed edge,
and for TR-O+, it means the average calling times of the BFL+ algorithm
for each processed edge.

average number of visited nodes for each edge. Even though
the units of buTR and TR-O+ are different, they are the basic
processing unit and can be used to explain the performance
difference to a large extent. For example, the average pro-
cessing cost of buTR is 50 times more than that of TR-O+,
and TR-O+ is 23 times faster than buTR for TR computation.

From Table 5 we know that for existing approaches,
buTR works much better than all the other existing ones,
which was also confirmed by [12], [13]. For our approaches,
TR-O+ works much better than the other two. Therefore,
in the following discussion, we only make comparison
between buTR and TR-O+ to show their scalability with the
change of graph size and density.

B. COMPARISON ON SYNTHETIC DATASETS
In this subsection, we make the comparison between the
state-of-the-art approach buTR and our TR-O+ on synthetic
datasets to show their scalability with the change of degree
and the number of nodes in the graph. The results are shown
in Figure 3 and Figure 4, from which we have the following
observations.

First, with the increase of the graph density by fixing the
number of nodes |V | = 1, 000, 000, TR-O+ achieves much
better scalability than buTR. As shown in Figure 3(a), when
the average degree k = 1, both buTR and TR-O+ can compute

TR efficiently, but with the increase of the average degree,
buTR needsmuchmore time than TR-O+ for TR computation.
When the average degree d ≥ 10, TR-O+ is more than two
orders of magnitude faster than buTR. The reason lies in that
for every single edge, the average processing cost of TR-O+

is much less than that of buTR, as shown in Figure 3(b). For
example, when k = 10, TR-O+ is 280 times faster than buTR
for TR computation, due to that the average processing cost
of buTR is 1,259 times more than that of TR-O+.

Second, with the increase of the number of nodes in the
graph by fixing the average degree k = 5, TR-O+ also
works much better than buTR on all datasets, as shown
in Figure 4(a). This can also be explained by Figure 4(b). For
example, for all datasets with the same degree k = 5, when
|V | = 1, 000, 000, the average processing cost of buTR is
67 times more than that of TR-O+, and TR-O+ is 16.8 times
faster than buTR. When |V | = 40, 000, 000, the average
processing cost of buTR is 71 times more than that of TR-O+,
and TR-O+ is 30 times faster than buTR.

VI. CONCLUSION
Considering that existing TR computation approaches are
inefficient with the increase of the graph density and size,
we propose a novel strategy that compute TR without graph
traversal. Our approach utilizes existing reachability algo-
rithms to check whether each edge in the given graph is
redundant or not, and propose several heuristics to signif-
icently reduce the calling times of the underlying reacha-
bility algorithm. In this way, our approach, namely TR-O+,
can efficiently compute TR with the increase of both the
graph density and size. Our experimental results show that
our approach TR-O+ is more efficient than the state-of-
the-art algorithm buTR on both real and synthetic datasets.
As an indication, for real datasets, TR-O+ is 23 times faster
than buTR on cit-Patents dataset. For synthetic dataset, our
TR-O+ is 280 times faster than buTR on 1M-10M dataset.

REFERENCES
[1] A. V. Aho, M. R. Garey, and J. D. Ullman, ‘‘The transitive reduction of a

directed graph,’’ SIAM J. Comput., vol. 1, no. 2, pp. 131–137, Jun. 1972.
[2] J. Valdes, R. E. Tarjan, and E. L. Lawler, ‘‘The recognition of series parallel

digraphs,’’ SIAM J. Comput., vol. 11, no. 2, pp. 298–313, May 1982.
[3] K. Simon, ‘‘An improved algorithm for transitive closure on acyclic

digraphs,’’ Theor. Comput. Sci., vol. 58, nos. 1–3, pp. 325–346, Jun. 1988.
[4] K. Simon, ‘‘Finding a minimal transitive reduction in a strongly connected

digraph within linear time,’’ in Proc. 15th Int. Workshop Graph-Theoretic
Concepts Comput. Sci. (WG), Castle Rolduc, The Netherlands, Jun. 1989,
pp. 245–259.

[5] M. Habib, M. Morvan, and J.-X. Rampon, ‘‘On the calculation of tran-
sitive reduction—Closure of orders,’’ Discrete Math., vol. 111, nos. 1–3,
pp. 289–303, Feb. 1993.

[6] P. Berman, B. DasGupta, and M. Karpinski, ‘‘Approximating transi-
tive reductions for directed networks,’’ in Proc. 11th Int. Symp. Work-
shop Algorithms Data Struct. (WADS), Banff, AB, Canada, Aug. 2009,
pp. 74–85.

[7] V. V.Williams, ‘‘Multiplying matrices faster than coppersmith-winograd,’’
in Proc. 44th Symp. Theory Comput. (STOC), New York, NY, USA,
May 2012, pp. 887–898.

[8] D. Gries, A. J. Martin, J. L. A. van de Snepscheut, and J. T. Udding,
‘‘An algorithm for transitive reduction of an acyclic graph,’’ Sci. Comput.
Program., vol. 12, no. 2, pp. 151–155, Jul. 1989.

38020 VOLUME 8, 2020

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

[9] J. A. L. Poutré and J. van Leeuwen, ‘‘Maintenance of transitive clo-
sures and transitive reductions of graphs,’’ in Proc. Int. Workshop
Graph-Theoretic Concepts Comput. Sci. (WG), Staffelstein, Germany,
Jun./Jul. 1987, pp. 106–120.

[10] P. Chang and L. J. Henschen, ‘‘Parallel transitive closure and transitive
reduction algorithms,’’ in Proc. 1st Int. Conf. Databases, Parallel Archit.,
Appl. (PARBASE), Miami Beach, FL, USA, Mar. 1990, pp. 152–154.

[11] A. Goralciková and V. Koubek, ‘‘A reduct-and-closure algorithm for
graphs,’’ in Proc. 8th Int. Symp. Math. Found. Comput. Sci., Olomouc,
Czech Republic, Sep. 1979, pp. 301–307, 1979.

[12] J. Zhou, S. Zhou, J. X. Yu, H.Wei, Z. Chen, and X. Tang, ‘‘DAG reduction:
Fast answering reachability queries,’’ in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), Chicago, IL, USA, May 2017, pp. 375–390.

[13] J. Zhou, J. X. Yu, N. Li, H. Wei, Z. Chen, and X. Tang, ‘‘Accelerating
reachability query processing based on DAG reduction,’’ VLDB J., vol. 27,
no. 2, pp. 271–296, 2018.

[14] J. R. Clough, J. Gollings, T. V. Loach, and T. S. Evans, ‘‘Transitive reduc-
tion of citation networks,’’ J. Complex Netw., vol. 3, no. 2, pp. 189–203,
Sep. 2014.

[15] V. Dubois and C. Bothorel, ‘‘Transitive reduction for social network analy-
sis and visualization,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
Compiegne, France, Sep. 2005, pp. 128–131.

[16] S. Klamt, R. J. Flassig, and K. Sundmacher, ‘‘TRANSWESD: Infer-
ring cellular networks with transitive reduction,’’ Bioinformatics, vol. 26,
no. 17, pp. 2160–2168, Jul. 2010.

[17] X. Tannier and P. Muller, ‘‘Evaluating temporal graphs built from texts via
transitive reduction,’’ J. Artif. Intell. Res., vol. 40, pp. 375–413, Feb. 2011.

[18] A. Pinna, S. Heise, R. J. Flassig, A. Fuente, and S. Klamt, ‘‘Reconstruc-
tion of large-scale regulatory networks based on perturbation graphs and
transitive reduction: Improved methods and their evaluation,’’ BMC Syst.
Biol., vol. 7, no. 1, p. 73, 2013.

[19] D. Bošnački, M. R. Odenbrett, A. Wijs, W. Ligtenberg, and P. Hilbers,
‘‘Efficient reconstruction of biological networks via transitive reduction on
general purpose graphics processors,’’ BMC Bioinf., vol. 13, no. 1, p. 281,
Oct. 2012.

[20] N. J. van Eck and L. Waltman, ‘‘Citnetexplorer: A new software tool
for analyzing and visualizing citation networks,’’ J. Inf., vol. 8, no. 4,
pp. 802–823, 2014.

[21] S. Hou, X. Huang, J. K. Liu, J. Li, and L. Xu, ‘‘Universal designated
verifier transitive signatures for graph-based big data,’’ Inf. Sci., vol. 318,
pp. 144–156, Oct. 2015.

[22] R. Jin, N. Ruan, S. Dey, and J. X. Yu, ‘‘SCARAB: Scaling reachability
computation on large graphs,’’ in Proc. SIGMOD, 2012, pp. 169–180.

[23] W. Fan, J. Li, X.Wang, andY.Wu, ‘‘Query preserving graph compression,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), Scottsdale,
AZ, USA, May 2012, pp. 157–168.

[24] D. Coppersmith and S. Winograd, ‘‘Matrix multiplication via arithmetic
progressions,’’ J. Symbolic Comput., vol. 9, no. 3, pp. 251–280, Mar. 1990.

[25] H. Wei, J. X. Yu, C. Lu, and R. Jin, ‘‘Reachability querying: An indepen-
dent permutation labeling approach,’’ VLDB J., vol. 27, no. 1, pp. 1–26,
May 2017.

[26] J. Su, Q. Zhu, H. Wei, and J. X. Yu, ‘‘Reachability querying: Can it be
even faster?’’ IEEE Trans. Knowl. Data Eng., vol. 29, no. 3, pp. 683–697,
Mar. 2017.

[27] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu, ‘‘TF-label: A
topological-folding labeling scheme for reachability querying in a
large graph,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), 2013,
pp. 193–204.

[28] R. Jin and G. Wang, ‘‘Simple, fast, and scalable reachability oracle,’’ Proc.
VLDB Endowment, vol. 6, no. 14, pp. 1978–1989, Sep. 2013.

[29] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Fast and scalable reacha-
bility queries on graphs by pruned labeling with landmarks and paths,’’
in Proc. 22nd ACM Int. Conf. Conf. Inf. Knowl. Manage. (CIKM), 2013,
pp. 1601–1606.

[30] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, ‘‘Reachability queries on large
dynamic graphs: a total order approach,’’ in Proc. Int. Conf. Manage. Data
(SIGMOD), Snowbird, UT, USA, Jun. 2014, pp. 1323–1334.

[31] H. Yildirim, V. Chaoji, and M. J. Zaki, ‘‘Grail: Scalable reachability
index for large graphs,’’ Proc. VLDB Endowment J., vol. 3, nos. 1–2,
pp. 276–284, 2010.

[32] H. Yıldırım, V. Chaoji, and M. J. Zaki, ‘‘GRAIL: A scalable index
for reachability queries in very large graphs,’’ VLDB J., vol. 21, no. 4,
pp. 509–534, Sep. 2011.

[33] Z. Zhang, J. X. Yu, L. Qin, Q. Zhu, and X. Zhou, ‘‘I/O cost minimization:
Reachability queries processing over massive graphs,’’ in Proc. 15th Int.
Conf. Extending Database Technol. (EDBT), Berlin, Germany, Mar. 2012,
pp. 468–479.

[34] S. Seufert, A. Anand, S. Bedathur, and G. Weikum, ‘‘FERRARI: Flex-
ible and efficient reachability range assignment for graph indexing,’’ in
Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), Brisbane, QLD, Australia,
Apr. 2013, pp. 1009–1020.

[35] R. R. Veloso, L. Cerf, W. M. Jr, and M. J. Zaki, ‘‘Reachability queries in
very large graphs: A fast refined online search approach,’’ in Proc. 17th Int.
Conf. Extending Database Technol. (EDBT), Athens, Greece, Mar. 2014,
pp. 511–522.

[36] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, ‘‘Measuring
user influence in Twitter: The million follower fallacy,’’ in Proc. 4th Int.
Conf. Weblogs Social Media (ICWSM), Washington, DC, USA, May 2010,
pp. 1–8.

[37] R. Tarjan, ‘‘Depth-first search and linear graph algorithms,’’ SIAM J.
Comput., vol. 1, no. 2, pp. 146–160, Jun. 1972.

XIAN TANG was born in Weifang, Shandong,
China, in 1978. She received the B.S. and M.S.
degrees in computer science fromYanshanUniver-
sity, in 2002 and 2006, respectively, and the Ph.D.
degree in computer applications from the Renmin
University of China, Beijing, China, in 2011.

From 2011 to 2018, she was a Lecturer with
Yanshan University. Since 2019, she has been an
Associate Professor with the School of Electronic
and Electrical Engineering, Shanghai University

of Engineering Science, Shanghai. Her research interests include query
processing and optimization on graph data and semi-structured data, and
flash based databases.

JUNFENG ZHOU was born in Xi’an, Shanxi,
China, in 1977. He received the B.S. and M.S.
degrees in computer science fromYanshanUniver-
sity, in 1999 and 2002, respectively, and the Ph.D.
degree in computer applications from Renmin
University of China, Beijing, China, in 2009.

From 2009 to 2017, he was a Professor with
YanshanUniversity. Since 2017, he has been a Pro-
fessor with the School of Computer Science and
Technology, Donghua University, Shanghai. His

research interests include information retrieval techniques, query processing
on semi-structured data and graph data, and optimization.

YAXIAN QIU was born in Anyang, Henan, China,
in 1997. She received the B.S. degree from
Yanshan University, in 2019.

Since 2019, she has been a Graduate Student of
Donghua University, Shanghai, China. Her current
research interest includes graph data management.

XIANG LIU was born in Zhenjiang, Jiangsu,
China, in 1972. He received the B.Sc. degree from
Nanjing Normal University, the M.Eng. degree
from Jiangsu University, and the Ph.D. degree
from Fudan University.

He is currently an Associate Professor and the
Director of the Computer Department, School
of Electronic and Electric Engineering, Shanghai
University of Science Engineering, Shanghai,
China. His current research interests include med-

ical image analysis, biological image processing, and pattern recognition.

VOLUME 8, 2020 38021

X. Tang et al.: One Edge at a Time: Novel Approach Towards Efficient Transitive Reduction Computation on DAGs

YUNYU SHI was born in Yanzhou, Shandong,
China, in 1982. She received the B.S. and M.S.
degrees in computer science from the East China
University of Technology, in 2004 and 2007,
respectively, and the Ph.D. degree in computer
applications from Shanghai University, Shanghai,
China, in 2012.

From 2012 to 2014, she was a Postdoctoral
Researcher with Shanghai Jiao Tong University.
Since 2014, she has been a Lecturer with the

School of Electronic and Electrical Engineering, Shanghai University of
Engineering Science, Shanghai. Her research interests include image and
video processing and analysis, video compression, and quality assessment.

JINGWEN ZHAO received the B.Eng. degree
from the East China University of Science and
Technology, in 2013. She received the Ph.D.
degree from the School of Computer Science,
Fudan University.

She is currently a Faculty Member with the
Computer Department, School of Electronic and
Electrical Engineering, Shanghai University of
Science Engineering, Shanghai, China. Her cur-
rent research interests include biological image

processing, medical image analysis, and pattern recognition.

38022 VOLUME 8, 2020

