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ABSTRACT A novel classifier for face recognition using an improved probabilistic collaborative repre-
sentation named IPCR is proposed in this paper. The purpose of this paper is to improve the accuracy
of face recognition. The testing sample is assumed to be linearly combined by a part of training samples
in feature space. There is two-phase framework in IPCR. In the first phase, an adjusted parameter of the
nearest neighbors of the samples is chosen for classification. In the second phase, a linear combination of
the features and the sparse coefficients are used for new patterns. In the process of two-phase framework,
the weight matrix is obtained according to the distance between all the training samples and each testing
sample, and then it is applied to weight probabilistic collaborative representation coefficients. The kernel
trick is implemented for the high-dimensional nonlinear information instead of linear information of data to
improve the class separability. The second classifier named KPCR uses a kernel probabilistic collaborative
representation for face recognition. Several renowned face databases, e.g., AR, GT, PIE, FERET, and
LFW-crop are used for evaluating the performances of the proposed classifiers. The experimental results
demonstrate that the proposed classifiers outperform the collaborative representation-based classifica-
tion (CRC), the probabilistic collaborative representation-based classifier (ProCRC), and the other state-
of-the-art classifiers in recognition accuracy.

INDEX TERMS Computer vision, face recognition, sparse representation, probabilistic collaborative
representation.

I. INTRODUCTION
Object recognition is a fundamental problem of computer
vision and machine learning. Sparse coding is derived
from the theory of image compressive sensing, which
has been widely applied in many fields [1]–[4]. Sparse
representation-based classification (SRC) [5], [6] was pro-
posed by Wright for the first time, which has shown promis-
ing performance on face recognition in the past few years.
The sparsity constraint on representation coefficients is a key
point in robust classification. However, Zhang et al. found
that the sparsity can be further improved when applying all
training samples collaboratively to represent a testing sam-
ple. Moreover, they used l2 norm regularization instead of
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l1 regularization to solve the coefficients, and proposed a
collaborative representation based classification (CRC) algo-
rithm [7], [8]. Due to the simplicity and effectiveness of CRC,
it has attracted extensive attention and has been successfully
applied in many pattern recognitions. Cai et al. analyzed the
classification mechanism of CRC from a probabilistic view-
point and proposed Probabilistic collaborative representation
based classification (ProCRC) [9]. Xu et al. proposed a two-
phase testing sample sparse representation (TPTSR) [10], dif-
fering from the original SRC but internally borrowed the idea
from sparse representation and made coarse to fine classifica-
tion decisions for the testing sample. Akhtar et al. augmented
a dense collaborative representation with an efficiently
computed sparse representation and proposed a sparsity
augmented collaborative representation based classification
(SA-CRC) [30]. Motivated by observation in biological
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founds, Peng et al. proposed locality constrained collabora-
tive representation (LCCR) [31] which can accurately and
robustly identify various occlusion and corruption issues.
Additionally, truncated collaborative representation based
classification (TCRC) [32], squared and fused versions of
SRC and CRC [33], kernel sparse representation to perform
coarse-to-fine recognition (KCF) [34] proposed by Zeng et al.
also show great competitiveness for classification. At present,
these methods are highly represented in the fields of face
recognition and sparse representation.

In this paper, an improved probabilistic collaborative rep-
resentation (IPCR) for face recognition is proposed.We adopt
two-phase framework and extend the idea of spatial weight to
reconstruct the testing sample. The regularization of ProCRC
is weighted by the spatial distance between each training
sample and the testing sample, which makes the contribution
of each training sample to represent the testing sample more
precisely [11]–[13].

The first phase of IPCR linearly combines the overall train-
ing samples with sparse coefficients to reconstruct the testing
sample and exploits the representation ability of each training
sample in order to select the M nearest neighbors. The M
nearest neighbors of the testing sample form a determined
subspace from all training samples. The labels of M nearest
neighbors are used as candidates for the testing sample label,
so the classification problem becomes to determine the class
of the testing sample from relatively smaller candidates. This
is very effective for accurate classification in the second
phase.

The second phase of IPCR uses M nearest neighbors to
represent the testing sample to obtain the sparse coefficients.
Then, linearly combine the training samples of each class
with its sparse coefficients to reconstruct the testing sample
separately. The errors between the reconstructed results of
different classes and the test sample are calculated. Ulti-
mately classify the testing sample into the minimum error
class.

The second classifier for face recognition named KPCR
is proposed. We adopt the kernel trick based on IPCR for
the high-dimensional nonlinear information instead of lin-
ear information of data to improve the class separability.
Then, the same weighting and two-phase methods as IPCR
are used to classify the testing sample. Finally, the testing
sample is definitely divided into the class with the minimum
error.

Two new classifiers IPCR and KPCR are contributed.
Additionally, a large number of face experiments are con-
ducted, and the testing results show that our methods are
very competitive in terms of the recognition accuracy in
comparison to some existing classifiers in the literature.

The remainder of this paper is organized as follows:
Section 2 describes the IPCR method. Section 3 intro-
duces our KPCR. Section 4 analyses our proposed methods.
In Section 5, several experiments are carried on the public
face databases to evaluate the performance of the proposed
classifiers. Finally, the conclusion is discussed in Section 6.

FIGURE 1. Motivation: ProCRC denoted that y1 has a smaller sum of
e2-norm-coefficients, and is more likely to be a face image than y2.
We also find that y1 has a smaller sum of distances than y2. It means that
sums of e2-norm-coefficients and distances are both useful for
classification.

II. IMPROVED PROBABILISTIC COLLABORATIVE
REPRESENTATION (IPCR)
In this section, we will present the details of our proposed
IPCR. Supposed that there is a date set with n training samples
Y = {yi}ni=1 in Rd (d is the dimension of the sample) and
C classes. If a training sample yi is from jth class (j =
1, 2, . . . ,C), we take j as the class label of the yi.

A. MOTIVATION
To explain the motivation of our method, we give an exam-
ple in Fig. 1. ProCRC [9] also gives a similar example,
but ProCRC only denoted that the smaller sum of e2-norm-
coefficients is helpful for classification. In this paper, we also
find that the smaller sum of distances is useful, which means
that sums of e2-norm-coefficients and distances are both
helpful for classification.Motivated by this, we propose a new
model

P (l (x) ∈ lY ) ∝ exp(−λ||Wα||22), (1)

where λ is a constant, l (x) denotes the label of x,
P (l (x) ∈ lY ) is higher when the sum of e2-norm-coefficients
is smaller, and W is a matrix of distances.

W =


‖x − y1‖2 0

. . .

0 ‖x − yn‖2

 (2)

For kth class, we get its probability as

P (l (x) = k)

= P (l (x) ∈ lY ) · P (l (x) = k|l (x) ∈ lY )

∝ exp
(
−

(
||x − Yα||22 + λ||Wα||

2
2 + γ ||Yα − Ykαk ||

2
2

))
,

(3)

where γ is a constant. Next, wemaximize the joint probability
P (l (x) = k) k = 1, 2, · · · ,C as

max
∏

k
P (l (y)=k)∝max exp

(
−

(
||x−Yα||22+λ||Wα||

2
2

+
γ

C

∑C

c=1
||Yα − Ycαc||22

))
(4)
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B. THE FIRST PHASE OF IPCR
The first phase uses the linear combination [14]–[18] of all
training samples to represent the testing sample and deter-
mines theM nearest neighbors that are the most similar to the
testing sample. The testing sample x can be approximately
calculated as Yα, where the size of Y is d × n, and α is
the sparse coefficient which has the size n × 1. We use a
spatial distance between each training sample and the testing
sample x to weight regularization of ProCRC [9], and the
sparse coefficient α for linear combination can be solved by
regularization of l2− norm.

α̂ = arg min
α

(
‖x − Yα‖22 + λ ‖Wα‖

2
2

+
γ
C

∑C
c=1 ||Yα − Ycαc||

2
2

)
, (5)

where α̂ = [α1, . . . , αn]T , W is a weighted diagonal
matrix, λ, γ are constants, C is the total number of classes,
Ycαc is a matrix composed of the training samples from the
cth class.

Then, the sparse coefficient α̂ can be recovered in a closed-
form solution by applying the ordinary least squares tech-
nique.

α̂ = (Y TY + λW TW +
γ

C

∑C

c=1
Ȳ
′T
c Ȳ ′c)

−1
Y T x, (6)

where Y ′c be a matrix which has the same size as Y , while
only the samples of the cth class will be assigned to Y ′c at
their corresponding location in Y , Y ′c = [0 . . . ,Yc, . . . , 0],
Ȳ ′c = Y − Y ′c.

ei = ||x − yiαi||22 (7)

When the testing sample x is represented, the represen-
tation ability of the ith training sample is shown as yiαi.
We can exploit Eq. (7) to calculate the parameter ei. It can
be regarded as a measurement of the distance between yi
and x. We consider that the smaller ei, the larger contribu-
tion of the ith training sample in representing the testing
sample x, and vice versa. According to ei, we determine the
M training samples with the greatest contribution, named
M nearest neighbors of the testing sample, denoted as Ỹ ,
Ỹ = {ỹi}

M
i=1. If a nearest neighbor ỹi comes from the jth

(j = 1, 2, . . . ,C) class, we will use the j as the label of
this nearest neighbor ỹi. Obviously, Ỹ is a subspace in Y .
If Ỹ does not contain the nearest neighbor from the rth
class, testing sample x will not be ultimately classified into
rth class.

C. THE SECOND PHASE OF IPCR
The second phase uses the selectedM nearest neighbors of the
testing sample to get sparse coefficients. Then, the training
samples of each class with its sparse coefficients are lin-
early combined to represented the testing sample separately.
Finally, we classify the testing sample x based on the rep-
resented result. The testing sample x can be approximately
calculated as Ỹβ, Ỹ ∈ Rd×m, β ∈ Rm×1. Similar to Eq. (5),

we get the parameter β as follows.

β̂ = arg min
β

(
||x − Ỹβ||

2
2 + λ||W̃β||

2
2

+
γ

L

∑L

l=1
||Ỹβ − Ỹlβl ||

2
2

)
, (8)

where β̂ =
[
β1, . . . , βM

]T , W̃ is a weighted diagonal matrix
and λ, γ are positive constants. L is the number of all classes
in Ỹ , Ỹlβl is a matrix composed of the training samples from
the lth class.

W̃ =


‖x − ỹ1‖2 0

. . .

0 ‖x − ỹM‖2

 . (9)

where ỹ1, ỹ2, . . . , ỹM are the columns of Ỹ matrix. Then,
the sparse vector β̂ can be recovered in a closed-form solu-
tion.

β̂ = (Ỹ T Ỹ + λW̃ T W̃ +
γ

L

∑L

l=1
¯̃Y
′T
l
¯̃Y ′l )
−1
Ỹ T x, (10)

where Ỹ ′l be a matrix which has the same size as Ỹ matrix,
while only the sample of Ỹl will be assigned to Ỹ ′l at their

corresponding location in Ỹ , Ỹ ′l = [0 . . . , Ỹl, . . . , 0],
¯̃Y ′l =

Ỹ−Ỹ ′l .
The M nearest neighbors of the testing sample come from

different sample classes. We calculate the sum of the contri-
bution values of the nearest neighbors in each class separately
to classify x. For instance, all nearest neighbors from the hth
class in Ỹ can be denoted as ỹr , . . . , ỹt , and the sum of their
contribution values, Sh can be shown as follows.

Sh = ỹrβr+ · · ·+ỹtβt (11)

We use the following Eq. (12) to calculate the residual
between Sh and x. A small residual Sh means that the hth class
has a great contribution in representing x, and then the testing
sample is divided into the class with the smallest residual.

Rh = ‖x − Sh‖22 (12)

In summary, the main steps of the proposed IPCR are as
follows.

Input: Training data Y ={yi}ni=1, the class labels
(1, 2, . . . ,C), testing sample x in Rd , the number of nearest
neighbors M , and the parameters λ, γ .

Step 1: Calculate the weighted diagonal matrix according
to Eq. (2), select M the nearest neighbors for testing sample
x by using the first phase Eq. (6), (7).
Step 2: Obtain W̃ of the M nearest neighbors according

to Eq. (9), and use the second phase Eq. (10) to get the
parameter β̂.

Step 3: Compute the residual of each class in theM nearest
neighbors according to Eq. (12).

Step 4: Classify the testing sample into the class that has
the smallest residual.

Output: The x class label.
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III. KERNEL BASED PROBABILISTIC COLLABORATIVE
REPRESENTATION (KPCR)
Based on the kernel concept, KPCR first maps the original
feature to nonlinear high-dimensional feature and uses the
high-dimension nonlinear information instead of the linear
information to improve the class separability. Then, the first
phase of KPCR determinesM nearest neighbors of the testing
sample according to the deviation between the testing sample
and the represented result of each training sample. The second
phase of KPCR represents the test sample x by exploiting
the linear combination of the M nearest neighbors and then
obtains the sparse coefficients.Moreover, calculate the results
of the reconstructed testing sample for the different classes,
and divide the testing sample into the class with the mini-
mum error. In the process, the diagonal matrix based on the
distance between each training sample and the testing sample
in high-dimensional space is used to weight the regularization
of the KPCR [19]– [21].

A. KERNEL TRICK
Appropriate selection of a kernel function can reflect similar-
ities between samples, the kernel trick uses a linear method
to get its nonlinear counterpart without calculating the map-
ping explicitly. In this paper, the Gaussian radial basis func-
tion (RBF) kernel is used, which can be written as

k
(
x, x ′

)
= φ (x)T φ

(
x ′
)
= exp

(
−δ||x − x ′||22

)
, (13)

where δ > 0 is the parameter of RBF kernel, x and x ′ are two
original data points. In the kernel method, we use function
k(∗, ∗) to convert to the feature space, but φ(∗) is unclear.

B. THE FIRST PHASE OF THE KPCR
The main purpose of the first phase is to determine the M
nearest neighbors that are most similar to the testing sample.
Assume that there is a nonlinear feature mapping function
φ (.) : Rd → Rq (d � q), which maps the testing sample x
and training dataset Y into a high dimensional feature space
as

x → φ (x)

Y → φ (Y ) and φ (Y ) = [φ (y1) φ (y2) , . . . , φ (yn)]

In this part, based on the distance between φ (x) and
φ (yi) (i = 1, 2 . . . , n) data points in the high-dimensional
feature, the regularization term is weighted to obtain the
sparse parameter α as follows.

α̂ = arg min
α

(
||φ (x)− φ (Y ) α||22 + λ||Wα||

2
2

+
γ

C

∑C

c=1
||φ (Y ) α − φ (Y )cαc||

2
2

)
(14)

W =


‖φ(x)− φ (y1)‖2 , 0

. . .

0 ‖φ(x)− φ (yn)‖2

 ,
(15)

where, W is the weighted parameter, ‖φ (x)− φ (yi)‖2 =
[k (x, x)+ k (yi, yi)− 2k (yi, x)]1/2. φ (Y )cαc is a matrix
composed of the training samples from the cth class.
Then, the α̂ can be recovered in a closed-form solution.

α̂ = (K + λW TW +
γ

C

∑C

c=1
K̄ ′c)
−1
k, (16)

where, K = φ (Y )Tφ (Y ) ∈ Rn×n is the Gram matrix with
Ki,j = k

(
yi, yj

)
. k = (k (y1, x) , k (y2, x) , . . . , k(yn, x))T ∈

Rn×1. Let K ′c be a matrix which has the same size as K . Kc
is the Gram matrix of the samples in cth class, and only Kc
will be assigned to K ′c at their corresponding location in K ,
K ′c = [0 . . . ,Kc, . . . , 0], K̄ ′c = K − K ′c. According to Eq.
(16), sparse parameter α̂ is obtained. We can calculate the
deviation ei from the ith training sample representation.

ei = ||φ (x)− φ (yi) αi||22
= k (x, x)+ α2i k (yi, yi)− 2αik (yi, x) (17)

The testing sample φ(x) is represented as φ (yi) αi in the ith
training sample, the contribution can be estimated by devia-
tion ei. The smaller the ei, the larger the contribution of the ith
training sample, when the testing sample φ(x) is represented,
and vice versa. According to ei, the M training samples
with the greatest contribution are selected, called M nearest
neighbors, expressed as φ′ (Y ) , φ′ (Y ) =

{
φ
(
y′i
)}M
i=1. If the

nearest neighbor φ
(
y′i
)
comes from the jth (j = 1, 2, . . . ,C)

class, wewill determine the j as the label of this nearest neigh-
bor φ

(
y′i
)
. If φ′ (Y ) does not contain the nearest neighbor

from the rth class, testing sample φ(x) will not be classified
into the rth class.

C. THE SECOND PHASE OF THE KPCR
In the second phase of the KPCR, the testing sample φ(x) is
classified by the linearly combining theM nearest neighbors
with the sparse coefficients. φ(x) can be approximated as
φ′ (Y ) β where φ′ (Y ) ∈ Rq×M , β ∈ RM×1. Similar to
Eq. (14), β is written as follows.

β̂ = arg min
β

(
||φ (x)− φ′ (Y ) β||22 + λ||W̃β||

2
2

+
γ

L

∑L

l=1
||φ′ (Y ) β − φ′ (Y )lβl ||

2
2

)
(18)

W̃ =



∥∥φ(x)− φ (y′1)∥∥2 0

. . .

0
∥∥φ(x)− φ (y′M )∥∥2

 ,
(19)

where β̂ =
[
β1, . . . , βM

]T , W̃ is a weighted diagonal
matrix, λ, γ are positive constants, L is the number of train-
ing samples class in φ′ (Y ) , φ′ (Y )lβl is a data point consist-
ing of training samples from the lth class of the φ′ (Y ).
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Then, the sparse vector β̂ can be recovered in a closed-form
solution.

β̂ = (K̃ + λW̃ T W̃ +
γ

L

∑L

l=1
¯̃K ′l )
−1
k ′, (20)

where, K̃ = φ′ (Y )Tφ′ (Y ) ∈ RM×M is the Gram matrix with
K̃i,j = k

(
y′i, y
′
j

)
(i j = 1, 2, . . . ,M ). k ′ = φ′(Y )Tφ(x) =

(k
(
y′1, x

)
, k
(
y′2, x

)
, . . . , k(y′M , x))

T
∈ RM×1. Let K̃ ′l be

a matrix which has the same size as K̃ . K̃l is the Gram
matrix of the samples in lth class, and only K̃l will
be assigned to K̃ ′l at their corresponding location in K̃ ,

K̃ ′l= [0 . . . ,K̃l, . . . , 0],
¯̃K ′l = K̃−K̃ ′l .

M nearest neighbors come from different sample classes.
The number of training samples in each class may be differ-
ent. Sum the contribution values of the nearest neighbors in
each class separately to classify the testing sample φ(x). For
instance, the nearest neighbors from the hth class in φ′ (Y )
can be represented as φ

(
y′r
)
, . . . , φ

(
y′t
)
, and the sum of

contribution values is as follows

Sh = φ
(
y′r
)
βr + · · · + φ

(
y′t
)
βt (21)

The residual between Sh and φ(x) is calculated according
to Eq. (22). A small residual Sh means that the hth class has
a great contribution in representing the φ(x), and ultimately
classify x into the class with the smallest residual.

Rh = ‖φ (x)− Sh‖22
= (φ (x)− Sh)T (φ (x)− Sh)

= k (x, x)+ β
′T
h K̃hβ

′
h − 2β

′T
h k
′
h, (22)

where β ′h = (βr , . . . , βt )T , K̃h is the Gram matrix of the
samples in hth class, k ′h =

[
k
(
y′r , x

)
, . . . , k

(
y′t , x

)]T .
IV. ALYSIS OF THE PEOPOSED METHOD
In this section, we will analyze the ideas and principles of the
IPCR and compare it with some methods.

A. METHOD COMPARISON
CRC and ProCRC were proposed in [8] and [9]. These
methods perform well on face recognition. They use all the
training samples to linearly represent the testing sample for
classification.

Compared with ProCRC, when IPCR finds sparse param-
eter α, we add the weight matrix and convert λ||α||22 to
λ||Wα||22. In this way, we modify the parameter α according
to the spatial distance of each training sample relative to the
testing sample, so that it is more reasonable relative to λ||α||22,
and the experimental result verification is more effective.

IPCR adopts the two-phase framework. The first phase
selects the M nearest neighbors according to the deviation
ei, and the second phase uses the linear combination of M
nearest neighbors to classify the testing sample x. It is a sparse
form with supervision. Meaning that the sparse parameters of
M nearest neighbors are usually not zero, and the remaining
training sample sparse coefficients are set to zero according

FIGURE 2. (a) Possible probability distribution of all training samples,
and (b) Possible probability distribution of M nearest neighbors.

to the deviation ei. Therefore, we know the sparse coefficients
of the training samples when representing the testing sample.
However, CRC, ProCRC and other methods are called an
unsupervised sparse form.When the training samples linearly
represent the testing sample x, we do not know which sparse
coefficient is zero or close to zero [22], [23].

B. PROBABILITY DESCRIPTION
Our IPCR method can be described as follows: ch(h ∈
(1, 2, . . . , C)) represents the hth class in the samples. The
first phase of IPCR uses ei to evaluate the probability that
the testing sample x and the ith training sample belong to the
same class, denoted as p(yi|x)(i ∈ (1, 2, . . . , n)). The first
phase of IPCR assumes that p(yi|x) ∝ 1

/
ei, ei= ||x−yiαi||22.

The smaller ei is, the greater the probability p(yi|x) that the x
belongs to the same class as the ith training sample. As shown
in Fig. 2(a), if the training sample has a small p(yi|x), the first
phase will set the p(yi|x)(i = 2, 6, 10) of green bars to zero
when M nearest neighbors are selected. However, the value∑

i p(yi|x) = 1 is constant, so the p(yi|x) (blue bars) of the
other training samples will increase, and Fig. 2(a) will be
converted to Fig. 2(b). The first phase removes the training
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sample with small value p(yi|x) and retains the M training
samples with high similarity to the testing sample x.
The second phase of IPCR uses p(ch|x) to represent the

posterior probability that test x belongs to the hth class.
The second phase assumes that p(ch|x) ∝ 1

/
‖x − Sh‖22, Sh

is the reconstructed result of the training samples from the
hth class. A minimum ‖x − Sh‖22, which means a maximum
posterior probability p(ch|x). The second phase of IPCR will
classify test x into the hth class with the maximum p(ch|x).
If there is no training sample from the sth class in the M
nearest neighbors, then the test x will not be classified into
the sth class in the second phase, p(ch|x) = 0.
In contrast to the IPCR, its global version uses all training

samples to represent the test x [10]. Almost every p(ch|x)
is a non-zero value, and the global version needs to find a
maximum posterior probability p(ch|x) from allC classes for
the test x. IPCR sets some posterior probabilities to zeros. The
result may produce a more ideal probability distribution to
classify the test x relative to the global version. We assume
that test x comes from the second class in Fig. 3. As can
be seen from Fig. 3(a), the global version will incorrectly
classify x into the fifth class due to noise interference, but
IPCR can accurately classify x to the second class with the
highest posterior probability in Fig. 3(b).

V. EXPERIMENT RESULTS
In this section, we conducted a lot of testing experiments
on AR, GT, PIE, FERET, and LFW-crop. The experimental
results demonstrate the effectiveness of our methods in recog-
nition accuracy.

A. FACE DATABASE INTRODUCTION
AR Face Database: AR Face Database was created by Aleix
Martinez and Robert Benavente at the Ohio State University.
It contains more than 4,000 color images, corresponding
to 126 faces (70 males and 56 females). The images have
different facial expressions, lighting conditions and occlusion
(sunglasses and scarves). For fair comparison to show the
results, we used 2600 images from 100 people, every indi-
vidual has 26 images, and these images are resized to 30 ×
40 for our experiments [24].

1) GT FACE DATABASE
Georgia Tech Face Database contains images of 50 people
taken in two or three sessions at the Center for Signal and
Image Processing at Georgia Institute of Technology. There
are 15 color images, the images were taken into account the
variations in illumination conditions, facial expression, and
appearance. In addition to this, the faces were captured at
different scales and orientations and we resized the size of
images to 30 × 40 for experimental testing [25].

2) PIE FACE DATABASE
PIE Face Database was provided by the face research team at
CMU, the database contains 41,368 images of 68 people, each
person under 13 different poses, 43 different illumination

FIGURE 3. (a) Possible posterior probability distribution of the global
IPCR, and (b) Possible posterior probability distribution of the IPCR.

conditions, and with 4 different expressions. For PIE, we only
used a subset from 68 individuals with each person providing
39 images, and each image from the PIE database was resized
to 30 × 40 in our experiments [26].

3) FERET DATABASE
FERET is created by the Face Recognition Technology
project, this collection of images contains a large num-
ber of face images, and each image has only one face.
In this database, images of the same person have differ-
ent expressions, changes in light, posture, and age. FERET
with more than 10,000 multi-poses and illumination is one
of the most widely used face databases. In the experiment,
we selected a subset with 1400 images containing 200 peo-
ple, 7 images per person, and each image was resized to
40 × 40 [27].

4) LFW-CROP DATABASE
LFW-crop is a cropped version of the Labeled Faces in the
Wild (LFW) database, keeping only the center portion of each
image (i.e. the face). In the majority of images, almost all of
the background is omitted. 158 people, 10 pictures per person
were selected for the experiment. Each image was resized to
30×30 [28].
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FIGURE 4. Some face images from the AR Face Database. The images
shown in first, second and third rows are from three different classes.

B. SAMPLE SELECTIONS AND PARAMETER SETTINGS
1) SAMPLE SELECTIONS
For each face database AR, GT, PIE, FERET and LFE-crop,
we randomly select q samples from the p samples in each
class as the training sample set, and the remaining part as the
test set, includingCq

P combination possibly. As a result, there
are Cq

P training sets and test sets. For each database, we have
done a random selection of the number of training samples
in three cases. For the AR face database, in the first case,
we randomly selected 6 out of 26 samples of each class as the
training set, and the rest were test sets, which were tested with
different classification methods. In the second, third cases,
10 and 16 samples in each class were randomly selected as the
training set. Fig. 4 shows some face images from the AR face
database. For the GT face database, we randomly selected
5, 8 and 11 images from the 15 images of each class as the
training images and the rest as test images. Some images of
the GT face database are shown in Fig. 5. We also performed
the same sample selection on the PIE, FERET and LFW-crop
face databases. Finally, different classification methods were
applied to test the recognition rate on PIE, FERET, and
LFW-crop.

2) PARAMETER SETTINGS
The proposed IPCR contains three parameters, λ, γ and M .
On the AR face database, λ = 1e−4, γ = 1 M = 0.5; On
the GT face database, λ = 1, γ = 1,M = 0.5; On the PIE
face database, λ = 1, γ = 1,M = 0.5; On the FERET face
database, λ = 1e−1, γ = 1,M = 0.5;On the LFW-crop face
database, λ = 1e−4, γ = 1,M = 0.5.
The proposed KPCR contains four parameters, δ, λ,

γ and M . On the AR face database, δ = 1e−1, λ =
1e−4, γ = 1e−3,M = 0.5; On the GT face database,
δ = 1, λ = 1e−1, γ = 1e−3,M = 0.5; On the PIE
face database, δ = 1e−1, λ = 1e−3, γ = 1e−3,M =

0.5; On the FERET and LFW-crop face databases, δ =
1, λ = 1e−1, γ = 1e−3,M = 0.5. For the other com-
petitive classification methods, we also achieved the best

FIGURE 5. Some face images from the GT Face Dataset. The images
shown in first, second and third rows are from three different classes.

classification accuracy level in each experiment by tuning the
parameters.

C. EXPERIMENTAL DATA DISPLAY AND ANALYSIS
As shown earlier, Sh in Eq. (11) is the reconstructed result
of the training samples of the hth class to the testing sample
x. If the deviation between Sh and x is the smallest, x will
eventually be assigned to the hth class. We reconstructed the
test x using the proposed IPCR, then converted the obtained
Sh(h ∈ (1, 2, . . .C)) into a matrix of the same size as the test
face image. The reconstructed result when the IPCR method
was used as shown in Fig. 6(a) and M was selected as half
of the training samples (1000 samples). Image (1) is the
original data from the AR face database, image (2)-(5) are
the reconstructed results of the four classes with the smallest
residual, and the testing sample is correctly divided into the
class to which it belongs.

At the same time, we also used the global version (do
not choose M nearest neighbors) and the version without
weight (called TPPCR) methods to reconstruct the same
test image. Therefore, as shown in Fig. 6(b) and 6(c),
image (1) is still the original data from the AR database, and
image (2)-(5) are the reconstructed results of the four classes
with the smallest residuals, respectively. Obviously, the final
result is misclassified.

We conducted a lot of the testing experiments on the GT
and FERET databases. On GT, 4 and 6 images randomly
selected from 15 of each person were used as the training
samples. On FERET, 2 and 4 from 7 images of each person
were selected as the training sample set, and the remain-
ing part was used as the test set for experimental compar-
ison. Fig. 7 and Fig. 8 show the mean of the error rates
of 10 experimental results by using different classification
methods. As can be seen from Fig. 7 and Fig. 8, compared
to TPPCR, the proposed IPCR has a much lower recogni-
tion error rate, which shows that the weighting technique
is very effective. Moreover, our KPCR performed further
improvement in recognition accuracy compared to the IPCR.
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FIGURE 6. The reconstructed results of the testing sample from AR face database.

FIGURE 7. Mean of the classification error rates on the GT face database.

FIGURE 8. Mean of the classification error rates on the FERET face database.
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TABLE 1. AR-100-26_30-40 database.

TABLE 2. GT-50-15_30-40 database.

TABLE 3. PIE-68-39_40-40 database.

TABLE 4. FERET-200-7_40-40 database.

Especially when the number of selected theM nearest neigh-
bors is different, the KPCR shows good robustness. By com-
paring the data results obtained with different M nearest
neighbors, we can find that the appropriate selection of theM
nearest neighbors can reduce the error rate of recognition. Our
KPCR and IPCR can improve the recognition rate by about
5% compared to their global version. Therefore, it can be said
that the adopted two-phase framework is also effective.

Table 1 to Table 5 show the classification results of the
proposed KPCR, IPCR and the other state-of-the-art methods
including CRC, KCRC [29], ProCRC, TPTSR, and l2 Regu-
larization Based Discriminative Sparse Representation Algo-
rithm (l2 RDSRA). Table 1 is the recognition results of the

AR database, and Table 2 to Table 5 are the results on
GT, PIE, FERET, and LFW-crop, respectively. Taking the
AR database as an example, we randomly chose 6, 10 and
16 from the 25 samples of each class as the training set,
and the remaining part was used as the testing set. Repeated
the above test 10 times to get the experimental mean and
standard deviation. In the 6-sample case, the recognition rate
generated by KCPR is 92.3%, the recognition rate generated
by IPCR is 91.4%, the recognition rate generated by CRC is
83.0%, the recognition rate generated by ProCRC is 88.1%,
the recognition rate generated by KCRC is 90.2%, the recog-
nition rate generated by TPTSR is 89.6%, the recognition rate
generated by l2 RDSRA is 87.5%. In the 10-sample case,
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TABLE 5. LFW-crop-158-10_30-30 database.

TABLE 6. KPCR vs. Other contrasted methods under Wilcoxon signed-rank test.

the recognition rate generated by KCPR is 97.8%, the recog-
nition rate generated by IPCR is 97.6%, the recognition rate
generated by CRC is 78.7%, the recognition rate generated by
ProCRC is 81.3%, the recognition rate generated by KCRC
is 97.2%, the recognition rate generated by TPTSR is 93.3%,
the recognition rate generated by l2 RDSRA is 95.0%. In the
16-sample case, the recognition rate generated by KCPR is
98.5%, the recognition rate generated by IPCR is 98.4%,
the recognition rate generated by CRC is 94.7%, the recogni-
tion rate generated by ProCRC is 94.9%, the recognition rate
generated by KCRC is 97.8%, the recognition rate generated
by TPTSR is 94.0%, the recognition rate generated by l2
RDSRA is 97.9%. The standard deviation produced by each
algorithm is also very small. For detailed experimental data
of the remaining databases, refer to Table 2 to Table 5. All
the highest accuracy recognition results obtained have been
bolded.

From the data results in Table 1 to Table 5, it can be seen
that the performance of KPCR is the most outstanding com-
pared to the other methods in terms of recognition accuracy.
For the case of selecting the 16 training samples on the AR
database, the mean recognition rate reached 98.5%. IPCR
also performed very well, especially on AR, GT, and PIE,
the recognition accuracy is very close to KPCR. This proves
that the proposed KPCR and IPCR can perform well in face
recognition.

In order to comprehensively compare KPCRwith the other
methods, Wilcoxon signed-rank test with a level of signifi-
cance α = 0.05 is applied to evaluate the results of 10 times
running [40]. Combined to obtain the mean value, the final
test results are shown in Table 6. When KCPR is compared
with other methods, the symbol ‘‘+’’ means ‘‘win’’, sym-
bol ‘‘-’’ means ‘‘lose’’, and symbol ‘‘=’’ means ‘‘draw’’.
In Table 6, compared to IPCR, KPCR produced 9 better
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results, 4 similar results, and 2 worse results. Compared with
KCRC, KPCR produced 12 better results, 2 similar results,
and 1 worse result. Compared with l2 RDSRA, KPCR pro-
duced 14 better results, 1 similar result. Compared to CRC,
ProCRC, and TPTSR, KPCR all produced 15 better results.
From the overall experimental results, our proposed KPCR
is superior to the contrast methods in face recognition. The
efficiency of the proposed schemes can be further improved
by adopting some relevant methods [35]–[39].

VI. CONCLUSION
In this paper, two novel classifiers for face recognition,
namely IPCR and KPCR are presented. The weighted based
on space distance and two-phase framework are applied
to proposed IPCR. We also carried out a clear probability
interpretation of the two-phase framework and analyzed the
feasibility of the method. Moreover, we adopted the kernel
concept, utilizing the high-dimensional nonlinear informa-
tion instead of linear information of data to the proposed
KPCR. The popular AR, GT, PIE, FERET, and LFW face
databases are used, a large number of experiments showed
the high recognition accuracy of our classifiers. For instance,
in the case of selecting the 4 training samples on the
LFW-crop database, IPCR improved the recognition rate
of 23.7%, and KPCR improved 27.5% respectively compared
to ProCRC. Comparing with more existing classifiers, such
as CRC, KCRC, TPTSR, and l2 Regularization Based Dis-
criminative Sparse Representation Algorithm (l2 RDSRA),
our methods also performed better in face recognition. The
proposed KPCR and IPCR may be implemented for the vari-
ous pattern classification problems.
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