
Received January 23, 2020, accepted February 17, 2020, date of publication February 21, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975618

Adaptive Neural Event-Triggered Control of
MIMO Pure-Feedback Systems With Asymmetric
Output Constraints and Unmodeled Dynamics
YU HUA 1 AND TIANPING ZHANG 1,2
1Department of Automation, College of Information Engineering, Yangzhou University, Yangzhou 225127, China
2College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

Corresponding author: Tianping Zhang (tpzhang@yzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573307, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20181218, and in part by the Yangzhou University Top-level Talents Support
Program (2016).

ABSTRACT In this paper, the issue of adaptive neural event-triggered control (ETC) is studied for uncertain
block-structure multi-input multi-output (MIMO) constrained non-affine nonlinear systems with unmodeled
dynamics. A dynamic signal produced by the auxiliary system based on the property of unmodeled dynamics
is employed to solve the dynamical disturbances. The unknown continuous function obtained at each step
of recursion is estimated by using radial basis function neural networks (RBFNNs). Utilizing logarithmic
function as an invertible mapping, the uncertain constrained MIMO non-affine system is changed into a
novel unconstrained block-structure MIMO nonaffine system. Using improved dynamic surface control
(DSC) strategy, adaptive event-triggered control scheme is developed for the transformed non-affine system
based on relative threshold mechanism. According to the Lyapunov method, all the signals in the closed-
loop system are shown to be semi-globally uniformly ultimately bounded (SGUUB). Output constraint
requirements are not triggered, and Zeno behavior is avoided. A constrained pure-feedback system and a
kind of 2-DOF flexible manipulator system are used to illustrate the theoretical findings.

INDEX TERMS Event-triggered control, dynamic surface control, block-structure nonlinear systems,
unmodeled dynamics, output constraints.

I. INTRODUCTION
Since backstepping was proposed for a class of feedback
linearizable systems in [1], it has widely been applied to
construct adaptive controller for nonlinear systems as a pop-
ular tool in [2], [3]. Because it needs to differentiate for
the designed virtual control at recursive each step, the con-
troller design is quite complicated. This is its disadvantage in
[1]–[3]. In order to remove this defect, dynamic surface
control was proposed by introducing first-order filter in [4].
The computation complex in conventional backstepping is
removed by using algebra operation to replace differential
operation in DSC. Using mean value theorem and Nuss-
baum function, adaptive neural DSC method was developed
for non-affine nonlinear systems in [6]. As we know that
RBFNNs are a universal approximator. Based on the simple
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structure and infinite derivable properties, the RBFNNs has
been widely used in adaptive backstepping control or DSC
design. In [7], two robust adaptive DSC schemes were inves-
tigated by using RBFNNs for a class of pure-feeback systems
with input nonlinearity and perturbed uncertainties. In addi-
tion, there widely exists unmodeled dynamics in modern
industrial process, which usually degrades the system per-
formance, sometimes, and leads to be instable for system.
To deal with the impact of dynamical disturbances on the sys-
tem, dynamic signalmethod in [8], [9] and Lyapunov function
description in [10] as well as and normalization signal in [11]
were usually employed to dispose of state and input unmod-
eled dynamics, respectively. However, the proposed design
methodwas for the unmodeled dynamics in autonomous form
in [8]. The dynamic signal method was developed for the
unmodeled dynamics in nonautonomous form in [9].

Barrier Lyapunov function (BLF) in [12], [13], integral
barrier Lyapunov function (iBLF) in [14] and nonlinear
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mapping (NM) in [15]–[18] were used to hand output con-
straints and full state constraints. However, single-input
single-output (SISO) systems were discussed in [12]–[18].
In [19], fault-tolerant control was proposed by using BLF
for uncertain parametric strict-feedback MIMO nonlinear
systems with output restriction. Furthermore, based on BLF,
decentralized adaptive finite time control was developed for
uncertain pure-feedback system in [20]. Based on a novel
BLF, robust adaptive control was investigated for uncertain
MIMO nonlinear systems with state and input constraints
in [21]. By introducing NM, adaptive neural control was
proposed for MIMO nonlinear systems with time-varying
output constraints in [22]. However, the dynamical distur-
bances were not studied in [19]–[22]. In [23], adaptive con-
trol scheme was developed for uncertain output constrained
MIMO nonlinear systems in strict-feedback form based on
both BLF and modified DSC. Furthermore, adaptive neural
control was proposed for the MIMO pure-feedback systems
with output constraints and dynamic uncertainties using both
invertible nonlinear mapping and modified DSC in [24].

It is well known that the designed controller based on
event-triggering mechanism can reduce energy consump-
tion and occupation rate of transmission bandwidth. Event-
triggered control (ETC) has become research hot topic in the
past decade. By taking a given invariable difference value of
the state norm as toggle condition, a simple event-triggered
scheduler was proposed for a class of linear systems in [25].
In [26], integrating with model-based networked control the-
ory, a novel ETC strategy with time-varying network delays
was developed to a class of linear systems, and two fire-new
error discriminants of states, fixed threshold strategy and rela-
tive threshold strategy, were designed as the toggle condition.
In [27], [28], an event-sampled NN was invented to estimate
the unknown terms in a class of strict-feedback systems.
In [29]–[32], by structuring state-depended event-triggered
condition, some adaptive control schemeswere designed for a
variety of uncertain systems. However, the above-mentioned
achievements were dependent on the assumption that the
closed loop system is input-to-state stable (ISS). To solve this
problem, a new ETC controller design method was proposed
for a class of affine systems with unknown parameters, and
a new event-triggered condition called switching threshold
strategy was proposed in [33]. Hereafter, some significant
achievements based on [33] can be seen in [34]–[36]. How-
ever, the controlled plants in [34]–[36] were all SISO systems.
Using RBFNNs to estimate the model had been done in many
studies such as [37], [38].

In this paper, adaptive control is proposed based on
event-triggering mechanism for uncertain constrained block-
structure MIMO non-affine systems. To the best of our
knowledge, the relative threshold strategy is first extended
and applied to constrained MIMO uncertain pure-feedback
systems. RBFNNs are used to appoximate the unknown con-
tinuous function vector, which is produced in the process of
controller design. The unknown system functions have not

been directly estimated by RBFNNs. The main contributions
are listed as follows:
(1) Adaptive event-triggered DSC is proposed for output

constrained block-structure pure-feedback nonlinear
systems with dynamic uncertainties based on relative
threshold strategy. By constructing first-order auxiliary
system to produce a measurable signal, the dynamic
uncertain terms are effectively dealt with. Further-
more, to fulfill the constraint requirements, using
invertible nonlinear mapping (INM), the constrained
block-structure non-affine nonlinear system is changed
into an unconstrained one. Furthermore, the controller
design is simplified based on the transformed system.

(2) The improved DSC approach is applied to the trans-
formed unconstrained block-structure non-affine sys-
tem, and the first-order auxiliary system is utilized to
eliminate the repeated derivation of the intermediate
variable in conventional backstepping.

(3) The updating laws with the only one tuning parameter
for each approximated unknown function at recursive
each step are proposed. Furthermore, a simple event-
triggered control vector is developed using modified
DSC and the property of hyperbolic tangent function
in the final step.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider the following block-structureMIMO pure-feedback
nonlinear systems

ζ̇ = Q(ζ, x̄n, t),
ẋi = fi(x̄i, xi+1)+ di(ζ, x̄n, t), 1 ≤ i ≤ n− 1,
ẋn = fn(x̄n, u)+ dn(ζ, x̄n, t),
y = x1,

(1)

where xi = [xi1, . . . , xim]T ∈ Rm, i = 1, . . . , n are
the states, fi(·) = [fi1(·), fi2(·), . . . , fim(·)]T ∈ Rm, (i =
1, . . . , n) are the unknown smooth nonlinear function vectors,
di(·) = [di1(·), di2(·), . . . , dim(·)]T ∈ Rm are the unknown
smooth nonlinear dynamic disturbances, ζ ∈ Rn0 is unmod-
eled dynamics, Q(ζ, x̄n, t) ∈ Rn0 is an unknown smooth
function vector satisfying the Lipschitz condition, u =
[u1, . . . , um]T ∈ Rm is the input, x̄i = [xT1 , . . . , x

T
i ]

T , y =
[y11, . . . , y1m]T ∈ Rm is the output.

In this paper, ‖A‖ =
√
tr(ATA) denotes the Frobenius

norm of the matrix A, ‖ξ‖ =
√∑n

i=1 ξ
2
i stands for the

Euclidean norm of the vector ξ = [ξ1, . . . , ξn]T ∈ Rn, L∞
denotes the set of all bounded functions.

The control objective is to design the adaptive event-
triggered control u for system (1) such that the output y(t) =
[y11(t), . . . , y1m(t)]T can follow the desired tracking signal
yd (t) = [yd1(t), . . . , ydm(t)]T , meantime, it satisfies −kj1 <
y1j(t) < kj2, ∀t ≥ 0 with kj1 and kj2 being positive design
constants, j = 1, . . . ,m, and all of signals in the closed-
loop system are semi-globally uniformly ultimately bounded
(SGUUB).
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Definition 1 [9]: For system ζ̇ = Q(ζ, x̄n, t), if there exist
classK∞ functions α1(·), α2(·) and a Lyapunov functionU (ζ )
such that

α1(‖ζ‖) ≤ U (ζ ) ≤ α2(‖ζ‖), (2)

and there exist two known constants c > 0, d > 0 and a
known class K∞ function γ (·) such that

∂U (ζ )
∂ζ

Q(ζ, x̄n, t) ≤ −cU (ζ )+ γ (‖x1‖)+ d, (3)

then the system is called as exponentially input-state-
practically stable (exp-ISpS).
Assumption 1: For block-structure system (1), fn(·) is

continuous differentiable, and ∂fn(·)
∂u ∈ L∞ holds.

Assumption 2 [9]: For block-structure system (1), the dis-
turbances dij(ζ, x̄n, t) satisfy the following inequalities

|dij(ζ, x̄n, t)| ≤ ϕij1(
∥∥x̄ij∥∥)+ ϕij2(‖ζ‖), (4)

where ϕij1(·) are nonnegative smooth functions, ϕij2(·) are
nonnegative monotone increasing smooth functions, x̄ij =
[xT1 , . . . , x

T
i−1, xi1, . . . , xij]

T , i = 1, . . . , n, j = 1, . . . ,m.
Assumption 3: The tracking signal yd (t), its first

derivative ẏd (t) and second derivative ÿTd (t) are continu-
ous and available, and [yTd (t), ẏ

T
d (t), ÿ

T
d (t)]

T
∈ �d ={

[yTd (t), ẏ
T
d (t), ÿ

T
d (t)]

T
: yTd (t)yd (t) + ẏTd (t)ẏd (t) +

ÿTd (t)ÿd (t) ≤ B0
}
⊂ R3m. Moreover, |ydj(t)| < B1j <

min{kj1, kj2} hold, where B0,B1j are m + 1 known positive
constants, kj1, kj2 are 2m positive design constants, satisfying
−kj1 < y1j(t) < kj2,∀t ≥ 0.
Assumption 4 [9]: System ζ̇ = Q(ζ, x̄n, t) is exponentially

input-state-practically stable (exp-ISpS).
Lemma 1 [9]: IfU is an exp-ISpS Lyapunov function for a

system ζ̇ = Q(ζ, x̄n, t), i.e., (2) and (3) hold, then ∀c̄ ∈ (0, c),
∀t0 > 0, ∀ζ0 = ζ (t0), v0 > 0, for any continuous class K∞
function γ̄ (‖x1‖) such that γ̄ (‖x1‖) ≥ γ (‖x1‖), there exist a
finite T0 = max {0, ln [U (ζ0)/ν0] /(c− c̄)}, a nonnegative
function D(t0, t), defined for all t ≥ t0 and a signal described
by

ν̇ = −c̄ν + γ̄ (‖x1‖)+ d, ν(t0) = ν0 > 0 (5)

such that D(t0, t) = 0 for t ≥ t0 + T0, and U (ζ ) ≤ ν(t) +
D(t0, t) with D(t0, t) = max

{
0, exp [−c(t − t0)]U (ζ0) −

exp [−c̄(t − t0)]ν0
}
.

Remark 1: fn(x̄n, u) can be written as

fn(x̄n, u)

= [fn(x̄n, u)− fn(0, x2, . . . , xn, u)]

+ [fn(0, x2, . . . , xn, u)− fn(0, 0, x3, . . . , xn, u)]

+ [fn(0, 0, x3, . . . , xn, u)− fn(0, 0, 0, x4, . . . , xn, u)]

+ . . .+ [fn(0, . . . , 0, u)− fn(0, . . . , 0)]

+ fn(0, . . . , 0). (6)

According to the discussion in [24], we have

fn(x̄n, u) = Gxn(x̄n)x̄n + Gun(x̄n, u)u+ fn(0), (7)

where fn(0) = fn(0, . . . , 0), Gxn(x̄n) = [Gn1(x̄n), . . . ,
Gnn(x̄n)], ‖Gni‖ and ‖Gun‖ are bounded.

According to neural network universal theorem as dis-
cussed in [39], the unknown continuous function 6(Z ) :
R` → R over the compact set �Z ⊂ R` can be denoted
as follows:

6(Z ) = ϑ∗T4(Z )+ %(Z ), (8)

where Z ∈ �Z ⊂ R` is the neural network input vector, %(Z )
is the approximation error, ϑ∗ =

[
ϑ∗1 , ϑ

∗

2 , . . . , ϑ
∗

`

]T
∈ R` is

the ideal weight vector (` > 0), which has the form

ϑ∗ = arg min
ϑ∈R`

[
sup
Z∈�Z
|ϑT4(Z )−6(Z )|

]
, (9)

4(Z ) = [41(Z ), 42(Z ), . . . , 4`(Z )]T ∈ R` is the basis vec-
tor, the basis function 4i(Z ) is selected as Gaussian function

4i(Z ) = exp

[
−
‖Z − µi‖2

ς2i

]
, i = 1, 2, . . . , l, (10)

where µi = [µi1,µi2, . . . , µiq]T is the central of the receptive
fields and ςi is the width of the Gaussian function.
Remark 2: Assume 6i(Zi) =

[
6i1(Zi), 6i2(Zi), . . . , 6im

(Zi)
]T
, i = 1, . . . , n, then 6i(Zi) = 2∗i

T4i(Zi) +
%i(Zi), where 2∗i = blockdiag[ϑ∗

i1
, . . . , ϑ∗im], ϑ

∗
ij =[

ϑ∗ij1, . . . , ϑ
∗
ijlij

]T
∈ Rlij , lij > 0, j = 1, . . . ,m, 4i(Zi) =

[4T
i1(Zi), . . . , 4

T
im(Zi)]

T , 4ij(Zi) =

[
4ij1(Zi), . . . , 4ijlij

(Zi)
]T

, lij is the number of nodes in the ijth neural networks,

%i(Zi) =
[
%i1(Zi), %i2(Zi), . . . , %im(Zi)

]T
is the approxima-

tion error.
Inspired by [17], [18], to dispose of output restriction,

define the invertible nonlinear mapping as follows:z1j =
1
2
ln

(kj1 + x1j)
(kj2 − x1j)

−
1
2
ln
kj1
kj2
, j = 1, . . . ,m,

zi = xi, i = 2, . . . , n,
(11)

where kj1, kj2 > 0 are two known constraint constants subject
to −kj1 < x1j < kj2.

Noting (11), its invertible mapping is
x1j =

kj1 + kj2
2

tanh
(
z1j +

1
2
ln
kj1
kj2

)
−
kj1 − kj2

2
,

j = 1, . . . ,m,
xi = zi, i = 2, . . . , n.

(12)

Differentiating xij for time t , it yields{
ż1j = $1j(z1j)ẋ1j, j = 1, . . . ,m,
żi = ẋi, i = 2, . . . , n,

(13)

where

$1j(z1j) =
2

(kj1 + kj2)
[
1− tanh2(z1j + 1

2 ln
kj1
kj2
)
] .
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Let $ (z1) = diag[$11(z11), . . . ,$1m(z1m)], then system (1)
can be rewritten as

ζ̇ = Q(ζ, x̄n, t),
ż1 = F1(z1, z2)+ D1(ζ, z̄n, t),
żi = Fi(z̄i, zi+1)+ Di(ζ, z̄n, t), 2 ≤ i ≤ n− 1,
żn = Fn(z̄n, u)+ Dn(ζ, z̄n, t),
y = z1

(14)

where F1(z1, z2) = $ (z1)f (x1, x2),Fi(z̄i, zi+1) =

fi(x̄i, xi+1), i = 2, . . . , n − 1, Fn(z̄n, u) = fn(x̄n, u),
D1(ζ, z̄n, t) = $ (z1)d1(ζ, x̄n, t), Di(ζ, z̄n, t) = di(ζ, x̄n, t),
i = 2, . . . , n, zi = [zi1, . . . , zim]T , z̄i = [zT1 , . . . , z

T
i ]
T ,

i = 1, . . . , n.
Remark 3: The uncertain terms Dij(ζ, x̄n, t) satisfy
|Dij(ζ, x̄n, t)| ≤ ϕij1(‖x̄ij‖) + ϕij2(‖ζ‖), i = 1, . . . , n, j =
1, . . . ,m, so |D1j(ζ, z̄n, t)| ≤ $1j(z1j)[ϕ1j1(‖x̄1j‖)+ϕ1j2(‖ζ‖)],
where Di(·) = [Di1(·), . . . ,Dim(·)]T . Based on (2), it is
easy to know ‖ζ‖ ≤ α−11 (U (ζ )). Using Lemma 1, we have
‖ζ‖ ≤ α−11 (ν + D0),∀t ≥ 0, it will be employed in the
derivation later.

III. ADAPTIVE EVENT-TRIGGERED DYNAMIC SURFACE
CONTROL
For convenience, we introduce the following notations
χ̄i = [χT1 , . . . χ

T
i ]

T , ēi = [eT2 , . . . e
T
i ]
T , ¯̂βim =

[β̂11, . . . , β̂1m, . . . , β̂i1, . . . , β̂im]T , β∗ij = ‖ϑ∗ij‖
2, β∗i =

diag
[
β∗i1, . . . , β

∗
im

]
, β̃ij = β̂ij − β

∗
ij , β̃i = β̂i − β

∗
i , β̂i =

diag
[
β̂i1, . . . , β̂im

]
, i = 1, . . . , n, j = 1, . . . ,m, where β̂i

and β̂ij are the estimates of β∗i and β∗ij at time t .
The coordinate change and the error signals are defined as

follows: 
χ1 = z1 − ŷd ,
χ2 = z2 − h̄2,

...

χn = zi − h̄n,

(15)


e2 = h̄2 − α1,

...

en = h̄n − αn−1,

(16)

where ŷdj = 1
2 ln

kj2(kj1+ydj)
kj1(kj2−ydj)

, j = 1, . . . ,m, ŷd =[
ŷd1, . . . , ŷdm

]T , α1, . . . , αn−1, h̄2, . . . , h̄n will be given later.
Step 1: Let χ1 = z1− h̄1 with h̄1 = ŷd . Differentiating χ1

for time t , we get

χ̇1 = F1(z1, z2)+ D1(ζ, z̄n, t)− ˙̄h1
= z2 + F1(z1, z2)− z2 + D1(ζ, z̄n, t)− ˙̄h1. (17)

Choose V1 as follows:

V1 =
1
2
χT1 χ1. (18)

Using (17), the time derivative of V1 is

V̇1 = χT1
[
z2 + F1(z1, z2)− z2 + D1(ζ, z̄n, t)− ˙̄h1

]
= χT

1

[
χ2+e2+α1+F1(z1, z2)−z2+D1(ζ, z̄n, t)− ˙̄h1

]
,

(19)

where z2 = e2 + χ2 + α1.
Using the inequality ab ≤ a2 + b2

4 , we obtain

χT1 χ2 ≤ χ
T
1 χ1 +

1
4
χT2 χ2, (20)

χT1 e2 ≤ χ
T
1 χ1 +

1
4
eT2 e2. (21)

From Assumption 2, we get

χT1 D1(ζ, z̄n, t)

≤ ‖χ1‖

m∑
j=1

∣∣D1j (ζ, z, t)
∣∣

≤ ‖χ1‖

m∑
j=1

$1j(z1j)[ϕ1j1
(∥∥x̄1j∥∥)+ ϕ1j2 (‖ζ‖)]

≤ χT1 χ1

m∑
j=1

$ 2
1j(z1j)[ϕ1j1

(∥∥x̄1j∥∥)+ ϕ1j2 (α−11 (ν + D0)
)
]2

2a2
1j

+

m∑
j=1

a2
1j

2
. (22)

Let

61(Z1) = χ1
m∑
j=1

$ 2
1j(z1j)[ϕ1j1(‖x̄1j‖)+ϕ1j2(α

−1
1 (ν+D0))]2

2a2
1j

+F1(z1, z2)− z2 − ˙̄h1. (23)

Using RBFNNs to approximate the unknown continuous
function 61(Z1), we have

61(Z1) = 2∗1
T
41(Z1)+ %1, (24)

where Z1 = [zT
1
, zT2 , χ

T
1
, ˙̄hT1 , ν]

T
∈ R4m+1, the ideal weight

matrix is 2∗1 = blockdiag[ϑ∗11, . . . , ϑ
∗

1m], the basis vector is
41(Z1) = [4T

11(Z1), . . . , 4
T
1m(Z1)]

T , the approximation error
is %1 = [%11, . . . , %1m]T .

Design the virtual control α1 and the updating law of the
estimated diagonal matrix β̂1 as follows

α1 = −K1χ1 −
1

2a21
β̂181(Z1), (25)

˙̂
β1 = diag[r11, . . . , r1m]

×

[
1

2a21
diag[χ11, . . . , χ1m]91(Z1)− σ1β̂1

]
, (26)

where K1 = KT
1 > 0, a1 > 0, σ1 > 0, r1j > 0,

β̂1 = diag[β̂11, · · · , β̂1m],81(Z1) = [‖411(Z1)‖2χ11, . . . ,
‖41m(Z1)‖2χ1m]T , 91(Z1) =

diag[‖411(Z1)‖2χ11, . . . , ‖41m(Z1)‖2χ1m], β∗1k = ‖ϑ
∗

1k‖
2,
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β̂1k are the estimates of unknown parameters β∗1k , k =
1, . . . ,m.
Substituting (20)–(25) into (19) and using χT1 %1 ≤ χ

T
1 χ1 +

1
4%

T
1 %1, we obtain

V̇1 ≤ −χT1 K1χ1 + χ
T
1 2
∗

1
T
41(Z1)+ χT1 %1

−
1

2a21
χT1 β̂181(Z1)

+ 2χT1 χ1 +
1
4
χT2 χ2 +

1
4
eT2 e2 +

m∑
j=1

a2
1j

2

≤ −χT1 K1χ1 + χ
T
1 2
∗

1
T
41(Z1)

−
1

2a21
χT1 β̂181(Z1)+ 3χT1 χ1 +

1
4
χT2 χ2

+
1
4
eT2 e2 +

1
4
%T1 %1 +

m∑
j=1

a2
1j

2
. (27)

There exist nonnegative continuous functions κ1j(χ̄2, e2,
¯̂
β1m,

ν, yd , ẏd ), j = 1, . . . ,m such that |%1j| ≤ κ1j hold. Let κ1 =
[κ11, . . . , κ1m]T , (27) can be written as

V̇1 ≤ −χT1 (K1 − 3Im×m)χ1 −
1

2a21
χT1 β̃181(Z1)+

a21
2

+
1
4
χT2 χ2 +

1
4
eT2 e2 +

1
4
κT1 κ1 +

m∑
j=1

a2
1j

2
. (28)

Define h̄2 as follows:

τ2 ˙̄h2 + h̄2 = α1, h̄2(0) = α1(0), (29)

where τ2 > 0 is a positive design constant.
Noting (16), differentiating e2 for time t , we have

ė2 = −
e2
τ2
− α̇1. (30)

Then

eT2 ė2 ≤ −
eT2 e2
τ2
+ ‖e2‖η2(χ̄3, ē3,

¯̂
β1m, ν, yd , ẏd , ÿd ), (31)

where η2(χ̄3, ē3,
¯̂
β1m, ν, yd , ẏd , ÿd ) is a nonnegative continu-

ous function.
Using the inequality ab ≤ a2 + b2

4 and (31), we get

eT2 ė2 ≤ −
‖e2‖2

τ2
+ ‖e2‖2 +

1
4
‖η2‖

2. (32)

Step i (2 ≤ i ≤ n− 1): Let χi = zi − h̄i. Differentiating χi
for time t , we obtain

χ̇i = Fi(z̄i, zi+1)+ Di(ζ, z̄n, t)− ˙̄hi. (33)

Define Vi as follows

Vi =
1
2
χTi χi. (34)

From (33), the time derivative of Vi is

V̇i = χTi χ̇i = χ
T
i [Fi(z̄i, zi+1)+ Di(ζ, z, t)− ˙̄hi]

= χTi [Fi(z̄i, zi+1)+ zi+1 − zi+1 + Di(ζ, z̄n, t)− ˙̄hi]

= χTi [χi+1 + ei+1 + αi + Fi(z̄i, zi+1)− zi+1
+Di(ζ, z̄n, t)− ˙̄hi], (35)

where zi+1 = χi+1 + ei+1 + αi.
Using the inequality ab ≤ a2 + b2

4 , it yields

χTi χi+1 ≤ χ
T
i χi +

1
4
χTi+1χi+1, (36)

χTi ei+1 ≤ χ
T
i χi +

1
4
eTi+1ei+1. (37)

From Assumption 2, it yields

χTi Di(ζ, z̄n, t)

≤ ‖χi‖

m∑
j=1

∣∣Dij (ζ, z̄n, t)∣∣
≤ ‖χi‖

m∑
j=1

[ϕij1
(∥∥x̄ij∥∥)+ ϕij2 (‖ζ‖)]

≤ χTi χi

m∑
j=1

[ϕij1
(∥∥x̄ij∥∥)+ ϕij2 (α−11 (ν + D0)

)
]2

2a2
ij

+

m∑
j=1

a2
ij

2
. (38)

Let

6i(Zi) = χi
m∑
j=1

[ϕij1(‖x̄ij‖)+ ϕij2(α
−1
1 (ν + D0))]2

2a2
ij

+Fi(z̄i, zi+1)− zi+1 − ˙̄hi. (39)

Using RBFNNs to appoximate the unknown function vector
6i(Zi), we have

6i(Zi) = 2∗i
T
4i(Zi)+ %i, (40)

where Zi = [zT1 , . . . , z
T
i+1, χ

T
i ,
˙̄hTi , ν]

T
∈ R(i+3)m+1, the ideal

weight matrix is 2∗i = blockdiag[ϑ∗i1, . . . , ϑ
∗
im], the basis

vector is 4i(Zi) = [4T
i1(Zi), . . . , 4

T
im(Zi)]

T , the approxima-
tion error is %i = [%i1, . . . , %im]T .

Design the virtual control αi and the updating law of the
estimated diagonal matrix β̂i as follows:

αi = −Kiχi −
1

2a2i
β̂i8i(Zi), (41)

˙̂
βi = diag[ri1, . . . , rim]

×

[
1

2a2i
diag[χi1, . . . , χim]9i(Zi)− σiβ̂i

]
, (42)

where Ki = KT
i > 0, ai > 0, σi > 0, rij > 0,

β̂i = diag[β̂i1, · · · , β̂im],8i(Zi) = [‖4i1(Zi)‖2χi1, . . . ,
‖4im(Zi)‖2χim]T , 9i(Zi) = diag

[
‖4i1(Zi)‖2χi1, . . . ,

‖4im(Zi)‖2χim
]
, β∗ik = ‖ϑ

∗
ik‖

2, β̂ik are the estimates of
unknown parameters β∗ik , k = 1, . . . ,m.
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Substituting (36)–(41) into (35), we obtain

V̇i ≤ −χTi Kiχi + χ
T
i 2
∗
i
T
4i(Zi)

+χTi %i −
1

2a2i
χTi β̂i8i(Zi)

+ 2χTi χi +
1
4
χTi+1χi+1 +

1
4
eTi+1ei+1 +

m∑
j=1

a2
ij

2

≤ −χTi (Ki − 3Im×m)χi −
1

2a2i
χTi β̃i8i(Zi)+

a2i
2

+
1
4
χTi+1χi+1 +

1
4
eTi+1ei+1 +

1
4
%Ti %i +

m∑
j=1

a2
ij

2
. (43)

There exist nonnegative continuous functions κij(χ̄i+1, ēi+1,
¯̂
βim, ˙̄hi, ν), j = 1, . . . ,m such that |%ij| ≤ κij. Let κi =
[κi1, . . . , κim]T , (43) can be written as

V̇i ≤ −χTi (Ki − 3Im×m)χi −
1

2a2i
χTi β̃i8i(Zi)+

a2i
2

+
1
4
χTi+1χi+1 +

1
4
eTi+1ei+1 +

1
4
κTi κi +

m∑
j=1

a2
ij

2
. (44)

Define h̄i+1 as follows

τi+1 ˙̄hi+1 + h̄i+1 = αi, h̄i+1(0) = αi(0), (45)

where τi+1 > 0 is a positive design constant.
From (16), the time derivative of ei+1 is

ėi+1 = −
ei+1
τi+1
− α̇i, (46)

Then

eTi+1ėi+1 ≤ −
eTi+1ei+1
τi+1

+ ‖ei+1‖ηi+1(χ̄i+2, ēi+2,

¯̂
βim, ν, yd , ẏd , ÿd ), (47)

where ηi+1(χ̄i+2, ēi+2,
¯̂
βim, ν, yd , ẏd , ÿd ) is a nonnegative

continuous function.
From (47) and the inequality ab ≤ a2 + b2

4 , we get

eTi+1ėi+1 ≤ −
‖ei+1‖2

τi+1
+ ‖ei+1‖2 +

1
4
‖ηi+1‖

2. (48)

Step n: Define χn = zn − h̄n. Differentiating χn for time
t , we get

χ̇n = Fn(z̄n, u)+ Dn(ζ, z̄n, t)− ˙̄hn (49)

Define Vn as follows:

Vn =
1
2
χTn χn (50)

Differentiating Vn for time t and from to (56), we have

V̇n = χTn χ̇n = χ
T
n [Fn(z̄n, u)+ Dn(ζ, z̄n, t)− ˙̄hn]. (51)

From (7), we obtain Fn(z̄n, u) = fn(x̄n, u) = fn(0)+ Gxnx̄n +
Gunu, it yields

V̇n = χTn [fn(0)+ Gxnx̄n + Gunu+ Dn(ζ, z̄n, t)− ˙̄hn]

= χTn [fn(0)+ Gxnx̄n + (Gun − Im×m)u

+ u+ Dn(ζ, z̄n, t)− ˙̄hn]

= χTn [fn(0)+ u+ Dn(ζ, z̄n, t)− ˙̄hn]

+χTn Gxnx̄n + χ
T
n (Gun − Im×m)u. (52)

Using Assumption 2 and Young’s inequality, we have

χTn Dn(ζ, z̄n, t)

≤ ‖χn‖

m∑
j=1

∣∣Dn,j (ζ, z̄n, t)∣∣
≤ ‖χn‖

m∑
j=1

[ϕnj1
(∥∥x̄n,j∥∥)+ ϕnj2 (‖ζ‖)]

≤ χTn χn

m∑
j=1

[ϕnj1
(∥∥x̄nj∥∥)+ ϕnj2 (α−11 (ν + D0)

)
]2

2a2
nj

+

m∑
j=1

a2
nj

2
, (53)

and

χTn Gxnx̄n ≤
∣∣∣χTn Gxnx̄n∣∣∣ ≤ ∥∥∥χTn Gxnx̄n∥∥∥
≤ ‖χn‖

2
‖x̄n‖2 +

1
4
‖Gxn‖2

≤ χTn χn ‖x̄n‖
2
+

1
4
‖Gxn‖2 . (54)

Let

6n(Zn) = χn
m∑
j=1

[ϕnj1(‖x̄nj‖)+ ϕnj2(α
−1
1 (ν + D0))]2

2a2
nj

+ fn(0)+ χn ‖x̄n‖2 − ˙̄hn, (55)

1(u) = (Gun − Im×m)u. (56)

Using RBFNNs to estimate the unknown continuous function
vector 6n(Zn), we have

6n(Zn) = 2∗n
T
4n(Zn)+ %n, (57)

where Zn = [zT1 , . . . , z
T
n , χ

T
n ,
˙̄hTn , ν]

T
∈ R(n+2)m+1, the ideal

weight matrix is 2∗n = blockdiag[ ϑ∗n1, . . . , ϑ
∗
nm], the basis

vector is 4n(Zn) = [4T
n1(Zn), . . . , 4

T
nm(Zn)]

T , the approxi-
mation error is %n = [%n1, . . . , %nm]T .

Design the updating law of the estimated diagonal matrix
β̂n as follows:

˙̂
βn = diag[rn1, . . . , rnm]

[ 1
2a2n

× diag[χn1, . . . , χnm]9n(Zn)− σnβ̂n
]
, (58)

where an > 0, σn > 0, rnj > 0, j = 1, . . . ,m,
β̂n = diag[β̂n1, · · · , β̂nm],8n(Zn) = [‖4n1(Zn)‖2χn1, . . . ,
‖4nm(Zn)‖2χnm]T , 9n(Zn) = diag[‖4n1(Zn)‖2χn1, . . . ,
‖4nm(Zn)‖2χnm], β∗nk = ‖ϑ

∗
nk‖

2, β̂nk are the estimates of
unknown parameters β∗nk , k = 1, . . . ,m.
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Inspired by [33], the event-triggered control is designed as
follows:

αnj = −
[
Knjχnj +

1
2a2n

χnjβ̂nj‖4nj(Zn)‖2
]
, (59)

vj(t)=−(1+δj)
(
αnj tanh(

χnjαnj

εj
)+m̄j1 tanh(

χnjm̄j1
εj

)
)
,

(60)

uj(t) = vj(tjk ),∀t ∈ [tjk , tj,k+1), (61)

tj,k+1 = inf{t ∈ R| |vj(t)− uj(t)|

≥ δj|uj(t)| + mj1, t > tjk}, (62)

where Knj > 0, tjk , k ∈ Z+, εj > 0, δj ∈ [0, 1), mj1 > 0 and
m̄j1 >

mj1
1−δj

are design constants, v = [v1, . . . , vm]T .

Let qj2(t) =
vj(t)−uj(t)
δj|uj(t)|+mj1

. From (62), we have |qj2(t)| ≤ 1 for
t ∈ [tk , tk+1) and

vj(t) = (1+ qj1(t)δj)uj(t)+ qj2(t)mj1,∀t ∈ [tjk , tj,k+1),(63)

where qj1(t) = qj2(t)sign(uj(t)), and |qj1(t)| ≤ 1 for t ∈
[tk , tk+1). We denote uj(t) as follows:

uj(t) =
vj(t)

1+ qj1(t)δj
−

qj2(t)mj1
1+ qj1(t)δj

. (64)

Using the inequality 0 ≤ |x| − x tanh( x
ε
) ≤ 0.2785ε with

ε > 0 in [40], we obtain

χTn u(t) =
m∑
j=1

χnjuj

=

m∑
j=1

[ χnjvj(t)
1+ qj1(t)δj

−
χnjqj2(t)mj1
1+ qj1(t)δj

]
=

m∑
j=1

[
−

1+ δj
1+ qj1(t)δj

χnjαnj tanh(
χnjαnj

εj
)

−
1+ δj

1+qj1(t)δj
χnjm̄j1 tanh(

χnjm̄j1
ε

)−
χnjqj2(t)mj1
1+ qj1(t)δj

]
≤

m∑
j=1

[
− χnjαnj tanh(

χnjαnj

εj
)

−χnjm̄j1 tanh(
χnjm̄j1
εj

)+ |
χnjmj1
1− δj

|

]
≤

m∑
j=1

[
− |χnjαnj| − |χnjm̄j1| + |χnjm̄j1| + 0.557εj

]
≤

m∑
j=1

[
− Knjχ2

nj −
1
2a2n

χ2
njβ̂nj‖4nj(Zn)‖2+0.557εj

]
= −χTn Knχn −

1
2a2n

χTn λ̂n8(Zn)+ 0.557
m∑
j=1

εj,

(65)

where Kn = diag[Kn1, . . . ,Knm].
Substituting (53), (54), (58) and (65) into (52), we obtain

V̇n ≤ −χTn Knχn + χ
T
n 2
∗
n
T
4n(Zn)−

1
2a2n

χTn β̂n8n(Zn)

+χTn %n +
1
4
‖Gzn‖2 + χTn 1(u)

+

m∑
j=1

a2
ij

2
+ 0.557

m∑
j=1

εj

≤ −χTn Knχn −
1
2a2n

χTn β̃n8n(Zn)+ 2χTn χn

+
1
4
%Tn %n +

1
4
‖1(u)‖2 +

1
4
‖Gzn‖2

+
a2n
2
+

m∑
j=1

a2
nj

2
+ 0.557

m∑
j=1

εj

≤ −χTn (Kn − 2Im×m)χn −
1
2a2n

χTn β̃n8n(Zn)

+
1
4
%Tn %n +

1
4
||1(u)||2 +

1
4
‖Gzn‖2

+
a2n
2
+

m∑
j=1

a2
nj

2
+ 0.557

m∑
j=1

εj. (66)

There exist nonnegative continuous functions κnj(χ̄n, ēn,
¯̂
βnm, ˙̄hi, ν) such that |%nj| ≤ κnj. Define κn =

[κn1, . . . , κnm]T , it yields

V̇n ≤ −χTn (Kn − 2Im×m)χn −
1
2a2n

χTn β̃n8n(Zn)

+
1
4
κTn κn +

1
4
||1(u)||2 +

1
4
‖Gzn‖2

+
a2n
2
+

m∑
j=1

a2
nj

2
+ 0.557

m∑
j=1

εj. (67)

IV. MAIN RESULTS
Define V and the compact set An as follows:

V =
n∑
i=1

Vi +
1
2

n∑
i=2

eTi ei

+
1
2

n∑
i=1

tr
(
β̃Ti diag[r

−1
i1 , . . . , r

−1
im ]β̃i

)
, (68)

An =
{
[χ̄Tn , ē

T
n ,
¯̂
βTnm, ν]

T
: V ≤ p

}
⊂ Rpn , (69)

where p > 0, pn = nm+ m(2n− 1)+ 1.
On the compact set An × Ad ⊂ Rpn+3m, ‖ηi‖ and ‖κi‖ have
maximum values Ni(p) and Mi(p), respectively.
Theorem 1: If Assumptions 1–4 are true for system (1),

and the event-triggered control (61), the virtual control (25)
and (41), and the updating laws (26), (42), (58) are designed,
then for any given constant p > 0, V (0) ≤ p and −kj1 <
y1j(0) < kj2, there exist positive definite constant matrices
Ki and constants τi, σi and rij subject to (70) such that all
of the signals are bounded, and the output restrictions are
not triggered, i.e., −kj1 < y1j(t) < kj2,∀t ≥ 0, and Zeno
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behavior can be avoided, and
min
1≤i≤n

λmin(Ki −
13
4
Im×m) ≥

0

2

min
2≤i≤n

1
τi
≥

5
4
+
0

2
0 = min

1≤i≤n
{σiri1, . . . , σirim}

(70)

Proof: If V ≤ p, then χ1, . . . χn, e2, . . . en and β̂i are
bounded. Furthermore, αi and h̄i+1 ∈ L∞. Noting yd ∈ L∞,
it yields ŷd ∈ L∞. From (15) and χ1 ∈ L∞, ŷd ∈ L∞, we get
z1 ∈ L∞, this implies y ∈ L∞. According to (5) and y ∈
L∞, we have ν ∈ L∞. Based on ν ∈ L∞ and Assumption
4, Remark 3, we have ζ ∈ L∞. According to Assumption
1 and using (59), (60) and (61), we get v, u ∈ L∞, ‖Gzn‖
and ‖Gun‖ ∈ L∞, furthermore, it yields ‖1(u)‖ ∈ L∞, i.e.,
‖1(u)‖ ≤ B1(p), ‖Gzn‖ ≤ B2(p) with B1 and B2 being two
positive constants. From (25), we get α1 ∈ L∞, note that z2 =
χ2+e2+α1 and χ2, e2, α1 ∈ L∞, we have z2 ∈ L∞, similarly,
we get αi, zi+1 ∈ L∞. With the aid of (13), it yields xi ∈
L∞. Thus, when V ≤ p, we have ‖ηi‖ ≤ Ni, ‖κi‖ ≤ Mi.
Substituting (26),(42), (58), (32) and (48) into the derivative
of V , we obtain

V̇ ≤
n∑
i=1

V̇i +
n∑
i=2

eTi ėi +
n∑
i=1

m∑
j=1

1
rij
β̃ij
˙̂
βij

≤ −

n−1∑
i=1

χTi (Ki − 3Im×m)χi − χTn (Kn − 2Im×m)χn

−

n∑
i=1

1

2a2i
χTi β̃i8i(Zi)−

n∑
i=2

(
1
τi
− 1)‖ei‖2

+

n∑
i=2

1
4
‖ei‖2 +

n∑
i=2

1
4
‖χi‖

2
+

n∑
i=1

1
4
M2
i (p)

+
1
4
‖1(u)‖2 +

1
4
‖Gzn‖2 +

n∑
i=1

a2i
2

+

n∑
i=1

n∑
i=1

a2ij
2
+

n∑
i=2

1
4
N 2
i (p)+

1
4
62
n +

1
4
W 2
n

+

n∑
i=1

m∑
j=1

β̃ij

[
1

2a2i
‖4ij(Zi)‖2χ2

ij − σiβ̂ij

]

+ 0.557
m∑
j=1

εj

≤ −

n∑
i=1

χTi (Ki −
13
4
Im×m)χi −

n∑
i=1

1

2a2i
χTi β̃i8i(Zi)

−

n∑
i=2

(
1
τi
−

5
4
)‖ei‖2 +

n∑
i=1

1
4
M2
i +

n∑
i=1

a2i
2

+

n∑
i=1

n∑
i=1

a2ij
2
+

n∑
i=2

1
4
N 2
i +

1
4
B21 +

1
4
B22

+

n∑
i=1

1

2a2i

m∑
j=1

β̃ij‖4ij(Zi)‖2χ2
ij −

n∑
i=1

m∑
j=1

σi

2
β̃2ij

+

n∑
i=1

m∑
j=1

σi

2
β∗ij

2
+ 0.557

m∑
j=1

εj. (71)

Let

60 =

n∑
i=1

1
4
M2
i (p)+

1
4
B21(p)+

1
4
B22(p)

+

n∑
i=2

1
4
N 2
i (p)+

n∑
i=1

a2i
2
+

n∑
i=1

m∑
j=1

a2ij
2

+

n∑
i=1

m∑
j=1

σi

2
β∗ij

2
+ 0.557

m∑
j=1

εj, (72)

then

V̇ ≤ −
n∑
i=1

χTi (Ki −
13
4
Im×m)χi −

n∑
i=2

(
1
τi
−

5
4
)‖ei‖2

−

n∑
i=1

m∑
j=1

σi

2
β̃2ij +60. (73)

Substituting (70) into (73), we obtain

V̇ ≤ −0V +60. (74)

If V = p, 0 ≥ 60
p , then V̇ ≤ 0. It implies that with the aid

of V (0) ≤ p and 0 ≥ 60
p , we have V (t) ≤ p,∀t ≥ 0. From

(74), we get

0 ≤ V (t) ≤
60

0
+ (V (0)−

60

0
)e−0t . (75)

Therefore, we have all signals χi, ei, λ̂i, zi ∈ L∞, then
αi, h̄i, u ∈ L∞ are bounded. From (75), we obtain

‖χ1‖ ≤

√
260
0
+ 2(V (0)− 60

0
)e−0t , therefore, for given p,

σ1, . . . , σn, χ1 as t → ∞ can be made arbitrarily small by
choosing large enough rij, i = 1, . . . , n, j = 1, . . . ,m.

Define Ej(t) = vj(t) − uj(t), ∀t ∈ [tjk , tj,k+1). Therefore,
the derivative of |Ej(t)| is

d |Ej(t)|
dt

=
d
dt
(E2

j (t))
1
2 = sign(Ej(t))Ėj(t)

= sign(Ej(t))(v̇j(t)− u̇j(t)) ≤
∣∣v̇j(t)∣∣ . (76)

with

v̇j(t) =
∂vj
∂αnj

α̇nj +
∂vj
∂χn

χ̇n

= −
∂vj
∂αnj

(
Knjχ̇nj +

1
2a2n

χ̇njβ̂nj‖4nj(Zn)‖2

+
1
2a2n

χnj
˙̂
βnj‖4nj(Zn)‖2

+
1
2a2n

χnjβ̂nj
d‖4nj(Zn)‖2

dt

)
+
∂vj
∂χTn

(
Fn(z̄n, u)+ Dn(ζ, z̄n, t)− ˙̄hn

)
. (77)
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For V ≤ p, all signals at the right side of (77) are bounded,
so v̇j(t) is bounded. Furthermore, there exists a positive con-
stant Cj such that

∣∣v̇j(t)∣∣ ≤ Cj. In addition, since ∣∣Ej(tjk )∣∣ = 0
and lim

t→t−j,k+1

∣∣Ej(t)∣∣ = δj|uj(tjk )|+mj1, for t ′j,k+1 ∈ (tjk , tj,k+1),

using mean value theorem and (76), we have

t ′j,k+1 − tjk =

∣∣∣Ej(t ′j,k+1)∣∣∣− ∣∣Ej(tjk )∣∣
sign(Ej(t∗j ))Ėj(t

∗
j )

≥

∣∣∣Ej(t ′j,k+1)∣∣∣− ∣∣Ej(tjk )∣∣∣∣∣v̇j(t∗j )∣∣∣ , (78)

where t∗j ∈ (tjk , t ′j,k+1).
Let t ′j,k+1 tend to t−j,k+1 above both sides of the inequality,
we have

tj,k+1 − tjk =

∣∣∣Ej(t−j,k+1)∣∣∣− ∣∣Ej(tjk )∣∣
sign(e(t∗))ė(t∗)

≥

∣∣∣Ej(t−j,k+1)∣∣∣− ∣∣Ej(tjk )∣∣∣∣∣v̇j(t∗j )∣∣∣
≥
δj|uj(tjk )| + mj1

Cj
≥
mj1
Cj

> 0. (79)

Obviously, (tj,k+1 − tjk ) has a positive lower bound 1t∗j =
mj1
Cj
> 0, and Zeno behavior can be successfully avoided.
Remark 4: RBFNNs are used to appoximate the unknown

continuous function vector, which is produced in the process
of controller design, and the unknown system functions have
not been directly estimated by them in this paper, wheras
RBFNNs are used to estimate unknown system functions
in [37], [38]; Unmodeled dynamic and asymmetric output
constraints are considered in our paper, wheras they are not
considered in [37], [38]; The considered systems are class of
MIMO systems with block-structure, wheras the considered
systems are a class of MIMO Systems with similar structure
in [37], and they are a class of SISO systems without uncer-
tainties in [38]. Therefore, with the help of event-triggered
controller, our proposed method is more practical and the
systems in this paper are more general.
Remark 5: Compared with the approach proposed in

[24], a new nonlinear mapping based on hyperbolic tangent
function is introduced to handle the asymmetric output con-
straints. By using this novel nonlinear mapping, the origin
point between the original and transformed system can be
mapped. It means that the controllability of the original sys-
tem is guaranteed. Different from the time-driven control
method proposed in [24], the new event-triggered approach
can reduce energy consumption and occupation rate of trans-
mission bandwidth without affecting the tracking accuracy
and the system stability.
Remark 6: 60 described in (72) is an unknown constant

which depends on the size of the defined compact set An in
(69). However,0 = min

1≤i≤n
{σiri1, . . . , σirim} does not depends

FIGURE 1. Case 1: output y11 (solid line) and tracking signal yd1 (dashed
line), the upper bound k12 (dotted line) and the lower bound −k11
(dotted line); Case 2: output y11 (dotted-dashed line).

on the size of the defined compact setAn. In addition,60 does
not include the constants ri1, . . . , rim, i = 1, . . . , n. There-
fore, we can choose large enough constants ri1, . . . , rim, i =
1, . . . , n for any given design constants σi1, . . . , σim, i =
1, . . . , n and p > 0 such that 0 ≥ 60

p and V̇ ≤ 0 hold.

V. NUMERICAL SIMULATION
To illustrate the theoretical findings of the proposed event-
triggered control, a constrained pure-feedback system and a
kind of 2-DOF flexible manipulator system are discussed.
Example 1: Consider the following constrained second-

order uncertain MIMO system:

ζ̇ = Q(ζ, y, t),

ẋ1 =

[
x11 sin x11 + x21 +

x322
7

x11 + x12x21 + (1+ x211)x22

]
+ d1,

ẋ2 =

[
x11x12 + x21 + 0.2u31
x11x12x21 + (2+ sin x22)u2

]
+ d2,

y = x1,

(80)

where Q(ζ, y, t) = −ζ + ‖y‖2 sin t + 0.5, d1 =

[−0.5ζx21 sin 10t,−0.5ζ sin x11 cos t]T , d2 = [sin(0.5x12t)+
x21ζ, x21ζ cos(10x11t)+ x22ζ ]T . The tracking signal is yd =[
0.8 sin t
0.6 sin t

]
. The dynamic signal is taken as ν = −0.6ν +

1.5‖x1‖4 + 1.5. The output constraints are k11 = 1.2, k12 =
1.3, k21 = 0.8, k22 = 0.9.

Case 1: The design constants are chosen as K1 =

diag[30, 40], K2 = diag[10, 30], τ2 = 0.01, σ1 = σ2 = 25,
r11 = r12 = r21 = r22 = 0.01, a1 = a2 = 25, δ1 = δ2 = 0.3,
m11 = m21 = 0.2. The initial conditions are selected as
x1(0) = [0.2, 0.2]T , x2(0) = [0, 0]T , ζ (0) = 0.1, h̄2(0) =
[0.1, 0.1]T , ν(0) = 0.1, β̂1(0) = β̂2(0) = diag[0.4, 0.4]. The
simulation results are shown in Figures 1–6.

Case 2: If output constraints and event-triggered con-
troller are not considered, the design constants are chosen
as K1 = diag[3.25, 3.25], K2 = diag[4, 4], σ1 = σ2 =

0.5, τ2 = 0.001, and the other conditions are the same,
the simulation results without output constraints and event-
triggered controller are shown in Figures 1 and 2.
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FIGURE 2. Case 1: output y12 (solid line) and tracking signal yd2 (dashed
line), the upper bound k22 (dotted line) and the lower bound −k21
(dotted line); Case 2: output y12 (dotted-dashed line).

FIGURE 3. Control signals u1 (solid line) for case 1 and (dotted-dashed
line) for case 2.

From Figures. 1 and 2, it is clearly to know that the output
signal vector y can well track the desired trajectory and all the
states are within the constraints. The tracking performance
of case 1 is better than the tracking performance of case
2. In Figures. 5 and 6, we can find that the event-triggered
numbers are 632 and 1411 in 30 seconds, respectively.
Remark 7: When the controller signal needs to be updated,

the event-triggered condition |Ej(t)| = vj(t) − uj(t) =
δj|uj(t)| + mj1 is satisfied. Firstly, the traditional encoding
method is used to transmit the initial controller value u(t0).
In the following time pointt ∈ [tjk , tj,k+1), k = 0, 1, . . .,
the encoder can be designed as follows:

lj =


1, Ej(t) ≥ δj|uj(t)| + mj1

= δj|vj(tkj)| + mj1
0, Ej(t) ≤ −δj|uj(t)| − mj1

= −δj|vj(tkj)| − mj1

(81)

The output of encoder lj can be transmitted to the decoder
with the help of network channel. The decoder only needs
to store the event-triggered condition parameters and the
last control signal value uj(tk ). The decoder is designed as
follows:

uj(tk+1) =

{
uj(tkj)+ δj|u(tkj)| + mj1, lj = 1
uj(tkj)− δj|u(tkj)| − mj1, lj = 0

(82)

By using this decoder, the controller signal uj(t) can be
restored. When we update the controller signal, only ‘‘0’’

FIGURE 4. Control signals u2 (solid line) for case 1 and (dotted-dashed
line) for case 2.

FIGURE 5. Time interval of trigger-event for u1.

or ‘‘1’’ need to be transmitted through the network chan-
nel. Therefore, although the event-triggered number reaches
632 and 1411, that is, 5-12 times per second, the burden of
signal transmission can be reduced.
Example 2: Consider 2-DOF flexible robotic system as

follows:
M (ω) ω̈ + C (ω, ω̇) ω̇ + G(ω)+ Fω̇
+ Km(ω − ωm) = 0

Jmω̈m + Bmω̇m + Km (ωm − ω) = u

(83)

The corresponding state equations of system (2) including
unmodeled dynamics can be described as follows:

ζ̇ = Q(ζ, y),
ẋ1 = x2
ẋ2 = −M−1(x1)

[
C(x1, x2)x2 + G(x1)

+ Fx2 + Kmx1
]
+M−1(x1)x3 + d2,

ẋ3 = x4,
ẋ4 = J−1m [−Bx4 − Km (x3 − x1)]+ J−1m u+ d4,
y = x1

M (ω) =

(
p1 + p2 + 2p3 cos (ω2) p2 + p3 cos (ω2)

p2 + p3 cos (ω2) p2,

)
C (ω, ω̇) =

(
−p3ω̇2 sin (ω2) −p3 (ω̇1 + ω̇2) sin (ω2)

p3ω̇1 sin (ω2) 0

)
G (ω) =

(
p4g cos (ω1)+ p5g cos (ω1 + ω2)

p5g cos (ω1 + ω2)

)
(84)
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FIGURE 6. Time interval of trigger-event for u2.

FIGURE 7. Output y11(solid line) and tracking signal yd1 (dashed line),
the upper bound k12 (dotted line) and the lower bound −k11 (dotted
line).

FIGURE 8. Output y12(solid line) and tracking signal yd2(dashed line),
the upper bound k22 (dotted line) and the lower bound −k21 (dotted
line).

where x1 = ω, x2 = ω̇, ω = [ω1, ω2]T , Q(ζ, y) =
−ζ + ‖y‖2 + 0.5. p1 = m1l2c1 + m2l21 + I1, p2 =
m2l2c2 + I2, p3 = m2l1lc2, p4 = m1lc2 + m2l1, p5 =
m2lc2, mi and li are the mass and length of the ith link,
lci is the distance between the ith joint and the center
of mass of the ith link, and Ii is the moment of inertia
of the ith link, d2 = [0.1ζ sin 2t, 0.1ζ sin 2t]T , d2 =
[0.5 sin(t)+ ω1ζ, 0.5 sin(t)+ ω2ζ ]T are the dynamic distur-
bances.
The system parameters are taken as m1 = 3kg, m2 = 2kg,

l1 = 1m, l2 = 1.2m, lc1 = 0.5m, lc2 = 0.6m, I1 = 4 ×
10−3kg · m2, I2 = 3× 10−3kg · m2,

Km =
[
7 0
0 7

]
, Jm =

[
0.002 0
0 0.002

]
F = B =

[
0.2 0
0 0.2

]
.

FIGURE 9. Control signal u1.

FIGURE 10. Control signal u2.

FIGURE 11. Time interval of trigger-event for u1.

FIGURE 12. Time interval of trigger-event for u2.

The controller parameters are selected as K1 = diag[30, 10],
K2 = diag[4, 4], K3 = diag[5, 5], K4 = diag[3.5, 3.5], τ2 =
0.001, τ3 = 0.003, τ4 = 0.001, σ1 = σ2 = σ3 = σ4 = 0.01,
β̂1(0) = β̂2(0) = β̂3(0) = β̂4(0) = diag[0.2, 0.2], δ1 = δ2 =
0.2, m11 = m21 = 0.3, k11 = 1.1, k12 = 1.2, k21 = 1.0,
k22 = 1.1; choose the tracking signal yd = [0.5(sin(1.5t) +
0.8 sin(0.5t)), 0.5(sin(0.5t)+0.6 sin(t))]T , design unmodeled
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dynamics as ζ̇ = −ζ + ‖y‖2 + 0.6, construct the dynamic
signal as ν = −0.5ν + 1.6‖x1‖4 + 1.5; select the initial
values as x1(0) = [0.1, 0.1]T , x2(0) = x3(0) = x4(0) =
[0.15, 0.15]T , β̂2(0) = β̂4(0) = diag[0.1, 0.1], h̄2(0) =
h̄3(0) = h̄4(0) = [0.2, 0.2]T , ν(0) = 0.01, ζ (0) = 0.01. The
plotted curves by matlab are shown in Figures 7-12. From
Figures 7 and 8, we can see that the output restrictions can be
abided by, Figures. 9 and 10 show that the designed event-
triggered control signals are bounded. The event-triggered
numbers are 1106 and 2267 for u1 and u2 in 30 seconds,
respectively.

VI. CONCLUSION
Combining dynamic surface control technique with relative
threshold strategy, adaptive neural event-triggered control
has been developed for block-structure MIMO non-affine
nonlinear systems including output restriction and dynamical
uncertainties. The first-order auxiliary system designed based
on property of unmodeled dynamics is employed to dispose
of the dynamical uncertain terms. The output constraints can
be carried out based on invertible nonlinear mapping. All the
signals in the designed control system have been proved to be
semi-global uniform ultimate bounded. A constrained pure-
feedback system and a kind of 2-DOF flexible manipulator
system are provided to verify the effectiveness of the designed
adaptive event-triggered control algorithm.

REFERENCES
[1] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, ‘‘Systematic design

of adaptive controllers for feedback linearizable systems,’’ IEEE Trans.
Autom. Control, vol. 36, no. 11, pp. 1241–1253, Nov. 1991.

[2] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adap-
tive Control Design. New York, NY, USA: Wiley, 1995.

[3] T.-P. Zhang, H. Wen, and Q. Zhu, ‘‘Adaptive fuzzy control of nonlinear
systems in pure feedback form based on input-to-stability,’’ IEEE Trans.
Fuzzy Syst., vol. 18, no. 1, pp. 80–93, Feb. 2010.

[4] D. Swaroop, J. K. Hedrick, and P. P. Yip, ‘‘Dynamic surface control for a
class of uncertain nonlinear systems,’’ IEEETrans. Autom. Control, vol. 45,
no. 10, pp. 1893–1899, Oct. 2000.

[5] D. Wang and J. Huang, ‘‘Neural network-based adaptive dynamic surface
control for a class of uncertain nonlinear systems in strict-feedback form,’’
IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 195–202, Jan. 2005.

[6] T. P. Zhang and S. S. Ge, ‘‘Adaptive dynamic surface control of nonlinear
systems with unknown dead zone in pure feedback form,’’ Automatica,
vol. 44, no. 7, pp. 1895–1903, Jul. 2008.

[7] T.-P. Zhang, Q. Zhu, and Y.-Q. Yang, ‘‘Adaptive neural control of non-
affine pure-feedback non-linear systems with input nonlinearity and per-
turbed uncertainties,’’ Int. J. Syst. Sci., vol. 43, no. 4, pp. 691–706,
Apr. 2012.

[8] Z.-P. Jiang and L. Praly, ‘‘Design of robust adaptive controllers for non-
linear systems with dynamic uncertainties,’’ Automatica, vol. 34, no. 7,
pp. 825–840, Jul. 1998.

[9] Z.-P. Jiang, ‘‘A combined backstepping and small-gain approach to adap-
tive output feedback control,’’ Automatica, vol. 35, no. 6, pp. 1131–1139,
Jun. 1999.

[10] Z.-P. Jiang and D. J. Hill, ‘‘A robust adaptive backstepping scheme for non-
linear systems with unmodeled dynamics,’’ IEEE Trans. Autom. Control,
vol. 44, no. 9, pp. 1705–1711, Sep. 1999.

[11] M. Arcak and P. Kokotovic, ‘‘Robust nonlinear control of systems
with input unmodeled dynamics,’’ Syst. Control Lett., vol. 41, no. 2,
pp. 115–122, Oct. 2000.

[12] K. P. Tee, S. S. Ge, and E. H. Tay, ‘‘Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,’’ Automatica, vol. 45,
no. 4, pp. 918–927, Apr. 2009.

[13] B. Ren, S. Sam Ge, K. Peng Tee, and T. H. Lee, ‘‘Adaptive neural control
for output feedback nonlinear systems using a barrier Lyapunov function,’’
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1339–1345, Aug. 2010.

[14] N. Wang, T. Zhang, Y. Yi, and Q. Wang, ‘‘Adaptive control of output feed-
back nonlinear systems with unmodeled dynamics and output constraint,’’
J. Franklin Inst., vol. 354, no. 13, pp. 5176–5200, Sep. 2017.

[15] T. Guo andX.Wu, ‘‘Backstepping control for output-constrained nonlinear
systems based on nonlinear mapping,’’ Neural Comput. Appl., vol. 25,
nos. 7–8, pp. 1665–1674, Jun. 2014.

[16] T. Zhang, N. Wang, Q. Wang, and Y. Yi, ‘‘Adaptive neural control of con-
strained strict-feedback nonlinear systems with input unmodeled dynam-
ics,’’ Neurocomputing, vol. 272, pp. 596–605, Jan. 2018.

[17] T. Zhang, M. Xia, and Y. Yi, ‘‘Adaptive neural dynamic surface control of
strict-feedback nonlinear systemswith full state constraints and unmodeled
dynamics,’’ Automatica, vol. 81, pp. 232–239, Jul. 2017.

[18] T. Zhang, M. Xia, Y. Yi, and Q. Shen, ‘‘Adaptive neural dynamic surface
control of pure-feedback nonlinear systems with full state constraints
and dynamic uncertainties,’’ IEEE Trans. Syst., Man, Cybernetics: Syst.,
vol. 47, no. 8, pp. 2378–2387, Aug. 2017.

[19] X. Jin, ‘‘Adaptive fault tolerant control for a class of input and state
constrained MIMO nonlinear systems,’’ Int. J. Robust Nonlinear Control,
vol. 26, no. 2, pp. 286–302, Feb. 2015.

[20] X. Jin, ‘‘Adaptive decentralized finite-time output tracking control for
MIMO interconnected nonlinear systems with output constraints and actu-
ator faults,’’ Int. J. Robust Nonlinear Control, vol. 28, no. 5, pp. 1808–1829,
Nov. 2017.

[21] Z. Chen, Z. Li, and C. L. P. Chen, ‘‘Adaptive neural control of uncertain
MIMO nonlinear systems with state and input constraints,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1318–1330, Jun. 2017.

[22] W. Meng, Q. Yang, and Y. Sun, ‘‘Adaptive neural control of nonlinear
MIMO systems with time-varying output constraints,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 5, pp. 1074–1085, May 2015.

[23] T. Zhang, H. Liu, M. Xia, and Y. Yi, ‘‘Adaptive neural control of
MIMO uncertain nonlinear systems with unmodeled dynamics and out-
put constraint,’’ Int. J. Adapt. Control Signal Process., vol. 32, no. 12,
pp. 1731–1747, Oct. 2018.

[24] H. Liu, T. Zhang, and X. Xia, ‘‘Adaptive neural dynamic surface control of
MIMO pure-feedback nonlinear systems with output constraints,’’ Neuro-
computing, vol. 333, pp. 101–109, Mar. 2019.

[25] P. Tabuada, ‘‘Event-triggered real-time scheduling of stabilizing control
tasks,’’ IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[26] E. Garcia and P. J. Antsaklis, ‘‘Model-based event-triggered control with
time-varying network delays,’’ in Proc. IEEE Conf. Decis. Control Eur.
Control Conf., Dec. 2011, pp. 1650–1655.

[27] Y.-X. Li and G.-H. Yang, ‘‘Model-based adaptive event-triggered control
of strict-feedback nonlinear systems,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 4, pp. 1033–1045, Apr. 2018.

[28] N. Szanto, V. Narayanan, and S. Jagannathan, ‘‘Event-sampled direct
adaptive NN output and state feedback control of uncertain strict-
feedback system,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5,
pp. 1850–1863, May 2018.

[29] M. He and J. Li, ‘‘Event-triggered adaptive tracking control for a class of
uncertain stochastic nonlinear systems with Markov jumping parameters,’’
Int. J. Adapt. Control Signal Process., vol. 32, no. 12, pp. 1655–1674,
Sep. 2018.

[30] L. Cao, H. Li, and Q. Zhou, ‘‘Adaptive intelligent control for nonlinear
strict-feedback systems with virtual control coefficients and uncertain
disturbances based on event-triggered mechanism,’’ IEEE Trans. Cybern.,
vol. 48, no. 12, pp. 3390–3402, Dec. 2018.

[31] Y. H. Choi and S. J. Yoo, ‘‘Event-triggered output-feedback tracking of a
class of nonlinear systems with unknown time delays,’’ Nonlinear Dyn.,
vol. 96, no. 2, pp. 959–973, Feb. 2019.

[32] C. Wang, L. Guo, and J. Qiao, ‘‘Event-triggered adaptive fault-tolerant
control for nonlinear systems fusing static and dynamic information,’’
J. Franklin Inst., vol. 356, no. 1, pp. 248–267, Jan. 2019.

[33] L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, ‘‘Event-triggered adaptive
control for a class of uncertain nonlinear systems,’’ IEEE Trans. Autom.
Control, vol. 62, no. 4, pp. 2071–2076, Apr. 2017.

[34] Y. Cao and Y. Song, ‘‘Event- triggered adaptive prescribed performance
control for a class of uncertain nonlinear systems,’’ in Proc. IEEE Conf.
Decis. Control (CDC), Dec. 2018, pp. 1245–1250.

VOLUME 8, 2020 37695



Y. Hua, T. Zhang: Adaptive Neural ETC of MIMO Pure-Feedback Systems

[35] L.-T. Xing, C.-Y. Wen, Z.-T. Liu, H.-Y. Su, and J.-P. Cai, ‘‘Event-triggered
output feedback control for a class of uncertain nonlinear systems,’’ IEEE
Trans. Autom. Control, vol. 61, no. 1, pp. 290–297, Jan. 2019.

[36] K. Lu, Z. Liu, G. Lai, C. L. P. Chen, and Y. Zhang, ‘‘Adaptive fuzzy
output feedback control for nonlinear systems based on event-triggered
mechanism,’’ Inf. Sci., vol. 486, pp. 419–433, Jun. 2019.

[37] Y. Li, T. Li, and S. Tong, ‘‘Adaptive neural networks output feedback
dynamic surface control design for MIMO pure-feedback nonlinear sys-
tems with hysteresis,’’ Neurocomputing, vol. 198, pp. 58–68, Jul. 2016.

[38] D. Wang, ‘‘Neural network-based adaptive dynamic surface control of
uncertain nonlinear pure-feedback systems,’’ Int. J. Robust Nonlinear Con-
trol, vol. 21, no. 5, pp. 527–541, Jun. 2010.

[39] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control. Boston, MA, USA: Kluwer, 2001.

[40] M. M. Polycarpou, ‘‘Stable adaptive neural control scheme for nonlin-
ear systems,’’ IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 447–451,
Mar. 1996.

YU HUA received the B.Eng. degree in trans-
portation equipment and information engineering
from Nantong University, China, in 2015. He is
currently pursuing the master’s degree in control
theory and control engineering with Yangzhou
University. His current research interests include
robust adaptive control, dynamic surface control,
and nonlinear control.

TIANPING ZHANG received the B.Sc. degree
in mathematics from the Yangzhou Teachers Col-
lege, Yangzhou, China, in 1986, the M.Sc. degree
in operations research and control theory from
East China Normal University, Shanghai, China,
in 1992, and the Ph.D. degree in automatic control
theory and applications from Southeast University,
Nanjing, China, in 1996. From October 2005 to
October 2006, he was a Visiting Scientist with the
Department of Electrical and Computer Engineer-

ing, National University of Singapore, Singapore. He is currently a Pro-
fessor with the College of Information Engineering, Yangzhou University,
Yangzhou. He has published more than 300 articles on journals and con-
ferences. His current research interests include adaptive control, intelligent
control, and nonlinear control.

37696 VOLUME 8, 2020


