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ABSTRACT Here we introduce new class of exponentially convex function namely exponentially
(p, h)-convex function. We find the Hermite-Hadamard type inequalities via exponentially (p, h)-convex
functions. We extend the various familar results.

INDEX TERMS Hermite-Hadamard inequalities, (p, h)-convex function, exponentially (p, h)-convex
function.

I. INTRODUCTION
Last couple of decades, the notion convex functions and its
generalizations have become more familar because of mar-
velous nature. The Hermite-Hadamard inequality [5], [6] for
a convex function ζ : Y → R on an interval Y is

ζ

(
y1 + y2

2

)
≤

1
y2 − y1

∫ y2

y1
ζ (w)dw ≤

ζ (y1)+ ζ (y2)
2

,

(I.1)

for all y1, y2 ∈ Y with y1 < y2. Selections of suitable
functions one can use inequality (I.1) to derive other useful
mean inequalities. For example see [1]–[4], [7]–[14]. Above
inequalities are true in the reversed order if ζ is concave.
Definition 1 ( [7]): Let s ∈ (0, 1]. A function ζ : Y ⊂

[0,∞)→ [0,∞) is called s-convex in the second sense, if

ζ (κy1 + (1− κ)y2) ≤ κsζ (y1)+ (1− κ)sζ (y2), (I.2)

for all y1, y2 ∈ Y and κ ∈ [0, 1].
Definition 2 ( [17]): Let h : J ⊆ R → R be a positive

function. Consider an interval Y ⊂ (0,∞), then a function
ζ : Y → R is called h-convex, if ζ is non-negative and

ζ (κy1 + (1− κ)y2) ≤ h(κ)ζ (y1)+ h(1− κ)ζ (y2), (I.3)

for all y1, y2 ∈ Y and κ ∈ [0, 1]. If (I.3) is reversed then ζ is
called h-concave.
Definition 3 ( [9]): Consider an interval Y ⊂ (0,∞) and

p ∈ R\{0}. A function ζ : Y → R is called p-convex, if

ζ

([
κyp1 + (1− κ)yp2

] 1
p

)
≤ κζ (y1)+ (1− κ)ζ (y2), (I.4)
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for all y1, y2 ∈ Y and r ∈ [0, 1]. If (I.4) is in reversed order
then ζ is called p-concave.
Sarikaya et. al. [16] and Iscan [9] provedHadmard inequal-

ities for h- and p- convex functions, respectively.
Theorem 4 ( [16]): Let ζ : Y → R be h-convex function

and y1, y2 ∈ Y with y1 < y2 and ζ ∈ L1 ([y1, y2]). Then

1

2h
(
1
2

)ζ (y1 + y2
2

)
≤

1
y2 − y1

∫ y2

y1
ζ (w)dw

≤ [ζ (y1)+ ζ (y2)]
∫ 1

0
h(κ)dκ. (I.5)

Theorem 5 ( [9]): Consider an interval Y ⊂ (0,∞), and
p ∈ R\{0}. Let ζ : Y → R is p-convex and y1, y2 ∈ Y ,
y1 < y2. If ζ ∈ L1 ([y1, y2]), then we have

ζ

[yp1 + yp2
2

] 1
p
≤ p

yp2−y
p
1

∫ y2

y1

ζ (w)
w1−p dw ≤

ζ (y1)+ζ (y2)
2

.

(I.6)

Lemma 6 ( [9]): Let ζ : Y → R be a differentiable
function onY◦, i.e., the interior ofY , and y1, y2 ∈ Y , y1 < y2,
and p ∈ R\{0}. If ζ ′ ∈ L1 ([y1, y2]), then

ζ (y1)+ ζ (y2)
2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

=
yp2 − y

p
1

2p

∫ 1

0

1− 2κ

[κyp1 + (1− κ)yp2]
1− 1

p

×ζ ′
([
κyp1 + (1− κ)yp2

] 1
p

)
dκ. (I.7)
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Fang and Shi [4] defined (p, h)-convex function and gave
Hadamard inequalities.
Definition 7 ( [4]): Let h : J ⊆ R → R be a positive

function. Let Y ⊂ (0,∞) be an interval, and p ∈ R\{0}.
A function ζ : Y → R is called (p, h)-convex, if ζ is non-
negative and

ζ

([
κyp1+(1−κ)y

p
2

] 1
p

)
≤ h(κ)ζ (y1)+h(1− κ)ζ (y2), (I.8)

for all y1, y2 ∈ Y and κ ∈ [0, 1]. If (I.8) is in reversed order
then ζ is called (p, h)-concave.
Theorem 8 ( [4]): Let ζ : Y → R be (p, h)-convex

function and y1, y2 ∈ Y with y1 < y2 and ζ ∈ L1 ([y1, y2]).
Then

1

2h
(
1
2

)ζ
[yp1 + yp2

2

] 1
p
 ≤ p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

≤ [ζ (y1)+ ζ (y2)]
∫ 1

0
h(κ)dκ.

(I.9)

Awan et al. [1] and Mehreen and Anwar [12] established
new class of convex functions and gave several Hadamard’s
type inequalities.
Definition 9 ( [1]): A function ζ : Y ⊆ R → R is called

exponentially convex, if

ζ (κy1 + (1− κ)y2) ≤ κ
ζ (y1)
eαy1

+ (1− κ)
ζ (y2)
eαy2

, (I.10)

for all y1, y2 ∈ Y , κ ∈ [0, 1] and α ∈ R. If the inequality
(I.10) is in reversed order then ζ is called exponentially
concave.
Definition 10 ( [12]): Let s ∈ (0, 1] and Y ⊂ [0,∞) be

an interval. A function ζ : Y → R is called exponentially
s-convex in the second sense, if

ζ (κy1 + (1− κ)y2) ≤ κs
ζ (y1)
eαy1

+ (1− κ)s
ζ (y2)
eαy2

, (I.11)

for all y1, y2 ∈ Y and κ ∈ [0, 1]. If (I.11) is in reversed order
then ζ is called exponentially s-concave.
Theorem 11 ( [12]): Let ζ : Y ⊂ [0,∞) → R be

an integrable exponentially s-convex function in the second
sense on Y◦. Then for y1, y2 ∈ Y with y1 < y2 and α ∈ R,
we have

2s−1ζ
(
y1 + y2

2

)
≤

1
y2 − y1

∫ y2

y1

ζ (w)
eαw

dw

≤ A3(κ)
ζ (y1)
eαy1

+ A4(κ)
ζ (y2)
eαy2

, (I.12)

where

A3(κ) =
∫ 1

0

κsdκ
eα(κy1+(1−κ)y2)

,

and

A4(κ) =
∫ 1

0

(1− κ)sdκ
eα(κy1+(1−κ)y2)

.

Definition 12 ( [12]): Consider an interval Y ⊂ (0,∞) =
R+ and p ∈ R\{0}. A function ζ : Y → R is called
exponentially p-convex, if

ζ

([
κyp1 + (1− κ)yp2

] 1
p

)
≤ κ

ζ (y1)
eαy1

+ (1− κ)
ζ (y2)
eαy2

, (I.13)

for all y1, y2 ∈ Y , κ ∈ [0, 1] and α ∈ R. If the inequality
(I.13) is in opposite direction then ζ is called exponentially
p-concave.
Theorem 13 ( [12]): Let ζ : Y → R be an integrable

exponentially p-convex function. Let y1, y2 ∈ Y with y1 <
y2. Then for α ∈ R, we have

ζ

[yp1 + yp2
2

] 1
p
 ≤ p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−peαw

dw

≤ A1(κ)
ζ (y1)
eαy1

+ A2(κ)
ζ (y2)
eαy2

, (I.14)

where

A1(κ) =
∫ 1

0

κdκ

eα(κy
p
1+(1−κ)y

p
2)

1
p
,

and

A2(κ) =
∫ 1

0

(1− κ)dκ

eα(κy
p
1+(1−κ)y

p
2)

1
p
.

The Beta and Hypergeometric function are defined as:

β(y1, y2) =
∫ 1

0
wy1−1(1− w)y2−1dw, y1, y2 > 0,

and

2F1(y1, y2; t; z)

=
1

β(y2, t − y2)

∫ 1

0
wy2−1(1− w)t−y2−1(1− zw)−y1dw,

t > y2 > 0, |z| < 1, respectively.

II. MAIN RESULTS
We define exponentially (p, h)-convex functions as:
Definition 14: Let h : J ⊆ R→ R be a positive function.

Consider an interval Y ⊂ (0,∞) = R+ and p ∈ R\{0}.
A function ζ : Y → R is called exponentially (p, h)-convex,
if

ζ

([
κyp1 + (1− κ)yp2

] 1
p

)
≤ h(κ)

ζ (y1)
eαy1

+ h(1− κ)
ζ (y2)
eαy2

,

(II.1)

for all y1, y2 ∈ Y , κ ∈ [0, 1] and α ∈ R. If the inequality
(II.1) is in opposite direction then ζ is called exponentially
(p, h)-concave.
Remark 15: In Definition 14,
(a) by taking α = 0, we attain inequality (I.8) of

Definition 7.
(b) by taking α = 0 and p = 1, we attain inequality (I.3)

of Definition 2.
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(c) by taking α = 0, h(κ) = ks and p = 1, we attain
inequality (I.2) of Definition 1.

(d) by taking α = 0 and h(κ) = k , we attain inequality
(I.4) of Definition 3.

(e) by taking p = 1 and h(κ) = k , we attain inequality
(I.10) of Definition 9.

(f ) by taking p = 1, we attain inequality (I.11) of Defini-
tion 10.

(g) by taking h(k) = k , we attain inequality (I.13) of
Definition 12.

(h) by taking h(κ) = κ , α = 0 and p = 1, we get the
definition of convex function.

Throughout the section, we symbolize Y ⊂ (0,∞) = R+
for an interval and its interior as Y◦, p ∈ R\{0} and h : J ⊆
R→ R be a positive function.
Theorem 16: Let ζ : Y → R be an integrable exponen-

tially (p, h)-convex function. Let y1, y2 ∈ Y with y1 < y2.
Then for α ∈ R, we have

1

2h( 12 )
ζ

[yp1 + yp2
2

] 1
p
 ≤ p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−peαw

dw

≤ S1
ζ (y1)
eαy1

+ S2
ζ (y2)
eαu2

, (II.2)

where

S1 =
∫ 1

0

h(κ)dκ

eα(κy
p
1+(1−κ)y

p
2)

1
p
,

and

S2 =
∫ 1

0

h(1− κ)dκ

eα(κy
p
1+(1−κ)y

p
2)

1
p
.

Proof 17: Since ζ is exponentially (p, h)-convex function,
we have

1

h( 12 )
ζ

[vp1 + vp2
2

] 1
p
 ≤ ζ (v1)

eαv1
+
ζ (v2)
eαv2

. (II.3)

Let vp1 = κy
p
1 + (1− κ)yp2 and v

p
2 = (1− κ)yp1 + κy

p
2, we get

1

h( 12 )
ζ

[yp1 + yp2
2

] 1
p


≤

ζ

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(κy

p
1+(1−κ)y

p
2)

1
p

+

ζ

([
(1− κ)yp1 + κy

p
2

] 1
p

)
eα((1−κ)y

p
1+κy

p
2)

1
p

.

(II.4)

Integrating (II.4) with respect to κ ∈ [0, 1] and using changes
of variable, we get

1

h( 12 )
ζ

[yp1 + yp2
2

] 1
p
 ≤ 2p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−peαw

dw. (II.5)

Hence the first inequality of (II.2) is proved. For second one,
use exponentially (p, h)-convexity of ζ , we find

ζ

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(κy

p
1+(1−κ)y

p
2)

1
p

≤
h(κ) ζ (y1)eαy1 + h(1− κ)

ζ (y2)
eαy2

eα(κy
p
1+(1−κ)y

p
2)

1
p

.

(II.6)

Integrating with respect to κ ∈ [0, 1], we get

p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−peαw

dw

≤
ζ (y1)
eαy1

∫ 1

0

h(κ)dκ

eα(κy
p
1+(1−κ)y

p
2)

1
p

+
ζ (y2)
eαy2

∫ 1

0

h(1− κ)dκ

eα(κy
p
1+(1−κ)y

p
2)

1
p
. (II.7)

From (II.5) and (II.7), we get (II.2).
Remark 18: In Theorem 16,
(a) by taking α = 0, we attain inequality (I.9) of Theo-

rem 8.
(b) by taking α = 0 and p = 1, we attain inequality (I.5)

of Theorem 4.
(c) by taking α = 0 and h(κ) = κ , we attain inequality

(I.6) of Theorem 5.
(d) by taking h(κ) = κ , we attain inequality (I.14) of

Theorem 13.
(e) by taking h(κ) = κs, p = 1 and α = 0, we attain

inequality (2.1) of Theorem 2.1 in [3].
(f ) by taking h(κ) = κs and p = 1, we attain inequality

(I.12) of Theorem 11. (g) by taking h(κ) = κ , α = 0 and
p = 1, we attain inequality (I.1).
Theorem 19: Let ζ : Y → R be a differentiable function

on Y◦ and y1, y2 ∈ Y with y1 < y2 and ζ ′ ∈ L1([y1, y2]).
If |ζ ′|q is exponentially (p, h)-convex on [y1, y2] for q ≥ 1
and α ∈ R, then∣∣∣∣∣ζ (y1)+ ζ (y2)2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p
T
1− 1

q
1

[
T2

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + T3 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q]
1
q

, (II.8)

where

T1 =
1
4

(
yp1 + y

p
2

2

) 1
p−1 [

2F1

(
1−

1
p
, 2; 3;

yp1 − y
p
2

yp1 + y
p
2

)

+ 2F1

(
1−

1
p
, 2; 3;

yp2 − y
p
1

yp1 + y
p
2

)]
,

T2 =
∫ 1

0

|1− 2κ|h(κ)[
κyp1 + (1− κ)yp2

]1− 1
p

dκ,

and

T3 =
∫ 1

0

|1− 2κ|h(1− κ)[
κyp1 + (1− κ)yp2

]1− 1
p

dκ.
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Proof 20: Using inequality (I.7) of Lemma 6, we find∣∣∣∣∣ζ (y1)+ ζ (y2)2
−

p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p

∫ 1

0

∣∣∣∣∣∣ 1− 2κ

[κyp1 + (1− κ)yp2]
1− 1

p

∣∣∣∣∣∣
×

∣∣∣∣ζ ′ ([κyp1 + (1− κ)yp2
] 1
p

)∣∣∣∣ dκ
≤
yp2 − y

p
1

2p

∫ 1

0

|1− 2κ|

[κyp1 + (1− κ)yp2]
1− 1

p

dκ

1− 1
q

×

(∫ 1

0

|1− 2κ|

[κyp1 + (1− κ)yp2]
1− 1

p

×

∣∣∣∣ζ ′ ([κyp1 + (1− κ)yp2
] 1
p

)∣∣∣∣q dκ)
1
q

. (II.9)

Since |ζ ′|q is exponentially (p, h)-convex on [y1, y2],
we achieve∣∣∣∣∣ζ (y1)+ ζ (y2)2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p

∫ 1

0

|1− 2κ|

[κyp1 + (1− κ)yp2]
1− 1

p

dκ

1− 1
q

×

(∫ 1

0

||1−2κ||
[
h(κ)

∣∣∣ ζ ′(y1)eαy1

∣∣∣q+h(1−κ) ∣∣∣ ζ ′(y2)eαy2

∣∣∣q]
[κyp1+(1−κ)y

p
2]

1− 1
p

dκ
) 1

q

≤
yp2 − y

p
1

2p
T
1− 1

q
1

[
T2

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + T3 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q]
1
q

. (II.10)

Observe that,∫ 1

0

|1− 2κ|

[κyp1 + (1− κ)yp2]
1− 1

p

dκ

=
1
4

(
yp1 + y

p
2

2

) 1
p−1 [

2F1

(
1−

1
p
, 2; 3;

yp1 − y
p
2

yp1 + y
p
2

)

+ 2F1

(
1−

1
p
, 2; 3;

yp2 − y
p
1

yp1 + y
p
2

)]
.

Hence proved.
Note that once we let h(κ) = κ , we find

T2 =
1
24

(
yp1 + y

p
2

2

) 1
p−1 [

2F1

(
1−

1
p
, 2; 4;

yp1 − y
p
2

yp1 + y
p
2

)

+ 6 2F1

(
1−

1
p
, 2; 3;

yp2 − y
p
1

yp1 + y
p
2

)

+ 2F1

(
1−

1
p
, 2; 4;

yp2 − y
p
1

yp1 + y
p
2

)]
,

and

T3 = T1 − T2.

Thus we have following remark.
Remark 21: In Theorem 19,
(a) by letting h(κ) = κ , one gets inequality (2.8) of

Theorem 2.3 in [12].
(b) by taking α = 0 and h(κ) = κ , one gets the Theorem 7

in [9].
(c) by letting h(κ) = κs and p = 1, one gets inequality

(3.20) of Theorem 3.6 in [12].
(d) by letting h(κ) = κ and p = 1, one gets the Theorem 5

in [1].
Corollary 22: Let ζ : Y → R be a differentiable function

on Y◦ and y1, y2 ∈ Y , y1 < y2, and ζ ′ ∈ L1 ([y1, y2]). If |ζ ′|
is exponentially (p, h)-convex on [y1, y2], then∣∣∣∣∣ζ (y1)+ ζ (y2)2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p

[
T2

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣+ T3 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣] , (II.11)

here T2 and T3 are as in Theorem 19.
Remark 23: In Corollary 22,
(a) by choosing h(κ) = κ , we find the Corollary 2.4 in [12].
(b) by choosing h(κ) = κ and α = 0, we find the

Corollary 1 in [9].
(c) by choosing h(κ) = κs and p = 1, we find the

Theorem 3.5 in [12].
(d) by choosing h(κ) = κs, p = 1 and α = 0, we find the

Theorem 1 in [10].
(e) by taking h(κ) = κ and p = 1, we attain the Theorem 3

in [1].
Theorem 24: Let ζ : Y → R be a differentiable function

on Y◦. Let y1, y2 ∈ Y , y1 < y2, and ζ ′ ∈ L1 ([y1, y2]). If |ζ ′|q

is exponentially (p, h)-convex on [y1, y2], and q, l > 1, 1/q+
1/l = 1, and α ∈ R, then∣∣∣∣∣ζ (y1)+ ζ (y2)2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p

(
1

l + 1

) 1
l
[
T4

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + T5 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q]
1
q

,

(II.12)

where

T4 =
∫ 1

0

h(κ)

[κyp1 + (1− κ)yp2]
q− q

p
dκ,

and

T5 =
∫ 1

0

h(1− κ)

[κyp1 + (1− κ)yp2]
q− q

p
dκ.

Proof 25: Applying Hölder’s inequality on (I.7) of
Lemma 6 and using the exponential (p, h)-convexity of |ζ ′|q
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on [y1, y2], we find∣∣∣∣∣ζ (y1)+ ζ (y2)2
−

p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p

(∫ 1

0
|1− 2κ|ldκ

) 1
l

×

(∫ 1

0

1

[κyp1 + (1− κ)yp2]
q(1− 1

p )

×

∣∣∣∣ζ ′ ([κyp1 + (1− κ)yp2
] 1
p

)∣∣∣∣q dκ) 1
q

≤
yp2 − y

p
1

2p

(
1

l + 1

) 1
l

×

∫ 1

0

h(κ)
∣∣∣ ζ ′(y1)eαy1

∣∣∣q + h(1− κ) ∣∣∣ ζ ′(y2)eαy2

∣∣∣q
[κyp1 + (1− κ)yp2]

q− q
p

dκ


1
q

≤
yp2 − y

p
1

2p

(
1

l + 1

) 1
l
[
T4

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + T5 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q]
1
q

.

(II.13)

Hence proved.
In above theorem once we let h(κ) = κ , we observe that

T4 =
∫ 1

0

κ

[κyp1 + (1− κ)yp2]
q− q

p
dκ

=


1

2yqp−q1
2F1

(
q−

q
p
, 1; 3; 1− (

y2
y1
)p
)
, p < 0

1

2yqp−q2
2F1

(
q−

q
p
, 2; 3; 1− (

y1
y2
)p
)
, p > 0,

T5 =
∫ 1

0

1− κ

[κyp1 + (1− κ)yp2]
q− q

p
dκ

=


1

2yqp−q1
2F1

(
q−

q
p
, 2; 3; 1− (

y2
y1
)p
)
, p < 0

1

2yqp−q2
2F1

(
q−

q
p
, 1; 3; 1− (

y1
y2
)p
)
, p > 0.

Thus we have following remark.
Remark 26: In Theorem 24,
(a) by letting h(κ) = κ , we find the Theorem 2.5 in [12].
(b) by letting h(κ) = κ and α = 0, we find the Theorem 8

in [9].
(c) by letting h(κ) = κ and p = 1, we find the Theorem 4

in [1].
(d) by letting h(κ) = κs and p = 1, we find the Theo-

rem 3.7 in [12].
(e) by letting h(κ) = κs, p = 1 and α = 0, we get

Remark 3.4(a) in [12].
Theorem 27: Let ζ : Y → R be a differentiable function

on Y◦ and y1, y2 ∈ Y , y1 < y2, and ζ ′ ∈ L1 ([y1, y2]). If |ζ ′|q

is exponentially (p, h)-convex on [y1, y2], and q, l > 1, 1/q+

1/l = 1, and α ∈ R, then∣∣∣∣∣ζ (y1)+ ζ (y2)2
−

p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤
yp2 − y

p
1

2p
T

1
l
6

(
1

q+ 1

) 1
q

T7
∣∣∣ ζ ′(y1)eαy1

∣∣∣q + T8 ∣∣∣ ζ ′(y2)eαy2

∣∣∣q
2


1
q

,

(II.14)

where

T6 =


1

2ypl−l1

2F1

(
l −

l
p
, 1; 2; 1− ( y2y1 )

p
)
, p < 0

1

2ypl−l2

2F1

(
l −

l
p
, 1; 2; 1− ( y1y2 )

p
)
, p > 0,

T7 =
∫ 1

0
h(κ)|1− 2κ|qdκ,

and

T8 =
∫ 1

0
h(1− κ)|1− 2κ|qdκ.

Proof 28: Using Hölder’s inequality on (I.7) of Lemma 6
and then applying the exponential (p, h)-convexity of |ζ ′|q on
[y1, y2], we get∣∣∣∣∣ζ (y1)+ ζ (y2)2

−
p

yp2 − y
p
1

∫ y2

y1

ζ (w)
w1−p dw

∣∣∣∣∣
≤

yp2 − y
p
1

2p

∫ 1

0

1

[κyp1 + (1− κ)yp2]
l− l

p

dκ

 1
l

×

(∫ 1

0
|1− 2κ|q

∣∣∣∣ζ ′ ([κyp1 + (1− κ)yp2
] 1
p

)∣∣∣∣q dκ)
1
q

≤
yp2 − y

p
1

2p
B

1
l
6

(∫ 1

0
|1− 2κ|q

×

[
h(κ)

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + h(1− κ) ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q] dκ) 1
q

=
yp2 − y

p
1

2p
T

1
l
6

(
T7

∣∣∣∣ζ ′(y1)eαy1

∣∣∣∣q + T8 ∣∣∣∣ζ ′(y2)eαy2

∣∣∣∣q)
1
q

, (II.15)

note that

T6 =
∫ 1

0

1

[κyp1 + (1− κ)yp1]
l− l

p

dκ

=


1

2ypl−l1

2F1

(
l −

l
p
, 1; 2; 1− ( y2y1 )

p
)
, p < 0

1

2ypl−l2

2F1

(
l −

l
p
, 1; 2; 1− ( y1y2 )

p
)
, p > 0.

(II.16)

By substituting (II.16) in (II.15), we get (II.14).
In above theorem once we let h(κ) = κ , we get∫ 1

0
κ|1− 2κ|qdκ =

∫ 1

0
(1− κ)|1− 2κ|qdκ =

1
2(q+ 1)

.

Thus we have following remark.
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Remark 29: In Theorem 27,
(a) by letting h(κ) = κ , we obtain the Theorem 2.6 in [12].
(b) by letting h(κ) = κ andα = 0, we obtain the Theorem 9

in [9].
Now for the next two results we take h1, h2 : J ⊆ R → R
be a positive function.
Theorem 30: Let ζ1, ζ2 : Y → R be integrable expo-

nentially (p, h1)- and (p, h2)-convex functions, respectively.
Let y1, y2 ∈ Y with y1 < y2. Let ζ1ζ2 ∈ L1 ([y1, y2]) and
h1h2 ∈ L1 ([0, 1]). Then for α ∈ R, we have

p

yp2 − y
p
1

∫ y2

y1

ζ1(w)ζ2(w)
w1−peαw

dw ≤ M (y1, y2)
∫ 1

0
h1(κ)h2(κ)dκ

+N (y1, y2)
∫ 1

0
h1(κ)h2(1− κ)dκ. (II.17)

where

M (y1, y2) =
ζ1(y1)
eαy1

ζ2(y1)
eαy1

+
ζ1(y2)
eαy2

ζ2(y2)
eαy2

,

and

N (y1, y2) =
ζ1(y1)
eαy1

ζ2(y2)
eαy2

+
ζ1(y2)
eαy2

ζ2(y1)
eαy1

.

Proof 31: Since ζ1 and ζ2 are exponentially (p, h1)- and
(p, h2)-convex functions, respectively, we have

ζ1

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(κy

p
1+(1−κ)y

p
2)

1
p

≤ ζ1

([
κyp1 + (1− κ)yp2

] 1
p

)
≤ h1(κ)

ζ1(y1)
eαy1

+ h1(1− κ)
ζ1(y2)
eαy2

, (II.18)

and

ζ2

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(κy

p
1+(1−κ)y

p
2)

1
p

≤ ζ2

([
κyp1 + (1− κ)yp2

] 1
p

)
≤ h2(κ)

ζ2(y1)
eαy1

+ h2(1− κ)
ζ2(y2)
eαy2

. (II.19)

From (II.18) and (II.19), we get

ζ1

([
κyp1 + (1− κ)yp2

] 1
p

)
ζ2

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(κy

p
1+(1−κ)y

p
2)

1
p

≤

[
h1(κ)

ζ1(y1)
eαy1

+ h1(1− κ)
ζ1(y2)
eαy2

]
×

[
h2(κ)

ζ2(y1)
eαy1

+ h2(1− κ)
ζ2(y2)
eαy2

]
= h1(κ)h2(κ)

ζ1(y1)
eαy1

ζ2(y1)
eαy1

+ h1(κ)h2(1− κ)
ζ1(y1)
eαy1

ζ2(y2)
eαy2

+h1(1− κ)h2(κ)
ζ1(y2)
eαy2

ζ2(y1)
eαy1

+h1(1− κ)h2(1− κ)
ζ1(y2)
eαy2

ζ2(y2)
eαy2

. (II.20)

By integrating inequality (II.20), on both sides, over κ ∈
[0, 1], we find

∫ 1

0

ζ1

([
κyp1 + (1− κ)yp2

] 1
p

)
ζ2

([
κyp1 + (1− κ)yp2

] 1
p

)
eα(ry

p
1+(1−r)y

p
2)

1
p

dκ

≤

∫ 1

0

[
h1(κ)

ζ1(y1)
eαy1

+ h1(1− κ)
ζ1(y2)
eαy2

]
×

[
h2(κ)

ζ2(y1)
eαy1

+ h2(1− κ)
ζ2(y2)
eαy2

]
dκ

=
ζ1(y1)
eαy1

ζ2(y1)
eαy1

∫ 1

0
h1(κ)h2(κ)dκ

+
ζ1(y1)
eαy1

ζ2(y2)
eαy2

∫ 1

0
h1(κ)h2(1− κ)dκ

+
ζ1(y2)
eαy2

ζ2(y1)
eαy1

∫ 1

0
h1(1− κ)h2(κ)dκ

+
ζ1(y2)
eαy2

ζ2(y2)
eαy2

∫ 1

0
h1(1− κ)h2(1− κ)dκ.

Then
p

yp2 − y
p
1

∫ y2

y1

ζ1(w)ζ2(w)
w1−peαw

dw

≤ M (y1, y2)
∫ 1

0
h1(κ)h2(κ)dκ

+N (y1, y2)
∫ 1

0
h1(κ)h2(1− κ)dκ. (II.21)

where

M (y1, y2) =
ζ1(y1)
eαy1

ζ2(y1)
eαy1

+
ζ1(y2)
eαy2

ζ2(y2)
eαy2

,

and

N (y1, y2) =
ζ1(y1)
eαy1

ζ2(y2)
eαy2

+
ζ1(y2)
eαy2

ζ2(y1)
eαy1

.

Corollary 32: Under the similar assumptions of Theo-
rem 30,
(i) for h1(κ) = h2(κ) = κ , we get

p

yp2 − y
p
1

∫ y2

y1

ζ1(w)ζ2(w)
w1−peαw

dw ≤
1
3
M (y1, y2)+

1
6
N (y1, y2);

(II.22)

(ii) for h1(κ) = h2(κ) = κ and p = 1, we get

1
y2 − y1

∫ y2

y1

ζ1(w)ζ2(w)
eαw

dw ≤
1
3
M (y1, y2)+

1
6
N (y1, y2);

(II.23)

(iii) for h1(κ) = h2(κ) = κs, we get

p

yp2 − y
p
1

∫ y2

y1

ζ1(w)ζ2(w)
w1−peαw

dw

≤
1

2s+ 1
M (y1, y2)+

s
(s+ 1)(2s+ 1)

N (y1, y2); (II.24)
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(iv) for h1(κ) = h2(κ) = κs and p = 1, we get

1
y2 − y1

∫ y2

y1

ζ1(w)ζ2(w)
eαw

dw

≤
1

2s+ 1
M (y1, y2)+

s
(s+ 1)(2s+ 1)

N (y1, y2) (II.25)

(v) for h1(κ) = κ and h2(κ) = κs, we get

p

yp2 − y
p
1

∫ y2

y1

ζ1(w)ζ2(w)
w1−peαw

dw

≤
1

s+ 1
M (y1, y2)+

1
(s+ 1)(s+ 2)

N (y1, y2); (II.26)

(vi) for h1(κ) = κ , h2(κ) = κs and p = 1, we get

1
y2 − y1

∫ y2

y1

ζ1(w)ζ2(w)
eαw

dw

≤
1

s+ 2
M (y1, y2)+

1
(s+ 1)(s+ 2)

N (y1, y2). (II.27)

where M (y1, y2) and N (y1, y2) defined in Theorem 30.
Remark 33: (a) In Corollary 32 (ii), if we let α = 0, we get

inequality (1) of Theorem 1 in [15].
(b) In Corollary 32 (vi), if we let α = 0, we get the

inequality of Theorem 5 in [10].

III. CONCLUSION
This research investigation includes someHermite-Hadamard
type inequalities for exponentially (p, h)-convex function.
Some special cases are discussed, which implies new and
previous results.
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