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ABSTRACT The regulation of water and fertilizer for alfalfa growth is not precise enough because the
regulation strategy cannot track alfalfa growth dynamically. In this paper, we propose a precision regulation
model of water and fertilizer for alfalfa based on agriculture cyber-physical system (ACPS) for irrigation
and fertilizer management in alfalfa (PRMWFA-ACPS). The proposed PRMWFA-ACPS is a comprehensive
model that includes the biophysical submodel, the computation submodel of water and fertilizer regulation,
and the interaction of the submodels for both. The proposed model interacts with the alfalfa growth and
its physical environment along with the irrigation strategy to improve the precise regulation of water
and fertilizer. To verify the performance of the proposed model, we develop a simulation platform for
PRMWFA-ACPS based on Ptolemy. Through physical experiments performed in the field at the Ningxia
irrigation area of the Yellow River over three years (2016-2018), we verified and analyzed PRMWFA-ACPS
by comparing the simulated and measured values, such as the growth period, leaf area index, soil water
content and alfalfa yield. The experimental results show that the mean relative error of the growth period
simulated by the model is between 1.9% and 6.8%, the mean relative error of the leaf area index simulated
by the model is between 2.1% and 9.8%, the mean relative error of the soil water content simulated by the
model is between 4.3% and 12.8%, and the mean relative error of the yield simulated by the model is between
1.2% and 14.3%. These findings indicate that PRMWFA-ACPS has promising applicability to the Ningxia
irrigation area of the Yellow River and improves the accurate regulation of water and fertilizer application
to alfalfa in a complex physical environment.

INDEX TERMS Alfalfa, agriculture cyber-physical system, precise regulation, growth model, Ptolemy.

I. INTRODUCTION
Alfalfa (Medicago sativa L.) is one of the most widely cul-
tivated and used forages in the world [1]–[3]. It plays an
important role in dairy farms in northwest China. However,
alfalfa production is restricted by environmental factors in
these areas, such as large temperature differences, water
shortages and soil pollution. These difficulties motivate us
to improve the water and fertilizer regulation strategy to
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maximize the economic return and to minimize the environ-
mental impact [4]–[5].

At present, the regulation of water and fertilizer for
improved alfalfa growth is generally based on a combination
of field experience and automation technology [6]–[7]. This
method uses computer technology and advanced electronic
technology to perceive the external physical environment of
alfalfa (such as the climate, water, and soil) and create an
irrigation strategy that improves the accuracy of the water
and fertilizer irrigation. However, this method cannot dynam-
ically track the growth status of alfalfa, and thus it affects the
precision of the water and fertilizer regulation.
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Information on the external physical environment of alfalfa
can be perceived by advanced sensing technology. However,
the alfalfa growth dynamic cannot be perceived directly by
sensing. The crop indices (e.g., measures of growth), which
result from the comprehensive interaction between the envi-
ronment and the plant, have been key for developing the pre-
cision regulation strategy. Thus, the key issues are to obtain
the physical information on alfalfa growth under different
environments and to integrate the computation process deeply
to improve the accuracy of the water and fertilizer regulation.
The agriculture cyber-physical system (ACPS) provides a
way to improve this problem.

ACPS is the cyber-physical system (CPS) as designed and
applied to agriculture [8]–[11]. It enhances the ability of
agricultural systems to engage in real-time communication,
precise regulation and self-coordination through the deeper
integration of computation with physical processes. The
alfalfa growth process is a biological process, and changes in
soil moisture and fertilizer are physical processes. The water
and fertilizer regulation strategy is a discrete computational
process. Biophysical processes affect computation processes
and vice versa. Therefore, this feedback loop in alfalfa is a
specific application of ACPS to precision regulation.

The challenges are how to obtain physical information on
alfalfa growth when given different water supplies and vari-
able fertilizer under different environments, and how to inte-
grate the alfalfa growth process and its physical environment
(biophysical processes) into a precise regulation strategy for
water and fertilizer (computation processes). To address these
issues, the objectives of this study are 1) to build a com-
prehensive biophysical model into ACPS, which includes
biophysical model construction in ACPS and its interaction
with the computation model, 2) to propose a precision reg-
ulation model of water and fertilizer for alfalfa based on the
ACPS (PRMWFA-ACPS), and 3) to validate and evaluate the
proposed agricultural cyber-physical model.

The remainder of this paper is organized as follows.
Section II introduces some related work. Section III pro-
poses a PRMWFA-ACPS model, develops the submodels
of PRMWFA-ACPS, including the biophysical submodel of
alfalfa, the computation submodel of water and fertilizer
regulation, and the interaction submodel of the two. A simu-
lation platform of PRMWFA-ACPS in Ptolemy is discussed
in Section IV. Through physical and simulation experiments
in the Ningxia irrigation area of the Yellow River, we verify
and evaluate the PRMWFA-ACPS in Section V. Section VI
presents the conclusions.

II. RELATED WORK
In recent years, many researchers have focused on using
the ACPS to improve irrigation accuracy [12]. For example,
Dong et al. presented a precision agriculture system that
would provide independent and precise irrigation manage-
ment functions in real-time [13]. Khriji et al. presented a
precise irrigation system that achieves precision irrigation
through a comprehensive analysis of data from the external

environment [14]. Oliveira et al. presented a new energy and
environmental model based on ACPS to provide intelligent
integrated management of greenhouse flowers [15]. Selmani
et al. presented a new approach to the cyberization of solar
photovoltaic water systems for remote irrigation manage-
ment [16]. These studies address precision irrigation for dif-
ferent crops based on ACPS. However, they have ignored the
crop growth information in the physical environment, thus
affecting the precision of the irrigation strategy.

Crop growth information is related to the crop’s own char-
acteristics. Considering crop growth information is important
for precision regulation, and these data cannot be perceived
by sensors; thus, researchers have further explored methods
to obtain dynamic crop information and to incorporate it
into ACPS applications. Jiang et al. stores the fruit growth
data in a historical database to perform data collection on
crop growth [17]. Consequently, for crop growth models,
increasing numbers of crop models involve decision support
systems to improve precision regulation [18]–[20]. Neverthe-
less, their applications on field crops might be limited by the
high complexities of the soil-plant-atmosphere continuum,
climate variability, and real-time performance. Moreover,
Li et al. proposed a comprehensive model that combines
the soil water, alfalfa growth and weather conditions [21].
However, this model is unable to integrate the physical and
computation processes, thus affecting its accuracy. Therefore,
it is necessary to develop a precision irrigation system based
on ACPS that integrates an alfalfa growth model.

To date, several simulation models have been developed
for alfalfa. The first alfalfa model, SIMED, is a crop growth
model that simulates the physiological growth of alfalfa [22].
The ALSIM was then established based on the SIMED,
which improved the soil water budget to simulate alfalfa
under water restriction [23]. The ALF2LP is a branch of
ALSIM and considers alfalfa growth during different plant-
ing years [24]. These studies did not consider the effect
of the water and nitrogen balance on alfalfa growth. Con-
sequently, the researcher added the alfalfa growth model
to general models for simulating alfalfa growth under dif-
ferent environments and soil conditions, such as APSIM,
CROPGRO, and EPIC [25]–[28]. However, the compatibil-
ity and flexibility of the general models are weak. They
are difficult to integrate with new technology effectively.
Gao et al. presented ALFAMOD for alfalfa, which is incor-
porated with alfalfa production, meteorological and soil envi-
ronmental factors [29]. However, it cannot simulate alfalfa
growth under different amounts of irrigation and fertiliza-
tion. Based on ALFAMOD, we have established an alfalfa
growth simulation model based on water and nitrogen factors
(ALFSIM-WN) [30]. Alfalfa in the Ningxia irrigation area of
the YellowRiver is used as the research object, and this model
can simulate the growth dynamics of alfalfa on different water
supplies and variable fertilization under different climates.
We have performed field experiments to verify the accuracy
of the model, and the results show that it has higher accuracy
in alfalfa.
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FIGURE 1. PRMWFA-ACPS model.

III. ESTABLISHMENT OF PRMWFA-ACPS
A. PRMWFA-ACPS MODEL
The PRMWFA-ACPS is made up of three parts, namely the
physical environment, computation environment and cyber-
physical interaction, as shown in Figure 1.

1) The physical environment consists of external physical
environments and physical entities. The external physical
environment consists of climatic conditions (the temperature,
solar radiation, and precipitation) and the basic environment
(the field capacity, bulk density, wilting point, and soil nitro-
gen content). Physical entities include the alfalfa and the soil.
The growth of alfalfa and the changes in soil moisture and fer-
tilizer are continuous biophysical processes. The set of alfalfa
attributes (growth period, leaf area dynamics, photosynthetic
and respiration, potential productivity, soil moisture, soil
nitrogen, and yield) is represented by X . Usually, external
physical environment attributes can be obtained by sensors.
Future meteorological data can be obtained from weather
forecasts. Physical entity attributes and future soil attributes
can be obtained by an alfalfa growth model. The attributes of
the external physical environment affect the attributes of the
physical entity, and the attributes of the physical entity also
affect each other.

2) The computation environment is composed of com-
putation entities, which are precision regulation strategies.
The precision regulation strategy is performed by computer
technology. It is a discrete computation process consisting of
two attributes, namely water deficit and fertilizer deficit. The
set of computation entity attributes is represented by Y .
3) Cyber-physical interactions include the interaction of

physical to computation and the interaction of computation
to physical. These two interactions are implemented through
interaction parameters, and the set of interaction parame-
ters is represented by I. Interactive parameters of physical
to computation (meteorological data, growth period, soil

moisture data and soil nitrogen data) are formed by the
attributes of the external physical environment and physical
entities. They pass from the physical to the computation envi-
ronment. This is the interaction from physical to computation.
The computation environment provides regulation through
algorithms and interactive parameters of the physical environ-
ment, and they form interaction parameters of computation to
physical (the irrigation amount and nitrogen application rate).
Feedback to the physical environment affects the physical
entities. This is the interaction from computation to physical.
The interaction is represented by H .

We defined the PRMWFA-ACPS as a four-tuple S = (X ,
Y , I , H ). The interaction parameter set I provides for the
tightly related interactions between physical entity attributes
set X and computation entity attributes set Y . It connects
physical entities and computation entities like a bridge. The
physical entity attributes of alfalfa are a time-space correla-
tion. Therefore, the mapping from X to I can be represented
as X × t × x, y, z → I , t represents time, and x, y and z
represent a point of space coordinate. The computation entity
attributes are time-dependent, and mapping from Y to I can
be represented as Y × t → I . The definition of sets X , Y , I ,
and H are as follows:

1) X is a finite set of physical entity attributes, X ={x1,
x2, . . . , xn}. It describes the characteristics of physical entity
attributes and is obtained by the alfalfa growth model. Phys-
ical entity attributes include meteorological data, basic soil
data, the growth period, leaf area dynamics, potential produc-
tivity, yield, soil water content and soil fertility.

2) Y is a finite set of computation attributes, Y ={y1,
y2, . . . , yn}. It describes the characteristics of the compu-
tation entity attributes and is obtained by the algorithm of
the computation entity. The computation attributes of the
precision regulation strategy include the water deficit and the
nitrogen deficit.
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3) I is a finite set of interaction parameters, I ={i1,
i2, . . . , in}. It describes the interaction parameters of physical
to computation and the interaction parameters of computation
to physical.

4)H indicates the interaction of computation and physical,
H ={h1, h2, . . . , hn}. Each cyber-physical interaction hi ∈
H . It describes the mapping from I subset to Y subset or I
subset to X subset. The interaction of physical and computa-
tion goes two ways. Interaction H from physical to computa-
tion reflects the physical attributes effect on the computation
process. Interaction H from computation to physical reflects
the computation attributes effect on the physical process.

B. SUBMODELS OF PRMWFA-ACPS
1) BIOPHYSICAL SUBMODEL
The biophysical submodel is the foundation of
PRMWFA-ACPS. Sensors cannot perceive the future
changes in the soil. The biophysical model can simulate
future alfalfa growth, and its physical environment changes
to affect the planning strategy. This is also critical for the
accuracy of the precision regulation strategy.

The biophysical submodel integrates the external physical
environment and physical entities, simulates the dynamic
change of alfalfa and soil under different environments, and
provides the physical attribute set X . It includes the alfalfa
dynamic model, water balance model and nitrogen balance
model.

We define the biophysical attributes set X ={RDS, A,
PB, P, SWC, ND, PAR}, where RDS is the growth period,
A is the leaf area index (LAI), PB is the photosynthesis and
respiration, P is the potential productivity, SWC is the soil
water content, ND is the soil nitrogen, and PAR is the yield.
The establishment of the biophysical submodel is divided into
three steps.

a: ESTABLISHMENT OF THE ALFALFA DYNAMIC MODEL
The alfalfa dynamic model is a continuous dynamic simula-
tion process. It simulates the leaf area dynamic, photosynthe-
sis and respiration, carbohydrates, and potential productivity.

The RDS is based on the effective accumulated tempera-
ture. We obtained the alfalfa harvest data for different years
in the Ningxia irrigation area of the Yellow River and the
effective accumulated temperature to establish the alfalfa
growth period.
A is calculated by the leaf area dynamic model, which used

differential equations for modeling [31]

dA/dt = k · f (T ) · (Am − A) · A (1)

where the initial value of A is 0.1. Am is the maximum leaf
area index. T is the temperature (◦C). t is time (h). k is a
constant, the value of which is 0.055 [22]. f (T ) is calculated
by the temperature function.
P is calculated by the potential productivity model, which

used the photosynthesis and respiration functions for model-
ing [32]

P = 42.7493 · F · U · V ·W · Z (2)

where P is the potential productivity. F is the effective day
length of photosynthesis (h). The maximum intake of CO2
during the net photosynthetic of alfalfa is converted to car-
bohydrates (CH2O) with a value of 42.7493 kg/hm2

·h [32].
U is the solar radiation function. V is the leaf area func-
tion. W is the temperature function. Z is the respiratory
consumption function. These four functions constitute photo-
synthesis and respiration PB, which can be calculated using
Equations (3)–(6).

U = 1.18 · exp(−1942/I ) (3)

V = (1− exp(−ke · A)) (4)

W = −1.415+ 0.55 · log(E + R/4) (5)

Z = 1− 0.5 · (0.05 · exp(0.168 · (E−R/4))) (6)

where I is the amount of solar radiation (MJ/m2). ke is the
extinction coefficient. E is the daily mean temperature (◦C).
R is the daily temperature range (◦C).

b: ESTABLISHMENT OF A WATER BALANCE MODEL
The water balance model can simulate two different water
transport possibilities in different soil layers. It includes the
surface irrigation mode (surface irrigation or rain [30], [33])
and subsurface drip irrigation mode [30], [34]–[36].

(1) If the water supply method is surface irrigation,
the water balance model will select the surface irrigation
model for modeling. It calculates the canopy interception,
runoff, and the amount of water entering the soil. These
factors can be calculated using Equations (7)–(12).

C(d) = A(d) · (1− ekp·rain/24) (7)

prcip = surface+ rain− C(d) (8)

runoff =

0 prcip− 0.2R2 ≤ 0
(prcip− 0.2R2)2

prcip+ 0.8R2
prcip− 0.2R2 > 0

(9)

pinf = surface+ rain− C(d)− runoff (10)

pinf = 0.1pinf . (11)

hold(l) = (sat(l)− swl(l)) · dlayer(l) (12)

where A(d) is the leaf area index. kp is the parameter of sur-
face interception. rain is the precipitation (mm). C(d) is the
canopy interception of alfalfa (mm). prcip is the total water
(mm). runoff is the runoff (mm). R2 is the water retention
coefficient. pinf is the water entering the soil (mm). hold(l) is
the hold water of layer l (cm). swl(l) is the soil water content
of layer l (cm/cm3). sat(l) is the saturated water content of
layer l (cm/cm3). dlayer(l) is the soil thickness of layer l.

We used a loop structure to calculate the soil water content
layer by layer. First, the program judges whether there is
unsaturated infiltration (pinf≤hold(l)). If yes, the program
calculates the amount of water leaking from layer l to layer
l + 1 and the soil water content of layer l, and it updates the
pinf. Otherwise, the program calculates the soil water content
of layer l without updating the pinf.

(2) If the water supply method is subsurface drip irrigation,
the water balance model will select the subsurface drip irriga-
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tion model for calculating the water supply, vertical distance,
and horizontal distance of the wetting volume. These factors
can be calculated using Equations (13)–(15).

M = drip · 0.85/num (13)

F = A1 ·Mn1 (ks/q)3/2n1−1/2 (14)

E = A2 ·M
n2

(ks/q)3/2n2−1/2 (15)

where M is the water that is applied (m3). F is the radius of
the wetted soil volume at its widest point (m). E is the depth
of the wetting pattern (m/s). drip is the total amount of water
supplied (m3). ks is the soil hydraulic conductivity. q is the
dripper discharge. num is the number of emitters. A1, A2, n1,
and n2 are constants.
The soil water content of each layer is then obtained under

different water supply methods. The water balance model
continues calculating the potential evapotranspiration, poten-
tial evaporation, actual evaporation, potential transpiration,
root water uptake, and actual transpiration. Finally, we obtain
the actual soil water content (SWC), plant water uptake, and
soil water deficit factor (SWDF) per day.

c: ESTABLISHMENT OF THE NITROGEN BALANCE MODEL
The nitrogen balance model simulates the nitrogen balance.
We estimate the nitrogen requirement of alfalfa in the jth area
based on the yield target [30], [37]. The nitrogen requirement
(ND) and the nitrogen stress factor (NDEF) can be calculated
using Equations (16)–(21).

NSj = TNsj · S · EN · q
T−30
10

10 · np · GZ (16)

EN = 0.50− 0.1pHn− 0.2OMN (17)

OMN =

{
−0.33+ 0.33OMS1 ≤ OMS
0 OMS < 1

(18)

pHn =


−1.14+ 0.28pH 4.0 ≤ pH < 7.5
1.0 7.5 ≤ pH ≤ 8.2
4.6− 0.43pH 8.2 < pH ≤ 10.5
0 10.5 < pH ≤ 14

(19)

NI j = (NRj − NS j)/EC (20)

NDEF = (NS j + NI j · EC)/TNP (21)

where NSj is the soil nitrogen supply of the jth area (g/m2).
TNsj is the soil nitrogen content of the jth area (%). S is the
plot area (hm2). EN is the soil nitrogen supply rate (%). q10
is the temperature coefficient of soil mineralization. np is the
ratio ofmineralized nitrogen to total nitrogen. T is the average
temperature of the growth period (◦C).GZ is the dry weight of
each soil layer (kg).OMS is the soil organic matter (g/kg).NIj
is the nitrogen supply (g/m2). NRj is the nitrogen requirement
of alfalfa (g/m2). EC is the utilization of nitrogen (%). TNP
is the nitrogen requirement for high yields (g/m2). pHn is the
influence coefficient of the pH on the soil nitrogen supply.
OMN is the influence coefficient of the soil organic matter on
the soil nitrogen supply.

d: ESTABLISHMENT OF A BIOPHYSICAL MODEL OF ALFALFA
The actual yield of alfalfa is affected by the harvest index,
water, and fertilizer factors [30], [38]. The PAR can be calcu-
lated as

PAR = P · HI ·min(SWDF,NDEF) (22)

where the PAR is the actual yield (kg/hm2). HI is the harvest
index.

2) COMPUTATION SUBMODEL
The computation submodel consists of the precision regula-
tion strategy for water and fertilizer. It is a comprehensive
algorithm, and it is a complex multi-factor process that needs
to consider the growth status and environmental factors of
alfalfa. We established a multi-factor precision regulation
algorithm for water and fertilizer based on rules (MWFPAR).
It can accurately calculate the water and fertilizer deficit. The
precision control factors and threshold settings are as follows:

a: SOIL WATER CONTENT FACTOR (SWC)
The MWFPAR calculates the optimum soil water content for
the current alfalfa period, compares it with the current soil
water content, and then calculates the water deficit of each
soil layer.

b: CUTS FACTOR
The MWFPAR optimizes the irrigation strategy of the sec-
ond and third cuts, which adds another 5% of the irrigation
amount based on the current water deficit.

c: GROWTH PERIOD FACTOR (RDS)
Combined with the field irrigation methods and basic soil
conditions of alfalfa in the Ningxia irrigation area of the
Yellow River, we controlled the soil water content threshold
while ensuring a good yield. Under subsurface drip irriga-
tion, when the growth period was pre-branched or branched,
the setting SWC was not less than 70% of the field capacity.
When the growth period was in the bud stage, the setting SWC
was not less than 85% of field capacity. Under other irriga-
tion conditions, when the growth period was pre-branched
or branched, the setting SWC was not less than 70% of
field capacity. When the growth period was the bud stage,
the setting SWC was not less than 80% of field capacity. The
mathematical relationship between RDS and SWC is shown
in Equation (23)

SWC = FC · kxkx ∈ [0, 1] (23)

when 0 ≤ RDS ≤ 1; under subsurface drip irrigation or other
irrigation, kx ≥70%. When 1 < RDS ≤ 2, under subsurface
drip irrigation, kx ≥ 85%; under other irrigated conditions,
kx ≥ 80%.

d: CLIMATE FACTOR
The MWFPAR-ACPS can simulate the growth of alfalfa and
the dynamics of the soil moisture based on the meteorological
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conditions of the next day. If alfalfa requires irrigation, the
algorithm first judges whether it will rain the next day. If yes,
the biophysical submodel simulates the dynamic growth of
alfalfa (such as LAI and RDS) and the soil water content under
future weather conditions. The soil water contents of each
soil layer are then updated. Finally, the algorithm determines
whether to wait for the rain without affecting the output or
immediately perform the irrigation task.

e: SOIL LAYER FACTOR
The MWFPAR applies the loop structure to compute the
water deficit of each soil layer. The final total amount of
irrigation is the sum of the water deficits in each soil layer.

f: NITROGEN FACTOR
The current soil fertility testing technology cannot provide
real-time dynamic monitoring. The MWFPAR estimated the
nitrogen requirement of alfalfa in the jth district based on
current soil total nitrogen content and the target yield. Before
irrigation, the algorithm judges the current cuts and the num-
ber of alfalfa irrigation times, chooses different proportions
of nitrogen application strategies, and applies fertilizer during
the first irrigation.

The set of computation entity attributes Y = {Sw, Sn},
where Sw represents the water deficit and Sn represents the
nitrogen deficit. The MWFPAR is shown in Algorithm 1.

where x1 is an example of weather data for the next day.
RDS is the growth period. SWCL is the actual soil water con-
tent of layer L(cm3

·cm−3). OPT_SWC is the optimum water
content threshold for the current growth period (cm3

·cm−3).
SATL is the saturated water content of layer L(cm3

·cm−3).
dlayer(L) is the thickness of layer L(cm). In plot j, NRj is the
nitrogen requirement of the crops, NSj is the nitrogen supply
of crops, and EC is the nitrogen use efficiency.

3) CYBER-PHYSICAL INTERACTION SUBMODEL
The cyber-physical interaction submodel includes the inter-
action from physical to computation and the interaction from
computation to physical. The construction of these two sub-
models are intended to 1) define the interactive interface and
2) design the interactive function.

a: DEFINE THE INTERACTIVE INTERFACE
This construction includes the interface from physical to
computation and the interface from computation to physi-
cal. Therefore, the set is I ={Ipc, Icp}, where Ipc is a set
of interaction parameters from physical to computation and
Icp is a set of interaction parameters from computation to
physical. We define the interaction set hpc from physical to
computation, which is the mapping from the X subset to the
Ipc subset. We define the interaction set hcp from computation
to physical, which is the mapping from the Y subset to the Icp
subset. In the PRMWFA-ACPS, the interaction interface from
physical to computation is Ipc ={SWCl, SWC2, SWC3, SATl,
SAT2, SAT3, RDS, cuts, j, EC, FC, NRj, NSj}, and the interac-
tion interface from computation to physical is Icp ={Sw, Sn}.

Algorithm 1MWFPAR
Input: The model steps N during one episode, irrigation

methods IRR_MET, optimum soil water content
OPT_SWC, soil layer L, the cuts times cuts,
the irrigation times j, and the nitrogen use efficiency
EC.

Initialize crop data and flag.
Initialize meteorological data.
Initialize soil water and fertilizer data.
Output:Water and fertilizer deficit.

1 for i = 1 to N do
2 for Soil_layer=1 to L do
3 if IRR_MET== 0 then
4 if RDS≥0 and RDS≤1 then
5 OPT_SWC=FC∗70%;
6 end if
7 if RDS>1 and RDS≤2 then
8 OPT_SWC=FC∗80%;
9 end if
10 end if
11 if IRR_MET==1 then
12 if RDS≥0 and RDS≤1 then
13 OPT_SWC=FC∗70%;
14 end if
15 if RDS>1 and RDS≤2 then
16 OPT_SWC=FC∗85%;
17 end if
18 end if
19 if SWCL≥OPT_SWC then
20 flag=FALSE; /∗continue to monitor∗/
21 end if
22 if SWCL <OPT_SWC then
23 C←{x1}C← {x1}
24 if x1[Rainfall]>0 then
25 According to the future weather date x1[ ], the

biophysical model simulates the alfalfa growth,
soil moisture dynamics, and update soil water
content in each layer (SWCL );

26 if SWCL ≥OPT_SWC then
27 flag=FALSE; /∗continue to monitor∗/
28 else
29 flag=TRUE; /∗Prepare for irrigation∗/
30 end if
31 end if
32 flag=TRUE; /∗Prepare for irrigation∗/
33 if flag==TRUE then
34 if cuts==2 or cuts==3 then
35 if j ==1 /∗Variable nitrogen then
36 application during the first irrigation∗/
37 SL = (SATL − SWCL )∗dlayer(L)∗1.05;
38 N =(NRj-NSj)/EC;
39 else
40 SL =(SATL -SWCL )∗dlayer(L)∗1.05;
41 end if
42 end if
43 if cuts==1 or cuts==4 then
44 if j == 1 then
45 SL = (SATL − SWCL )∗dlayer(L);
46 N =(NRj-NSj)/EC;
47 else
48 SL =(SATL -SWCL )∗dlayer(L);
49 end if
50 end if
51 end if
52 Sw+ = SL ; Sn = N ;
53 end if
54 end for
55 end for

The values of some interaction parameters in the mapping
set of Ipc are relatively stable situations in certain cuts, such
as the field management, initial soil data on fertility, and
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FIGURE 2. PRMWFA-ACPS based on Ptolemy.

field capacity. Therefore, they are uniformly defined as global
variables in Ptolemy.

b: DESIGN THE INTERACTIVE FUNCTION
The alfalfa dynamic growth and the external physical envi-
ronment change are a dynamic continuous biophysical pro-
cess. The precision regulation strategy of water and fertilizer
is performed by computer technology, which is a discrete
calculation process. Therefore, the interaction model from
physical to computation completes the sampling function.
It can discretize biophysical process set hpc to form interac-
tion parameters by sampling. Due to the different water and
fertilizer regulation strategies, the calculation results of the
water deficit and nitrogen deficit are different. The interac-
tion model from computation to physical is responsible for
completing the conversion calculation of the actual irrigation
amount of set hcp. The irrigation amount and nitrogen appli-
cation rate be calculated using Equations (24)–(25).

DEPIR_S = Area ∗ Sw (24)

FR_S = Area ∗ Sn/Cont (25)

where Area is the plot area (m2) and Cont is the N content of
fertilizer (%).

Cyber-physical interactions are performed by interactive
parameters. When the PRMWFA-ACPS predicts the irriga-
tion amount, the MWFPAR algorithm judges whether alfalfa
requires irrigation according to the current soil moisture sta-
tus. If yes, the algorithm calculated the water and fertilizer
deficit according to the rainfall in the next day and they are
transferred to the biophysical submodel as a set of interaction
parameters. The biophysical submodel transfers the alfalfa
and soil information as a set of interaction parameters to
the computation submodel for decision-making. For example,

if the current soil water content is less than the optimumwater
content, it needs irrigation. First, theMWFPAR calculates the
irrigation amount according to whether there will be rainfall
in the next day. If yes (Rainfall>0), set forecast=1 to indicate
that the current state is predicted state (otherwise, it indicates
that the state is direct calculation state). Second, we enter the
meteorological data of the next day in the PRMWFA-ACPS.
The biophysical submodel simulates the growth of alfalfa and
its physical environment dynamics in the next day and forms
the interactive parameter set Ipc. Then the Ipc is transferred to
the computation submodel to calculate the water and fertilizer
deficit under this rainfall condition. If Rainfall≤0, the water
and fertilizer deficit is directly calculated and transferred to
the biophysical submodel for execution.

IV. PRMWFA-CPS DESIGN IN PTOLEMY
We designed and implemented the PRMWFA-ACPS with
Ptolemy, which was developed by Berkeley University in
the United States [40]–[41]. We used the role-oriented and
model stratification to design the PRMWFA-ACPS, and we
applied ports to complete the system construction and data
communication. The PRMWFA-ACPS based on Ptolemy is
shown in Figure 2.

We packaged the biophysical submodel, computation
submodel and cyber-physical interaction submodels of
PRMWFA-ACPS in different containers. The details regard-
ing the container name, model function and output evaluation
index of each submodel in Ptolemy is shown in Table 1.

Since the leaf area index affects the physical entity as a
global variable, the LAI container and the Physical Model
container were designed to be the same level. During the oper-
ation of the PRMWFA-ACPS system, the Physical Model
container first simulates the physical alfalfa entities and the
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TABLE 1. Container name of each model and submodel package.

soil dynamics, and it transmits them to the PC_inter con-
tainer through the cyber-physical interaction port. In the
PC_inter container, the continuous data are sampled and
passed to the Computation Model container, which applies
the MWFPAR to calculate the water deficit and the nitrogen
deficit. The water and nitrogen deficits are then transmitted
to the CP_inter container. The CP_inter container combined
with the actual field, and it converts the water and fertilizer
amounts and sends them to the driving device for execution.

Finally, the regulation strategy involves feedback to the
Physical Model container to provide the loop feedback con-
trol of the ACPS. This regulation ultimately affects and
changes the physical environment.

A. BIOPHYSICAL SUBMODEL DESIGN
The biophysical submodel was packaged in the Physical
Model to simulate the alfalfa growth. We divided each
sub-function into different actors. The data for each con-
tainer were transmitted through ports. Figure 3 is the bio-
physical submodel of PRMWFA-ACPS based on Ptolemy.
A large number of mathematical models were involved in
the biophysical submodel. Using the simulation of leaf area
dynamics of alfalfa as an example, the temperature affects
the growth of the alfalfa leaf area. It is a typical dynamic
continuous biophysical process. When the temperature is
lower than 5◦C or higher than 35◦C, the alfalfa stops grow-
ing [32]. Figure 4 is the leaf area dynamic model based on
Ptolemy. LAI and f(T) are containers, and Tm, Am and A are
parameters.

B. COMPUTATION SUBMODEL DESIGN
The computation submodel includes the MWFPAR. The
MWFPAR needs to classify impact factors step by step.
Therefore, we used controls (such as SetVariable and
BooleanSwitch) in Ptolemy to build the Computation Model
container hierarchically by roles. We controlled the execution
direction of the algorithm according to the data flow direc-
tion. To develop the computation submodel, first, we used
Parameters and SerVariable controls to declare the data
set in the Computation Model container uniformly. Sec-
ond, we used the BooleanSwitch controls to calculate the
optimal soil water content under different irrigation meth-
ods and obtain the irrigation signal. The irrigation signal is
then transmitted to the COMPUT container through the data
input port. Finally, the COMPUT container calculates in turn
based on the algorithm of MWFPAR to obtain the water and
nitrogen deficit. Figure 5 is the computation submodel of
PRMWFA-ACPS based on Ptolemy.

C. CYBER-PHYSICAL INTERACTION SUBMODEL DESIGN
The cyber-physical interaction submodel primarily completes
the interaction and fusion of the physical and computation
processes. In PC_inter container, we used the PeriodicSam-
pler controls to perform sampling and collect discrete con-
tinuous data, which was transmitted by the physical process
(such as the soil water content of each layer, or the alfalfa
growth period). Based on the actual irrigation method and the
field area, the CP_inter container completes the conversion
and implementation tasks of the water deficit and nitrogen
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FIGURE 3. Biophysical submodel of PRMWFA-ACPS based on Ptolemy.

FIGURE 4. Leaf area dynamic model based on Ptolemy.

deficit. The interaction model PC_inter based on Ptolemy is
shown in Figure 6 (a). The interaction model CP_inter based
on Ptolemy is shown in Figure 6 (b).

V. VALIDATION AND METHOD FOR PRMWFA-ACPS
Experiments were performed to verify the accuracy of
the PRMWFA-ACPS results in the Ningxia irrigation area
of the Yellow River from 2016-2018 (four cuts per year).
Using the field data from 2016, we have finished setting the
physical environment parameters in the model [30]. In this
paper, we designed a number of evaluation indicators and
selected field data from the first and third cuts in 2017-
2018 to verify and evaluate the accuracy and applicability of
the PRMWFA-ACPS.

A. MATERIALS AND METHODS
1) EXPERIMENTAL DATA AND DESIGN
Experimental data were collected in Yinchuan at the
Maosheng Grass Industry Company, Ltd (First Grassland
Experiment Site; northwest China, latitude 38◦55’N, longi-
tude 106◦06′E, altitude 1150 m a.s.l.). The climate of the

TABLE 2. Soil initial conditions of field experiment.

experimental area is temperate continental and semi-arid. The
mean annual temperature is approximately 8◦C; the absolute
minimum is attained January and the absolute maximum
occurs between July and August. The annual average precip-
itation (approximately 180-220 mm) is primarily distributed
in June-September. The total evaporation is approximately
3000 mm.

The soil is a light gray calcium soil. The field capacity,
wilting point, and bulk density were measured for each layer
of a representative soil profile (Table 2). For the soil layer
ranged from 0-60 cm, the pH is 8.61, the organic matter con-
tent is 13.4 g·kg−1, the total nitrogen content is 0.76 g·kg−1,
the available phosphorus is 10.65 mg·kg−1, and the available
potassium is 128.26 mg·kg−1. The experimental field has a
flat terrain and convenient drainage.

The experimental site and the deployment of agricultural
sensors are shown in Figure 7. Two meteorological stations
and four soil moisture-sensing items were installed above
ground. Six types of sensors were employed to monitor
the following agricultural conditions continuously: the wind
speed, air humidity, air pressure, air temperature, net radi-
ation, and soil moisture. Each station has a field-data hub
to gather all the real-time data. The experimental alfalfa is
Medicago sativa No. 7, which is a salt-tolerant variety. The
drip irrigationmaterials involve a sidewall drip irrigation belt.
The distance between the emitters is 30 cm. The emitter flow
rate is 3.0 L/h. The distance between the belts is 60 cm and the
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FIGURE 5. Computation submodel of PRMWFA-ACPS based on Ptolemy.

FIGURE 6. Cyber-physical interaction submodel of PRMWFA-ACPS based on Ptolemy.

FIGURE 7. Experimental site and the deployment of agricultural sensors.

depth is 20 cm. The elementary plots are 24 m2 (4 m×6 m)
wide. The alfalfa was sown in May 2016.

The experiment design is based on meteorological
data from 2017-2018 from the experimental field. The

PRMWFA-ACPSwas used to calculate the irrigation amount,
nitrogen application rate, and application time. In 2017, the
first cuts irrigation quota was 1950 m3

·hm−2 and the nitro-
gen application rate was 72 kg·hm−2, and the third cuts
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TABLE 3. Model parameters and sources.

irrigation quota was 1425 m3
·hm−2 and the nitrogen appli-

cation rate was 24 kg·hm−2. In 2018, the first cuts irriga-
tion quota was 1500 m3

·hm−2 and the nitrogen application
rate was 72 kg·hm−2, the third cuts irrigation quota was
1125 m3

·hm−2 and no nitrogen was applied. The date and
the amount of irrigation were implemented in batches accord-
ing to different soil water deficit times and deficits during
different growth periods. The fertilizer was urea (including
N46.4%), and the soil basic fertility was measured after each
cuts. A nitrogen application was combined with the first irri-
gation. During the experiment, the weeding and pest control
of the plots were consistent.

2) MODEL PARAMETERS
There are plenty of parameters in PRMWFA-ACPS. Accord-
ing to the different parameters sources, we used different
methods to determine each parameter value. We determined
these parameters though two approaches [30]: 1) parts of
the parameter values are specified according to previous
researches, and 2) the other values are measured from field
experiments. The relevant parameters and sources of the
model are shown in Table 3.

To ensure the reliability of the parameters, experimental
data derived from Ningxia irrigation area of the Yellow River
was used to verify and calibrate the parameters.

3) EXPERIMENTAL EVALUATION INDICATORS
This study considered the physiological growth characteris-
tics and physical properties of alfalfa, and we defined four

evaluation indicators as the verification and evaluation crite-
ria for the PRMWFA-ACPS. The evaluation indicators and
their acquisition methods are as follows:

a: GROWTH PERIOD
Refers to the growth period of alfalfa from sowing (turns
green) to harvesting. Due to the influence of the temperature,
the harvest date is different for different harvest purposes. For
forage purposes, alfalfa is harvested during the first flowering
period (when flowering reaches 10%). A sample of 1 m2 was
randomly selected from each plot to record the crop density,
growth period, and harvest date.

b: LEAF AREA INDEX (LAI)
Refers to the ratio of the total leaf area to the land area.
It is an important vegetation index for estimating the light
energy status and canopy productivity of plants, and it is
also an important parameter for studying the photosynthesis
and transpiration of plants. During the experiments, the leaf
area index was measured weekly in each plot. Samples of
healthy leaves were randomly selected by stratification, and
the lengths and widths of the functional leaves (the mid-
dle leaves of the three leaflets) were measured with vernier
calipers. The leaf area and leaf area index were calculated
according to the leaf area estimation formula. If it rained,
the measurements were postponed.

c: SOIL WATER CONTENT (SWC)
Refers to the ratio of volume occupied by water in the soil to
the total volume of the soil. It is an important indicator of the
demand for water by alfalfa. In the experiment, the soil water
content was measured using MP406 soil moisture sensing
equipment produced in Australia. These sensors were dis-
tributed throughout different soil layers at each plot, at depths
of 10 cm, 20 cm, and 30 cm, which were measured every
30 minutes and monitor for 24 hours in real time. Simul-
taneously, the precipitation and irrigation management were
recorded.

d: ABOVEGROUND BIOMASS (AGB)
Refers to the total amount of crop dry matter per unit of
land area, which does not include the roots. It can reflect the
alfalfa productivity. The higher the output is, the stronger the
productivity. During the first flowering period, alfalfa with
uniform growth was selected for cutting. The aboveground
biomass was measured by sampling three 1 m2 area for each
plot and drying them in an oven at 60◦C until they reached a
constant weight.

4) MODEL ACCURACY CALCULATION
To evaluate the model performance, we used the mea-
sured/simulated ratio andmean relative error (MRE; Eq. [26])

MRE =
1
N

N∑
i=1

∣∣∣∣ VS, i− VO, i
VO, i

∣∣∣∣ × 100% (26)
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FIGURE 8. Comparison between simulated and measured LAIs of first and third cuts from 2017 to
2018.

TABLE 4. Comparison of simulated and measured growth period for first
and third cuts from 2017 to 2018 (Effective accumulated temperature/◦C).

where N is the total number of data points for comparison,
VO,i is a given measured value, and VS,i is the corresponding
value predicted by the model. A better model prediction will
produce a smaller MRE.

B. RESULT ANALYSIS
1) ANALYSIS OF HARVEST AND GROWTH PERIOD
The growth period simulation is based on the effective accu-
mulated temperature index of alfalfa (the sum of daily tem-
peratures greater than 5◦C). The temperature levels during
different years have a specific influence on the alfalfa growth.
The simulated and measured growth period of the first and
third cuts in 2017-2018 are shown in Table 4.

Table 4 shows that the mean relative error (MRE) is below
7%, which is between the simulated and measured results for
the first and third cuts in 2017-2018. The turn green date of
alfalfa in 2017 was March 28, and in 2018, it was April 7th.
Therefore, the harvest periods are different under different
cuts for different years, which is the primary cause of the
error.

2) ANALYZING SIMULATED AND MEASURED VALUES OF LAI
The LAI of alfalfa has an ‘‘S’’ shape. The LAI increased
rapidly from the turn green stage (regeneration stage) to the
first flowering, which approached or reached the maximum
of 6.0. After the pod-forming period, the LAI gradually
decreased. For forage production in the Ningxia irrigation
area of the YellowRiver, alfalfa is harvested at first flowering.
The LAI shows a parabolic trend from the regeneration stage
to the first flowering.

The comparison between simulated and measured LAIs of
first and third cuts in 2017-2018 are shown in Figure 8. The
curve is the simulated LAI and the point data are measured.

Figure 8 shows that the alfalfa LAI grows rapidly after the
plant turns green (regeneration stage) and reaches a higher
level when it reaches the first flowering period. The LAI
increased from 0.1 to 6.0, and the basic simulation trends
are basically consistent with the measured ones. The overall
trends in measured and simulated results are very consistent.
The maximum date of the simulated LAI is close to the
measured date. In 2017, the MRE of the LAI simulation
was below 9.8%. In 2018, the MRE was below 9.1%. The
simulated and measured LAIs showed good fit over two
consecutive years.

Although the simulated and measured LAIs deviated
slightly, the model of the LAI simulation can basically repre-
sent the LAI growth process of alfalfa. The measured error of
the experimental and limited samples selected here may have
caused the error.
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FIGURE 9. Comparison between simulated and measured soil water contents of first and third cuts in 2017.

3) ANALYZING SIMULATED AND MEASURED VALUES OF
SOIL WATER CONTENT
In combining the meteorological data from the experimental
area, the PRMWFA-ACPS simulates the dynamic balance in
the soil water content during the alfalfa growth period day by
day.

The comparison between the simulated and measured soil
water contents for the first and third cuts in 2017-2018 are
shown in Figure 9 and Figure 10. We compared the soil water
contents in three layers (0-10 cm, 10-20 cm, and 20-30 cm).

The results show that the simulation is highly consistent
with the measured data from 2017-2018, and the overall
trend is basically the same. In different soil layers (10 cm,
20 cm, and 30 cm), the MRE of the first cuts is between
4.4% and 9.3%, and the MRE of the third cuts is
between 4.3% and 7.7% in 2017. The MRE of the first cuts
is between 5.9% and 12.8%, and the MRE of the third cuts
is between 6.0% and 8.0% in 2018. The soil water content
between the simulated andmeasured results show good fitting
in different soil layers under different cuts.

Although the soil water contents between the simulated
and measured results are slightly different, the MRE of the
first and third cuts is below 12.8% for two consecutive
years. This finding indicated that the PRMWFA-ACPS can
basically simulate the dynamic change in the soil water
content under different precipitation or irrigation regulation
strategies. Through repeated experiments for two consecutive
years, we found that the PRMWFA-ACPS has higher error
when simulating the soil water content of the first cuts, which

may be related to the fact that the model does not include
the influence of the wind speed on the soil water content.
In the Ningxia irrigation area, the wind speed is higher from
April to May, which is the primary factor that affects the
simulated and measured errors in the first cuts. Other errors
may have been caused by 1) related factors such as the age
of the sensors, the working state and the performance of the
acquisition circuit during the experiment, occasional sensor
failure, protocol conversion, packet loss, and other phenom-
ena leading to abnormal detection data, and 2) influence by
wear on the irrigation equipment, with errors in the actual
irrigation amount, and 3) micro-rainfall recorded in error in
different regions.

4) ANALYZING SIMULATED AND MEASURED YIELD VALUES
According to the physical environment data from differ-
ent years, the PRMWFA-ACPS dynamically formulates the
water and fertilizer precision regulation strategies and pre-
dicts the alfalfa yield under different strategies. The predicted
and actual yields of the first and third cuts in 2017-2018 are
shown in Table 5.

Table 5 shows that the predicted yield in 2017 (the second
year) is lower than the predicted yield in 2018 (the third year).
It is consistent with the yields of the third and fourth year
being higher, which is presented by Yan et al. [42]. For two
consecutive years, the predicted yield of the first cuts was
higher than that of other cuts, which is consistent with the
study by Sun et al. [43]. In comparing the predicted and
measured yields of the first and third cuts, the MRE was
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FIGURE 10. Comparison between simulated and measured soil water contents of first and third cuts in 2018.

TABLE 5. Comparison between simulated and measured yields of first
and third cuts from 2017 to 2018 (AGB kg·hm−2).

between 5.4% and 14.3% in 2017, and between 1.2% and
8.0% in 2018. Under different water and fertilizer regulation
strategies, the simulated yield accuracy shows a good fit.
The reason for the error may be the environmental difference
between actual growth and the model simulation, and others
may be the acquisition of data errors, measurement errors,
and losses caused by field management activities.

VI. CONCLUSION
Using the results of field experiment, we determined
the primary parameters of the PRMWFA-ACPS in 2016,
and we evaluated the applicability and accuracy of the
PRMWFA-ACPS in the Ningxia irrigation area of the Yellow
River. According to the research results, we obtained the
following primary conclusions.

1) We introduced an alfalfa growth model into the ACPS,
and we developed the PRMWFA-ACP to address the deep
interaction between computation processes and physical pro-
cesses. The PRMWFA-ACPS could predict the growth of
alfalfa and the variation in soil water and nitrogen on

the basis of weather forecasts. This method improves the
accuracy of water and fertilizer regulation strategies by
dynamically tracking the alfalfa growth process. Moreover,
the MWFPAR comprehensively considers the environmental
factors to improve the accuracy of water and fertilizer irri-
gation management. This is a new attempt at precision grass
research and improves the efficiency of resource utilization
in northwest China.

2) The PRMWFA-ACPS was adopted for a field experi-
ment for two consecutive years. It calculated the amount of
water and fertilizer and predicted the yields. The results show
that the mean relative error of yields between simulated and
measured results is between 1.2% and 14.3%. The simulated
and measured yields fit well. This finding indicates that the
PRMWFA-ACPS has good applicability in the Ningxia irri-
gation area of the Yellow River.

3) For an accurate PRMWFA-ACPS result, we comprehen-
sively evaluated and analyzed the model using a number of
indicators such as the alfalfa growth period, leaf area index,
and soil water content. The results of the field experiments
for two consecutive years indicate that the mean relative error
for the growth period between the simulated and measured
results is below 6.8%, which is basically consistent with
the growth period of forage for harvesting purposes in the
Ningxia irrigation area. The mean relative error of the leaf
area index between the simulated and measured findings
is below 9.8%. The mean relative error of the soil water
content between simulated and measured results is below
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12.8%. These findings show that the accuracy of the model
is higher. Therefore, this model can effectively guide the
precision regulation of water and fertilizer applications to
alfalfa in the Ningxia irrigation area of the Yellow River and
the agro-pastoral ecotone of Northwest China.

In this paper, we developed the PRMWFA-ACPS to
achieve a precise regulation of water and fertilizer manage-
ment for alfalfa. The results show that the model has higher
accuracy and better applicability in the Ningxia irrigation
area. Moreover, by adjusting the parameters of the physi-
cal environment (e.g., the basic soil data, climate data, and
parameters of field management) and the parameters of the
physical model (leaf area, water balance model, and soil
mineralization) of the PRMWFA-ACPS, this model can be
extended to the precise regulation of different crops in other
different regions in future.
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