
SPECIAL SECTION ON GREEN COMMUNICATIONS ON WIRELESS NETWORKS

Received January 30, 2020, accepted February 14, 2020, date of publication February 20, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975248

Green Elevator Scheduling Based
on IoT Communications
LAN-DA VAN , (Senior Member, IEEE), YI-BING LIN , (Fellow, IEEE),
TSUNG-HAN WU , AND TZU-HSIANG CHAO
Department of Computer Science, National Chiao Tung University , Hsinchu 300, Taiwan

Corresponding author: Lan-Da Van (ldvan@cs.nctu.edu.tw)

This work was supported in part by the Ministry of Science and Technology (MOST) under Grant 108-2218-E-009-012, and
Grant 106-2221-E-009-028-MY3, in part by the MOST Pervasive Artificial Intelligence Research (PAIR) Labs under Contract MOST
109-2634-F-009-026, and in part by the Center for Open Intelligent Connectivity from the Featured Areas Research Center Program within
the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) of Taiwan.

ABSTRACT In this paper, we propose an energy-saving elevator scheduling algorithm to reduce the car
moving steps to achieve motor energy saving and green wireless communications. The proposed algorithm
consisting of six procedures can attain fewer Internet of Things (IoT)message exchanges (i.e. communication
transmissions) between the Scheduler subsystem and the Car subsystem via the core function AssignCar(r).
The function AssignCar(r) is capable of assigning a request to the nearest car through car search globally.
From the emulation results for four cars, this work shows that the proposed algorithm outperforms the
previous work named as aggressive car scheduling with initial car distribution (ACSICD) algorithm with
energy consumption reductions by 49.43%, 47.68%, 37.89%, and 47.65% for up-peak, inter-floor, down-
peak, and all-day request patterns, respectively.

INDEX TERMS Car moving step, car scheduling, communication transmissions, elevator system, energy
saving, green communications, internet of things (IoT), sensor, waiting/journey time.

I. INTRODUCTION
Due to modern building construction methods and new gov-
ernment regulations of lifting equipment, the elevator tech-
nologies have been significantly advanced in the past decade,
especially for the purpose of carrying the passengers. During
technology revolution, energy saving for green buildings in
smart cities is highly demanded. The modern elevators are
the potential energy consumption source since the elevator
cars carry many passengers every day under the commands
exchanged through the exiting wired communication net-
works as a part of a smart building. Since the cars and the
scheduler of the elevator system interact with each other
for car moves, inefficient elevator scheduling will lead to
redundant communication transmissions and unnecessary car
moves such that more energy will be consumed. Herein,
we design an energy-saving elevator scheduling that reduces
the car moving steps to attain energy reduction and green
communications under wireless communications.

There exist many elevator group control studies [1]–[20]
including the single-car elevator [1], [7], [8], multi-car

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You .

elevator [9], [10], [13], [16] and double-decker elevator [14].
Most elevator system studies focus on car scheduling to save
waiting times or journey times of the passengers. Approaches
based on genetic [12], neural network [3], [5], fuzzy [4], [11],
and reinforcement learning scheduling (RLS) [15] attempt
to minimize the waiting/journey times. Other approaches
attempt to reduce the energy consumption from the view-
points of circuit structure, circuit control, and scheduling con-
trol. Several of them [17]–[20] address the energy issue using
the scheduling control algorithms. In [19], Zhang et al. pro-
posed an ant colony optimization method considering energy
and scheduling for the elevator group control system (the
details will be described in the Appendix). However, these
scheduling control algorithms cannot easily exercise online
scheduling in practice due to batch request demand and iter-
ative learning behavior. Furthermore, to our best knowledge,
the Internet of Things (IoT) communications associated with
green elevator scheduling have not yet been explored. In par-
ticular, existing elevator systems utilize wired communica-
tions. In an elevator system called ElevatorTalk [1], we have
shown that IoT technologies can be used to implement dis-
tributed elevator scheduling, andwireless communication can
also be used in the elevator systems without degrading the

38404 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5673-1193
https://orcid.org/0000-0001-6841-4718
https://orcid.org/0000-0001-9475-5524
https://orcid.org/0000-0003-1657-1185
https://orcid.org/0000-0002-0604-3445

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 1. Configuring an 8-car elevator system through the ElevatorTalk
GUI (N = 8).

real-time performance of the cars. We have measured the
wireless delay [1], where the expectation is 59.14 ms and the
variance is 9.094.

ElevatorTalk has excellent passenger journey time per-
formance as compared with the previous approaches [1].
Another elevator performance measure is ‘‘moving steps’’
that determine energy consumption for carmotor andwireless
IoT communication. Specifically, reducing the car moves will
result in fewer IoT message exchanges to achieve green wire-
less communications. Unfortunately, how to reduce the car
moving steps in a systematic way is still open. An interesting
question is: how to manage the cars as ‘‘green elevators’’
by saving moving steps under the acceptable journey time.
To achieve this goal, we propose an energy-saving elevator
scheduling algorithm that assigns a request to the nearest car
through car search globally. Therefore, the energy consump-
tion of the elevator can be accordingly reduced due to fewer
car moving steps and wireless IoT message exchanges.

The remainder of this paper is organized as follows.
Section II demonstrates the proposed energy-saving elevator
scheduling algorithm. Section III evaluates and compares
energy saving of the developed system with other solutions.
The last section summarizes our work.

II. ELEVATORTALK PROCEDURES AND ENERGY-SAVING
ELEVATOR SCHEDULING ALGORITHM
In [1], we proposed the ElevatorTalk platform that allows
one to implement a distributed car scheduling algorithm
based on wireless IoT communication. Figure 1 illustrates

how an 8-car elevator system is configured through the
ElevatorTalk graphical user interface (GUI). In this figure,
ElevatorTalk includes the Panel subsystem, the Scheduler
subsystem, and the Car subsystem. Every subsystem except
for the Panel subsystem consists of an input part (repre-
sented by an icon on the left-hand side in Figure 1) and
an output part (represented by an icon on the right-hand
side in Figure 1). The Panel subsystem (Figure 1 (e)) issues
requests to the output part of the Scheduler subsystem
(Figure 1 (d)) and the input part of the Scheduler subsystem
(Figure 1 (c)) sends instructions to the output part of the
Car subsystem (Figure 1 (b)). After finishing the instruction
from the Scheduler subsystem (Figure 1 (c)), the input part
of the Car subsystem (Figure 1 (a)) sends current floor to
the output part of the Scheduler subsystem (Figure 1 (d)).
The instructions and the responses are implemented by
IoT message exchanges. The proposed energy-saving ele-
vator scheduling algorithm implemented in [1] consists
of six procedures including Panel, ReqArrival, SchCar(n),
UpTaskCar(n), DownTaskCar(n), and Car(n). Procedure
ReqArrival has three functions which are AssignCar(r),
MoveUp(r), and MoveDown(r). In our previous work [1],
the aggressive car scheduling with initial car distribution
(ACSICD) stores new arrival requests in the global structures.
Then, the cars select the requests to serve independently.
ElevatorTalk is an IoT platform where three subsystems are
implemented as IoT devices that communicate with each
other through wired or wireless communication. Although
most elevator systems are centralized with wired commu-
nication, wireless communication allows the structure of
distributed cars better. In a distributed car structure, it is
essential to reduce the number of message exchanges for car
moves. In other words, it is important to reduce car moves to
achieve green wireless communication as well as car motor
energy saving. This paper proposes the energy-saving eleva-
tor scheduling algorithm that reduces the car moving steps
to achieve the goal of energy saving for IoT communication.
Unlike the previous proposed solution ACSICD, as long as
a new request is issued by Procedure Panel in the Panel
subsystem, the energy-saving elevator scheduling algorithm
immediately assigns the request to a ‘‘carefully’’ selected car
n by Procedure ReqArrival in the Scheduler subsystem. Then
Procedures SchCar(n), UpTaskCar(n), and DownTaskCar(n)
in the Scheduler subsystem direct the n-th car to serve this
request. When the n-th car reaches the floor that has a request
with the same direction, the n-th car serves the request even if
the request is not assigned to the n-th car. The system symbols
used to describe the algorithm are listed in Table 1.

A. PROCEDURE Panel AND ReqArrival
Procedure Panel shown in Figure 2 interacts with the elevator
car operating panels (ECO) that can be a traditional panel in
the hall of each floor or a smart user interface (UI) interpreted
by web browsers in cell phones, personal computers, and
laptops.

VOLUME 8, 2020 38405

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

TABLE 1. System symbols.

FIGURE 2. Flowchart for Procedure Panel.

An ECO panel issues a request when a passenger
pushes the button, and then the request is received by
Procedure Panel. The format of the m-th request is

FIGURE 3. Flowchart for Procedure ReqArrival.

rm =
(
fs,rm ,Drm , Srm

)
, where fs,rm is the start floor from

which rm is issued. Drm ∈ {Up,Down} is the moving direc-
tion of rm. Srm is the set of target floors of them-th request rm.
In the loop (Steps P.2-P.5), the procedure waits for request rm
from the ECO panel at Step P.3, and then sends the request
to the Scheduler subsystem at Step P.4. We assume that the
elevator system is shut down for maintenance after it has
served M requests.
Procedure ReqArrival illustrated in Figure 3 is responsible

for receiving requests from Procedure Panel and dispatching
the requests to proper cars. Step R.1 initializes the related
variables. Step R.2 creates N threads of SchCar(n) to process
the requests assigned to the n-th car, where 1 ≤ n ≤ N . The
procedure maintains the global data structures Uplist Lu and
Downlist Ld , where Lu stores all unserved fs,r that are the
start floors of the requests with Dr = Up and Ld stores all
unserved fs,r with Dr = Down (Steps R.4-R.6). At Step R.7,
the core function AssignCar(r) is responsible for assigning
each request to a proper car in the Scheduler subsystem,
which is elaborated in the next subsection.

B. FUNCTION AssignCar(r)
Function AssignCar(r) searches for the car that takes mini-
mum carmoving steps to handle r . The flowchart is illustrated
in Figure 4, where the symbols for Function AssignCar(r) are
defined in Table 2. Two variables n and X∗ are initialized at
Step A.1, where n is set to 1 to represent the first car and

38406 VOLUME 8, 2020

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 4. Flowchart for Function AssignCar(r).

X∗ is set to INF . X∗ is used to store the temporary minimum
moving steps to pick up request r . Steps A.2-A.14 are a loop
to find the car to handle the request. Three local variables X ,
n∗, and d∗ are used. The sign and absolute value of X denote
the relative locations between request r and the n-th car and
the actual moving steps for the n-th car to pick up request r ,
respectively. n∗ denotes the tentative nearest car to request
r and d∗ is used to determine dn∗ (i.e. the moving direc-
tion of the n∗-th car) when leaving Function AssignCar(r).

TABLE 2. Symbols for Function AssignCar (r).

For a car n, Step A.3 sets X to fs,r − fn, where fs,r is the
start floor of request r and fn is the current floor of the n-th
car. Step A.4 uses the current moving direction of the n-th
car dn to check if the n-th car is moving. If dn is Up, Func-
tion MoveUp(r) at Step A.5 is invoked to update X (to be
elaborated in Section II.C). Step A.6 sets d to Up. Step A.11
checks if X is 0. If so, Step A.15 sets n∗ to n and breaks the
loop. If X is not 0 at Step A.11, Step A.12 checks whether
the absolute value of X is smaller than X∗. If so, Step A.13
sets X∗ to |X |, n∗ to n, and d∗ to d . At Step A.14, n is
incremented by 1. If dn is Down at Step A.4, then Step A.7
is executed to update X . Step A.8 sets d to Down and the
procedure proceeds to Step A.11. If dn is Idle at Step A.4,
Step A.9 uses the sign of X to determine the relative locations
between request r and the n-th car. If X > 0, the n-th car
moves up to handle the request, the flow proceeds to Step A.6
and sets d to Up. If X < 0, to the contrary, the flow proceeds
to Step A.8 and sets d to Down. If X equals 0 at Step A.9,
it implies that the n-th car is Idle on fs,r and no other car can
be closer to fs,r than the n-th car. Thus, Step A.10 sets d∗ to
Dr and then Step A.15 is executed to set n∗ to n and breaks
the loop. If n > N at Step A.2, Step A.16 is executed to check
whether Dr is Up. If so, fs,r is included in Cs,u(n∗). The set
Cs,u(n∗) stores the move-up requests to be handled by the n-th
car. Otherwise, fs,r is included in Cs,d (n∗) for the move-down
requests. Step A.19 sets dn∗ to d∗. Then we exit AssignCar(r)
and go back to Step R.3 of Procedure ReqArrival. Note that
if the n-th car is moving, dn∗ will remain unchanged after
Step A.19.

C. FUNCTION MoveUp(r)
The X value calculated at Step A.3 of AssignCar(r) does
not represent the number of floors that the n-th car moves if
this car needs to change its direction to pick up request r .
Figure 5 illustrates the relationship between a car and a
request. Function MoveUp(r) recalculates X to obtain the
actual moving steps between fs,r and fn according to four
cases. Cases 1.1& 1.2 (Figure 5 (a) and (b)) represent that fs,r
of the request is higher than or equal to fn of the n-th move-up
car (i.e. fs,r ≥ fn). Cases 2.1 & 2.2 (Figure 5 (c) and (d))
represent that fs,r of the request is lower than fn of the
n-th move-up car (i.e. fs,r < fn). In Cases 1.1 & 2.2, the
directions of the n-th car and the request are the same.
Conversely, in Cases 1.2 & 2.1, the directions of the n-th car

VOLUME 8, 2020 38407

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 5. Four cases in Function MoveUp(r) for the request assignment.

and the request are opposite. Note that in Cases 1.2 & 2.2,
the n-th car needs one more direction change before the
n-th car picks up request r compared with Cases 1.1 & 2.1,
respectively. The flowchart of FunctionMoveUp(r) is shown
in Figure 6. If the value of X at Step MU.1 is positive or
zero, the function proceeds to StepMU.2 (Case 1); otherwise,
the function proceeds to Step MU.4 (Case 2). Two variables
fh and fl , where fs,r ≤ fh ≤ F and 1 ≤ fl < fs,r , are used to
store the highest and the lowest floors to be reached by the
n-th car. Note that fl is set to F (the height of the building) at
Step MU.3 to indicate that fl is unused when setting X at Step
MU.12. The four cases are detailed as follows:

Case 1.1. (fs,r of request r with Dr = Up is above or equal
to fn). Step MU.2 checks if Dr = Down. In this
case, Dr is Up. We exit MoveUp(r) and go back
to Step A.6 of AssignCar(r) (i.e. X = fs,r − fn,
which has been set at Step A.3 of AssignCar(r)
already).

Case 1.2. (fs,r of request r with Dr = Down is above
or equal to fn). Step MU.3 sets fl to F . Then,
the function proceeds to compute the fh value.
Step MU.8 checks if there exists any fs,r in
Cs,u (n) that is higher than fn. If so, fh is
set to F at Step MU.9. Otherwise, fh is set
to max

{
fs,r ,maxCt (n),maxCs,d (n)

}
at Step

MU.10. At Step MU.11, since fl is F , the func-
tion goes to Step MU.12 to recalculate X as
(fh − fn)+

(
fh − fs,r

)
.

Case 2.1. (fs,r of request r with Dr = Down is below fn).
Step MU.3 sets fl to F . The function proceeds
to set fh at Steps MU.8-MU.10 as described in
Case 1.2. Because fl equals F at Step MU.11, X
is set to (fh − fn)+

(
fh − fs,r

)
at Step MU.12.

Case 2.2. (fs,r of request r with Dr = Up is below fn).
Step MU.5 checks if there exists any fs,r in Cs,d .

FIGURE 6. Flowchart for Function MoveUp(r).

If so, Step MU.6 sets fl to 1. Otherwise, fl is set
to min

{
fs,r ,minCt (n),minCs,u (n)

}
. The func-

tion proceeds to set fh at Steps MU.8-MU.10 as
described in Case 1.2. Since fl is not equal to
F at Step MU.11, Step MU.13 updates X to
(fh − fn)+ (fh − fl)+

(
fs,r − fl

)
.

Function MoveDown(r) is the same as Function
MoveUp(r) except for the direction reverses. This part is
omitted.

D. PROCEDURE SchCar(n)
Procedure SchCar(n) instructs the n-th car to pick up and
deliver the passengers to the destinations. Figure 7 illus-
trates the flowchart using four global data structures.
dn is the current moving direction of the n-th car, where
dn ∈ {Up,Down, Idle}. The up-request set Cs,u(n) indi-
cates the set of all unhandled fs,r assigned to the n-th
car with Dr= Up. Similarly, the down-request set Cs,d (n)
contains all unhandled fs,r assigned to the n-th car with
Dr= Down. The set Ct (n) includes the target floors that
the n-th car has to stop in the current moving direction.
Herein, Ct (n)=

{
ft,c (n, 1) ,ft,c (n, 2) , . . . ,ft,c (n,jn)

}
, where

ft,c(n, j) denotes the j-th target floor in the n-th car’s stop

38408 VOLUME 8, 2020

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 7. Flowchart for Procedure SchCar(n).

list Ct (n) for 1 ≤ j ≤jn and jn= |Ct (n)|. At Step S.1, dn is
set to Idle, and Cs,u(n), Cs,d (n), and Ct (n) are set to empty.
At Step S.1.5, the procedure waits to receive the updated sta-
tus fn of the n-th car from Procedure Car(n) (to be elaborated
in Section II.F). Procedure SchCar(n) of the Scheduler sub-
system and Procedure Car(n) of the Car subsystem must be
synchronized. Therefore, Step S.1.6 sends message (0, Idle)
to acknowledge Procedure Car(n) that the connection path
is ready. After initialization, Procedure SchCar(n) enters a
loop to handle the direction of the n-th car (Steps S.2-S.4).
Step S.2 checks the direction of the n-th car. If dn is
Up, the flow proceeds to Step S.4 and invokes Procedure
UpTaskCar(n) to instruct the n-th car to serve the assigned
requests (to be elaborated in Section II.E). If dn is Down,
Procedure DownTaskCar(n) at Step S.3 is invoked. Other-
wise, when dn is Idle, the procedure stays at Step S.2 until
dn is updated due to a new assigned request to the n-th car in
Function AssignCar(r) described in Section II.B.

E. PROCEDURE UpTaskCar(n)
Procedure UpTaskCar(n) in Figure 8 handles the requests
for the n-th car with dn= Up. Step U.1 assumes that the
n-th car will open the door on this floor (on= 1). When the
n-th car arrives at a floor, the n-th car serves not only fs,r of
the requests assigned to itself in Cs,u(n) but also unserved
fs,r of the requests in Lu. Therefore, at Step U.2, the proce-
dure compares Lu and Cs,u(n) to remove fs,r of the requests
that have already been served by other cars. At Step U.3,
the n-th car checks if fn is in Ct (n) or Lu. If so, the pro-
cedure goes to Step U.4 and then Steps U.4.1-U.4.3 remove
current floor fn from Ct (n), Lu, and Cs,u(n) (i.e. passengers
exit the n-th car). Then Step U.4.4 performs the union of
set Ct (n) and Sr , where Sr is the set of the target floors of

FIGURE 8. Flowchart for Procedure UpTaskCar(n).

request r (i.e. passengers enter the n-th car and push the
target floor buttons). At Step U.5, if Ct (n) is not empty or
there exists a request with fs,r that is higher than fn (i.e.
max

{
Cs,u(n)∪Cs,d (n)

}
>fn), then dn is set to Up. Otherwise,

if Ct (n) is empty and there still exists a request in Cs,u(n)
or Cs,d (n) (i.e. fs,r of the request is below fn), then dn is
set to Down. If Cs,u(n), Cs,d (n), and Ct (n) are empty, dn is
set to Idle. Step U.6 sends message (on,dn) to the n-th car
of the Car subsystem and Step U.7.1 waits for f from the
n-th car. Note that Steps U.7.2 and U.7.3 are designed to
prevent redundant door open operations [1]. At Step U.8, if dn
is not Up, the procedure returns to Step S.2 of SchCar(n).
Otherwise, the procedure proceeds to Step U.2 and the loop
goes on. At Step U.3, if fn belongs to neither Ct (n) nor Lu,
the procedure proceeds to Step U.9. This step is the same
as the first condition of Step U.5. If there exists a target
floor or an unserved request whose fs,r is above the n-th car,
the procedure proceeds to Step U.10 and sets on to 0 since no
passenger enters/leaves fn. Otherwise, the procedure proceeds
to Step U.11 and checks if there exists any request in Cs,d (n)
whose fs,r is the same with fn or there still exists any request

VOLUME 8, 2020 38409

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 9. Flowchart for Procedure Car(n).

in either the sets Cs,u (n) or Cs,d (n) whose fs,r is below fn.
If so, the direction dn is set to Down. Otherwise, the n-th car
becomes an idle car and the procedure returns to Step S.2 of
SchCar(n). Since Procedure DownTaskCar(n) is the same as
Procedure UpTaskCar(n) except for the direction reverses,
we do not detail this part herein.

F. PROCEDURE Car(n)
The car subsystem has N threads and each of them exe-
cutes Procedure Car(n) in Figure 9. For example, for
an 8-car system, the Car subsystem has such threads for
1 ≤ n ≤ 8. Procedures SchCar(n) and Car(n) synchronize
the communication at Step C.1 by a handshaking. In the
Car subsystem, Procedure Car(n) continues to wait for the
message (on,dn) from Procedure SchCar(n) in the Scheduler

TABLE 3. Symbols used in the performance evaluation.

subsystem described in Sections II.D and E. If on= 1 at
Step C.3, the car opens and closes the door to load/unload
the passengers at Step C.4. If dn is Up at Step C.5, the car
moves up one floor and fn is incremented by 1 at Step C.6.
If dn is Down at Step C.5, the car moves down one
floor and fn is decremented by 1 at Step C.7. After fn is
updated at Steps C.6 and C.7, through ElevatorTalk config-
uration in Figure 1, Step C.8 sends fn to either Procedure
UpTaskCar(n) or Procedure DownTaskCar(n) in the Sched-
uler subsystem described in Section II.E. If dn is Idle at
Step C.5, the flow proceeds to Step C.8 directly.

III. PERFORMANCE EVALUATION
In this section, we show the detailed experimental results
and performance evaluation. In Section III.A, we use an
energy consumption model to evaluate the energy consump-
tion of various scheduling algorithms. In Section III.B,
we describe four request patterns used for performance eval-
uation. In Section III.C, performance comparisons of the
energy-saving elevator scheduling algorithm and previous
proposed algorithms are demonstrated.

A. ENERGY CONSUMPTION MODEL
We adopt the energy consumption model in [19] to evaluate
the energy performance compared with other methods. The
symbols used to describe the energy consumption model are
listed in Table 3.

38410 VOLUME 8, 2020

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

TABLE 4. The parameters of traffic types.

The total energy consumption E of an elevator system
during the observation period T is

E = Ea + Ev,

where Ea is the total acceleration and deceleration energy
during T , which is defined by

Ea =
∑N

n=1
Ea (n) =

∑N

n=1

∑Rn

m=1
2× µn,m × ea.

In the above equation, Ea(n) is the acceleration and decel-
eration energy of the n-th car during T , Rn is the number of
requests served by the n-th car during T , µn,m is the number
of stops between request rm′ and request rm, where rm′ is the
previous request served by the n-th car on its moving path to
the start floor of request rm, and ea is the energy consumed by
one motor acceleration or deceleration (ea = 22.5kJ). Ev is
the total moving energy during T defined as follows:

Ev =
∑N

n=1
Ev (n)

=

∑N

n=1

∑Rn

m=1

∑µn,m

s=1
[|θ (n,m, s)×q̄− q| ×g

×h (n,m, s)],

where θ (n,m, s) is the number of passengers in the n-th car
on the moving path from the s-th stop to the start floor of
request rm, h(n,m, s) is the distance between the s-th stop and
its next stop when the n-th car is on the moving path to the
start floor of request rm. q̄ is the average mass of a passenger
(q̄ = 65kg), q is the difference between the counterweight
mass and the mass of the n-th car (q = 100kg), and g is the
acceleration of gravity (g = 9.8m/s2).

B. GENERATION OF REQUEST PATTERNS
In order to evaluate the performance of the proposed energy-
saving elevator scheduling algorithm, we adopt three types of
traffic including up-peak, inter-floor, and down-peak [2] for
T = 60 minutes in a 16-floor building. The up-peak traffic
occurs in the beginning of the workday while the down-peak
traffic occurs at the end of the workday. Otherwise, the traffic
type belongs to the inter-floor traffic. As shown in Table 4,
three types of traffic are characterized by three parameters:
peak arrival rate, peak interval, and base arrival rate.

According to the peak arrival rate in the peak interval
(i.e. 15 minutes) and the base arrival rate in the remain-
ing interval, the inter-arrival times (τm) of the requests are

produced by

τm =
−lnU
λ

,

where λ denotes the arrival rate in terms of the number of
requests per second and U represents a random value in
(0,1). We describe four types of generated request patterns
according to three traffic types with different arrival rates λ
as follows:
Up-peak: The up-peak request indicates that the start

floor is the base floor (i.e. 1F in our emula-
tion) and target floor is randomly selected from
2F-16F with the same probability. The peak
interval ranges from the 20-th minute to the
35-th minute during the 60-minute observation
period.

Inter-floor: The inter-floor request indicates that the start
floor and target floor are randomly selected
from 1F-16F with the same probability, where
the start floor and target floor are mutually
exclusive.

Down-peak: The down-peak request indicates that the target
floor is the base floor and start floor is randomly
selected from 2F-16Fwith the same probability.
The peak interval ranges from the 30-th minute
to the 45-th minute during the 60-minute obser-
vation period.

All-day: The all-day request indicates that the start floor
and target floor are selected according to the
Poisson distribution defined in [15], where the
all-day traffic consists of up-peak, inter-floor,
and down-peak traffic. The request in all-day
request pattern arrives at the interval from
7:00 AM-9:00 PM.

The up-peak, down-peak, and inter-floor request patterns
have 522, 504, and 300 requests for 60 minutes, respectively,
and all-day request pattern has 861 requests in our emulation
experiment. Note that in our emulation, we assume each
request r has only one target floor.

C. COMPARING ENERGY-SAVING ELEVATOR
SCHEDULING ALGORITHM WITH THE PREVIOUSLY
PROPOSED ALGORITHMS
We conduct timing emulationwhere Function sleep is utilized
to emulate moving up/down one floor and door opening and
closing in Procedure Car(n) in Section II.F. Based on the
motor mechanical characteristics, the time for a car to move
up/down one floor is not fixed [19]. Three car moving times
are summarized as follows: 1) When a car moves up/down
only one floor, the car moving time is 3.46s. 2) When a
car moves up/down two floors, the car moving time is 4.9s.
3) When a car moves up/down more than two floors, the car
moving time is set to 4.9s for the first two floors and 1.2s for
each extra floor.

Through the above emulation setting, we emulate the
proposed energy-saving elevator scheduling algorithm in

VOLUME 8, 2020 38411

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

TABLE 5. Performance for three scheduling algorithms.
(
N = 4, F = 16

)
.

TABLE 6. Performance for two scheduling algorithms.
(
N = 8, F = 16

)
.

Section II and ACSICD [1] using the request patterns
described in Section III.B. In our emulation experiments,
we evaluate the performance by the average waiting/journey
time and the energy consumption. The average waiting time
Tw is defined by

Tw =
∑M

m=1

∑N

n=1
Tw(m, n)/M ,

where Tw(m, n) denotes the duration between the arrival time
tm of the m-th request and the time that the n-th car picks up
the m-th request. The average journey time Tj is formulated
by

Tj =
∑M

m=1

∑N

n=1
Tj(m, n)/M ,

where Tj(m, n) represents the duration between the arrival
time tm of the m-th request and the time that the n-th car
which handles the m-th request arrives at the target floor
of the request. The energy consumption E is described in
Section III.A. Table 5 shows the average journey times and
the energy consumption of various algorithms with the up-
peak, inter-floor, down-peak, and all-day request patterns
for 4 cars. The proposed energy-saving elevator schedul-
ing algorithm outperforms ACSICD with energy consump-
tion reductions by 49.43%, 47.68%, 37.89%, and 47.65%
in terms of up-peak, inter-floor, down-peak, and all-day
request patterns, respectively. On the contrary, comparedwith
the energy-saving elevator scheduling algorithm, ACSICD
reduces the average journey times in terms of up-peak, inter-
floor, down-peak, and all-day request patterns by 23.99%,
1.07%, 5.89%, and -0.39%, respectively. Compared with the
performance in [19], our approach outperforms the ant colony
algorithm in terms of the energy consumption saving for up-
peak and down-peak request patterns by 5.81% and 47.33%,
respectively, where the detailed algorithm is described in
Appendix.

For the emulations with 8 cars as shown in Table 6,
the proposed energy-saving elevator scheduling algorithm
outperforms ACSICD with energy consumption reduction by
48.34% for all-day request pattern. On the contrary, compared
with energy-saving elevator scheduling algorithm, ACSICD
reduces the average journey time for all-day request pattern
by 0.19%.

The communication transmission in Tables 5 and 6 is
the number of message exchanges between the Sched-
uler subsystem and the Car subsystem to control the cars’
behavior. In terms of the communication transmissions,
the energy-saving elevator scheduling algorithm can attain
the reductions by 28.88%, 27.3%, 29.04%, and 20.18% for
N = 4 for up-peak, inter-floor, down-peak, and all-day
request patterns and 23.58% for N = 8 for all-day request
pattern compared with ACSICD, respectively. Thus, the pro-
posed algorithm can achieve green communications.

From Tables 5 and 6, compared with ACSICD,
the energy-saving elevator scheduling algorithm has better
energy saving in all request patterns because of the fewer car
moving steps and communication transmissions with a small
amount of increased average journey time.

IV. CONCLUSION
In this paper, the energy-saving elevator scheduling algo-
rithm is proposed and verified to reduce the energy con-
sumption in an elevator system with IoT communications.
Four types of request patterns including up-peak, inter-floor,
down-peak, and all-day are used to verify the performance
comparisons for 4 cars and the all-day request pattern is used
to evaluate the performance comparison for 8 cars. Through
these comparisons, this study outperforms ACSICD [1]
in all request patterns in terms of energy saving due to
fewer car moving steps and communication transmissions

38412 VOLUME 8, 2020

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

(i.e. IoT message exchanges) with acceptable average wait-
ing/journey time. Although making cars busier in the eleva-
tor system could achieve less average journey time, without
carefully selecting a car for a request could incur more energy
consumption. Furthermore, the evaluation of communication
transmissions shows that the energy-saving elevator schedul-
ing algorithm could achieve green communications in the
ElevatorTalk system.

APPENDIX
In [19], the authors proposed an elevator scheduling using
the ant colony optimization method to minimize energy con-
sumption. Each elevator car and request are regarded as an
ant and a target (i.e. food), respectively, where the requests
and the cars are mutually connected to establish many paths.
The pathπn,m possessing the pheromone (ϕkn,m) represents the
path from the n-th ant (i.e. car) to the m-th food (i.e. request).
When the n-th car passes path πn,m to serve the m-th request,
the pheromone is strengthened. That means that the n-th car
with a larger pheromone value and a lower energy consump-
tion on the path πn,m has a higher probability to serve them-th
request. This algorithm computes all pheromones iteratively.
After k searching iterations, the car system has the converged
scheduling. We use the configuration (4-car system with
k = 200) in [19] to demonstrate the ant colony optimization
for elevator scheduling. The algorithm periodically collects
requests. In each period, the collected requests are divided
into two categories that are move-up requests andmove-down
requests. After receiving the requests, the algorithm starts to
optimize the scheduling iteratively. The algorithm executes
the following steps to find an optimized solution:

Step 1. After collecting the requests, set k to one, n to one,
and Ek to zero. Ek is the total energy consumption
for the N -car system in the k-th iteration.

Step 2. Sort the move-up requests of Lu in an ascending-
order list and the move-down requests of Ld in a
descending-order list. Then, append the sorted list
of the move-up requests to the sorted list of the
move-down requests and construct a new request
list Z . Set M to the number of requests in Z .

Step 3. For 1 ≤ n ≤ N and 1 ≤ m ≤ M , initialize ϕkn,m
to a positive constant A, and set pkn,m and Ekn,m to
zero. pkn,m is the probability for the n-th car to serve
the m-th request in the k-th iteration and Ekn,m is
the energy consumption produced by the n-th car
when serving them-th request in the k-th iteration.

Step 4. Generate an N -car scheduling for the request list
Z in the k-th iteration.

Step 4.1. Setm to 1 (traverse from the first element of the
request list Z).

Step 4.2. For 1 ≤ n ≤ N , calculate the energy consump-
tion of the k-th iteration Ekn,m by

Ekn,m = 2× µn,m × ea +
∑µn,m

s=1
[|θ (n,m, s)

× q̄− q| × g× h(n,m, s)].

Step 4.3. For 1 ≤ n≤N , calculate probabilities pkn,m by

pkn,m =
(ϕkn,m)

α
× (1/Ekn,m)

β∑M
m=1 (ϕkn,m)

α
× (1/Ekn,m)

β
,

where α and β are coefficients to control the
influence of ϕkn,m and 1/Ekn,m, respectively.

Step 4.4. For 1 ≤ n ≤ N , select the car with the highest
probability pkn,m to serve the m-th request.

Step 4.5. Calculate the waiting time of the m-th request
served by the selected car.

Step 4.6. Check if the waiting time exceeds the threshold.
If so, go back to Step 4.4 and select the car with
the next highest probability. Otherwise, go to
Step 4.7.

Step 4.7. Check if all the requests in Z are scheduled.
If so (i.e. m = M), go to Step 5. Otherwise,
increase m by 1 and go back to Step 4.2.

Step 5. Calculate total energy consumption Ek of the
scheduling derived from Step 4 by

Ek = Eka + E
k
v =

∑N

n=1
Eka (n)+

∑N

n=1
Ekv (n)

=

∑N

n=1

∑Rkn

m=1
2× µn,m×ea

+

∑N

n=1

∑Rkn

m=1

∑µn,m

s=1
[|θ (n,m, s)×q̄− q|×g

×h(n,m, s)],

where Rkn is the number of requests served by the
n-th car in the k-th iteration.

Step 6. For 1 ≤ n ≤ N and 1 ≤ m ≤ M , update all the
pheromones by

ϕk+1n,m = ρϕ
k
n,m +1ϕ

k
n,m,

where ρ denotes the weight in (0, 1] and 1ϕkn,m
denotes the incremental difference of ϕkn,m, which
is defined as follows:

1ϕkn,m =


C
Ek
, if the car n passes πn,m

0, otherwise,

where C is a constant.
Step 7. Check if k = 200. If so, terminate the process and

dispatch the requests. If no, increase k by 1 and go
back to Step 4.

For example, as shown in Figure 10, in the final iteration
(i.e. k = 200), all car-choosing probabilities are calcu-
lated as follows: p2001,1 = max{p2001,1 , p

200
2,1 , p

200
3,1 , p

200
4,1 }, p

200
1,2 =

max{p2001,2 , p
200
2,2 , p

200
3,2 , p

200
4,2 }, p

200
1,6 = max{p2001,6 , p

200
2,6 , p

200
3,6 ,

p2004,6 }, p2002,3 = max{p2002,3 , p
200
1,3 , p

200
3,3 , p

200
4,3 }, p2002,4 =

max{p2002,4 , p
200
1,4 , p

200
3,4 , p

200
4,4 } and p

200
2,5 = max{p2002,5 , p

200
1,5 , p

200
3,5 ,

p2004,5 }. Therefore, after reaching the final iteration, each car
has its exclusive sequence of requests, where r1, r2 and r6
are dispatched to Car 1 and r3, r4 and r5 are dispatched
to Car 2.

Although the convergence of the ant colony algorithm for
elevator scheduling is proven in [19], it is not a real-time

VOLUME 8, 2020 38413

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

FIGURE 10. The optimized scheduling proceeded by the ant colony
optimization.

scheduler because it must wait for a batch of request
arrivals before it can conduct the scheduling optimiza-
tion. Therefore, the ant colony algorithm may not be easily
practiced in the real-time scenario with heavy passenger
traffic.

ACKNOWLEDGMENT
The authors would like to thanks for Associate Editor’s
review handling and Reviewers’ comments.

REFERENCES
[1] L.-D. Van, Y.-B. Lin, T.-H. Wu, and Y.-C. Lin, ‘‘An intelligent elevator

development and management system,’’ IEEE Syst. J., to be published.
[2] G. Barney and S. D. Santos, Elevator Traffic Analysis, Design and Control,

2nd ed. Stevenage, U.K.: Peregrinus, 1985.
[3] B. L. Whitehall, D. J. Sirag, and B. A. Powell, ‘‘Elevator control neural

network,’’ U.S. Patent 5 672 853, Sep. 30, 1997.
[4] R. Gudwin, F. Gomide, andM.A.Netto, ‘‘A fuzzy elevator group controller

with linear context adaptation,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., IEEE
World Congr. Comput. Intell., vol. 1, May 1998, pp. 481–486.

[5] B. L. Whitehall, T. M. Christy, and B. A. Powell, ‘‘Method for continuous
learning by a neural network used in an elevator dispatching system,’’
U.S. Patent 5 923 004, Jul. 13, 1999.

[6] M. Brand and D. Nikovski, ‘‘Optimal parking in group elevator con-
trol,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 1, Apr. 2004,
pp. 1002–1008.

[7] S. Tanaka, Y. Uraguchi, andM. Araki, ‘‘Dynamic optimization of the oper-
ation of single-car elevator systems with destination Hall call registration:
Part I. Formulation and simulations,’’ Eur. J. Oper. Res., vol. 167, no. 2,
pp. 550–573, Dec. 2005.

[8] S. Tanaka, Y. Uraguchi, and M. Araki, ‘‘Dynamic optimization of the
operation of single-car elevator systems with destination Hall call regis-
tration: Part II. The solution algorithm,’’ Eur. J. Oper. Res., vol. 167, no. 2,
pp. 574–587, Dec. 2005.

[9] T. Miyamoto and S. Yamaguchi, ‘‘MceSim: A multi-car elevator sim-
ulator,’’ IEICE Trans. Fundamentals Electron., Commun. Comput. Sci.,
vols. E91–A, no. 11, pp. 3207–3214, Nov. 2008.

[10] A. Valdivielso and T. Miyamoto, ‘‘Multicar-elevator group control algo-
rithm for interference prevention and optimal call allocation,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 41, no. 2, pp. 311–322,
Mar. 2011.

[11] J. Fernandez, P. Cortes, J. Munuzuri, and J. Guadix, ‘‘Dynamic fuzzy
logic elevator group control system with relative waiting time consid-
eration,’’ IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4912–4919,
Sep. 2014.

[12] E. O. Tartan, H. Erdem, and A. Berkol, ‘‘Optimization of waiting and
journey time in group elevator system using genetic algorithm,’’ in
Proc. IEEE Int. Symp. Innov. Intell. Syst. Appl. (INISTA), Jun. 2014,
pp. 361–367.

[13] H. Ishihara and S. Kato, ‘‘The effectiveness of dynamic zoning in multi-
car elevator control,’’ in Proc. IEEE 3rd Global Conf. Consum. Electron.
(GCCE), Oct. 2014, pp. 601–604.

[14] J. R. Fernandez and P. Cortes, ‘‘A survey of elevator group control systems
for vertical transportation,’’ IEEE Control Syst. Magzine, to be published.

[15] L. Marcus and A. Elias, ‘‘Impact of machine learning on elevator control
strategies,’’ KTH Roy. Inst. Technol., Stockholm, Sweden, Tech. Rep.,
2015.

[16] Accessed: May 2019. [Online]. Available: https://multi.thyssenkrupp-
elevator.com/en/

[17] S. Lee and H. Bahn, ‘‘An energy-aware elevator group control system,’’ in
Proc. 3rd IEEE Int. Conf. Ind. Informat. (INDIN), Perth, WA, Australia,
Aug. 2005, pp. 639–643.

[18] T. Zhang, S. Mabu, L. Yu, J. Zhou, X. Zhang, and K. Hirasawa, ‘‘Energy
saving elevator group supervisory control system with idle cage assign-
ment using genetic network programming,’’ in Proc. IEEE ICCAS-SICE,
Aug. 2009, pp. 994–999.

[19] J.-L. Zhang, J. Tang, Q. Zong, and J.-F. Li, ‘‘Energy-saving scheduling
strategy for elevator group control system based on ant colony optimiza-
tion,’’ in Proc. IEEE Youth Conf. Inf., Comput. Telecommun., Nov. 2010,
pp. 37–40.

[20] Z. Hu, Y. Liu, Q. Su, and J. Huo, ‘‘A multi-objective genetic algorithm
designed for energy saving of the elevator system with complete informa-
tion,’’ in Proc. IEEE Int. Energy Conf., Dec. 2010, pp. 126–130.

LAN-DA VAN (Senior Member, IEEE) received
the Ph.D. degree from National Taiwan Uni-
versity (NTU), Taipei, Taiwan, in 2001. Since
February 2006, he has been the Faculty Mem-
ber with the Department of Computer Sci-
ence, National Chiao Tung University (NCTU),
Hsinchu, Taiwan, where he is currently an Asso-
ciate Professor. Since 2015, he has been the
DeputyDirector of NCTUM2M/IoTResearch and
Development Center. His research interests are in

digital signal processing and adaptive/machine learning computation algo-
rithms, architectures, chips, and systems and applications. He received the
Best Poster Award in the iNEER Conference for Engineering Education
and Research (iCEER), in 2005, and the Best Paper Award in the IEEE
International Conference on Internet of Things (iThings2014), in 2014.
He served as the Chairman for the IEEE NTU Student Branch, in 2000,
the IEEE Award for Outstanding Leadership and Service to the IEEE NTU
Student Branch, in 2001. In 2014, he was a Track Co-Chair of the 22nd
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), a Technical Track Co-Chair of the 2018 IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS), a Special Session
Co-Chair of the 2018 IEEE International Conference on DSP, an Area Co-
Chair, in 2019, the Best Paper Award Committee Member of the IEEE Inter-
national Conference on Artificial Intelligence Circuits and Systems (AICAS
2019), and a Publicity Co-Chair of the 32nd IEEE International System-
on-Chip Conference (SOCC 2019). In 2020, he serves as a Tutorial Co-Chair
for the 33rd IEEE International System-on-Chip Conference (SOCC 2020).
He served as an Associate Editor for the IEEE TRANSACTIONS ON COMPUTERS,
from 2014 to 2018. He has been serving as an Associate Editor for IEEE
ACCESS, since 2018, and an Associate Editor for ACM Computing Surveys,
since 2020.

38414 VOLUME 8, 2020

L.-D. Van et al.: Green Elevator Scheduling Based on IoT Communications

YI-BING LIN (Fellow, IEEE) received the Ph.D.
degree from the University of Washington, USA,
in 1990. From 1990 to 1995, he was a Research
Scientist with Bellcore. He then joined National
Chiao Tung University (NCTU), Taiwan, where he
became a Lifetime Chair Professor, in 2010, and
the Vice President, in 2011. From 2014 to 2016,
he was a Deputy Minister with the Ministry of Sci-
ence and Technology, Taiwan. Since 2016, he has
been a coauthor of the books Wireless and Mobile

Network Architecture (Wiley, 2001), Wireless and Mobile All-IP Networks
(John Wiley, 2005), and Charging for Mobile All-IP Telecommunications
(Wiley, 2008). He is an AAAS Fellow, ACM Fellow, and IET Fellow.

TSUNG-HAN WU received the B.S. and M.S.
degrees in computer science from National Chiao
Tung University, Hsinchu, China, in 2012 and
2014, respectively, where he is currently pursuing
the Ph.D. degree. His current research interests
include the Internet of Things, machine learning,
and elevator scheduling.

TZU-HSIANG CHAO received the B.S. degree in
computer science from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, China, in 2018, where
he is currently pursuing the M.S. degree. His cur-
rent research interests include neural networks and
reinforcement learning.

VOLUME 8, 2020 38415

