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ABSTRACT The estimation of distribution algorithm (EDA) is a well-known stochastic search method
but is easily affected by the ill-shaped distribution of solutions and can thus become trapped in stagnation.
In this paper, we propose a novel modified EDA with a multi-leader search (MLS) mechanism, namely, the
MLS-EDA. To strengthen the exploration performance, an enhanced distribution model that considers
the information of population and distribution is utilized to generate new candidates. Moreover, when
the algorithm stagnates, the MLS mechanism will be activated to perform a local search and shrink the
search scope. The performance of the MLS-EDA in addressing complex optimization problems is verified
using the CEC 2014 and CEC 2017 testbeds with 30D, 50D and 100D tests. Several modern algorithms,
including the top-performing methods in the CEC 2014 and CEC 2017 competitions, are considered as
competitors. The competitive performance of our proposedMLS-EDA is discussed based on the comparison
results.

INDEX TERMS Estimation of distribution algorithm, real-numerical optimization, CEC 2014, CEC 2017,
evolutionary computation.

I. INTRODUCTION
The last few decades have seen tremendous progress in
the field of evolutionary computation. As one of the most
effective tools for solving NP-hard problems, evolutionary
computation has received widespread attention and has been
extensively researched worldwide. The main ideas of evo-
lutionary computation derive from the laws of physics and
chemistry, the activities and phenomena of natural organ-
isms, and human behaviors. The algorithms are designed to
solve optimization problems in accordance with such nat-
ural laws through various means. The traditional represen-
tative optimizers include the genetic algorithm (GA) [1],
the neural network (NN) [2], particle swarm optimization
(PSO) [3] and differential evolution (DE) [4]. Many experts
and scholars have continuously devoted themselves to the
study of evolutionary algorithms and have proposed numer-
ous novel, well-established methods, such as the grey wolf
optimizer (GWO) [5], ant lion optimizer (ALO) [6], teaching-
learning-based optimization (TLBO) [7], virus colony search
(VCS) [8], Harris hawks optimization (HHO) [9] and nuclear
reaction optimization (NRO) [10]. Moreover, research on
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evolutionary algorithms involves not only exploring new
search frameworks but also improving and applying existing
algorithms; this latter direction of algorithm development
has also led to the emergence of a wide variety of methods,
such as L-SHADE [11], CPI-JADE [12], DOLTLBO [13] and
GEDGWO [14].

Estimation of distribution algorithm (EDA) [15], as one
of the traditional evolutionary computation techniques, has
undergone considerable development over the past two
decades. In contrast to traditional evolutionary algorithms,
which uses crossover, mutation and selection mechanisms,
the EDA possesses a unique characteristic in that it estimates
the probability distribution model of selected solutions and
iteratively evolves the whole population. The Gaussian dis-
tribution model is typically used in EDA to solve problems
in the continuous domain. According to the structure of the
Gaussian probability model and the relationships between
variables, EDAs can be classified into univariate [16], bivari-
ate [17] and multivariate [15] models, and the competitive
performance of multivariate Gaussian distribution model,
which is the topic of our research, has been verified in various
applications compared with the other two methods. How-
ever, when solving multimodal problems, an EDA cannot
effectively capture the features of such a problem through an
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estimated Gaussian distribution model. Moreover, the vari-
ances of the distribution in the slope directions may shrink
rapidly in a later stage of optimization [18]. Thus, the tradi-
tional EDA tends to suffer from premature convergence and
can easily become trapped in stagnation.

To overcome these deficiencies, many improvements to the
EDA have been made, which can be categorized into three
types: distribution model modifications, population diversity
enrichment and algorithm hybridization. Based on the fact
that the multivariate Gaussian distribution model is deter-
mined by its estimated mean and covariance matrix, studies
were initially carried out on modifications to the distribution
model. Grahl et al. [19] developed a correlation -triggered
adaptive variance scaling (CT-AVS) strategy to scale the
variances. Soon after, the same authors investigated another
triggering method for adaptive variance scaling named stan-
dard deviation ratio (SDR) [20]. Based on these foundations,
the well-known AMaLGaM [21] algorithm combining AVS,
SDR and anticipated mean shift (AMS), was proposed [22].
Further studies were conducted by Ren and his teammates
[23], who expanded the AMS strategy to consider the mean
quality. Moreover, they explored a novel AVS strategy with
anisotropic adjustment based on the local fitness landscape
[18]. Their other work was EDA2 [24], in which an archive
is adopted to store more promising solutions to revise the
distribution scope. Other representative EDA modifications
of this type are the covariance matrix adaptation evolution
strategy (CMA-ES) [25] and its variants. The CMA-ES has
a complex framework that uses ‘‘rank-1’’ and ‘‘rank -µ’’
update strategies. The IPOP-CMA-ES [26] is a promising
CMA-ES variant that uses a restart strategy to enrich the
population diversity. Currently, the NBIPOP-aCMA-ES [27],
based on the BIPOP-CMA-ES [28] and active CMA-ES [29],
is widely identified as the most efficient CMA-ES variant.
Although the NBIPOP-aCMA-ES exhibits outstanding per-
formance, it suffers from a relatively high computational
burden due to its complex search mechanism [30].

Yuan reported that maintaining population diversity plays a
key role in EDA performance [31]. Thus, the second method
of avoiding premature convergence is to combine an EDA
with diverse search mechanisms that can effectively enrich
population diversity. Huang et al. [32] employed a simulated
annealing method as a local search strategy in an EDA.
In Miquélez’s work [33], the Bayesian classifier method and
an EDA were combined to establish a probability model and
solve a continuous optimization problem. The effectiveness
of incorporating a regularized learning model into an EDA
was studied by Karshenas et al. [34]. Copula theory [35] and
a probabilistic graphical model [36] have also been utilized
in an EDA and applied to samples. In RWGEDA, random
walk strategies were incorporated into an EDA [37]. More-
over, the effects of the promising area detection technique
and niching method on EDA performance improvement have
been addressed by various studies [38]–[40].

Hybridizing EDA with other optimization algorithms to
fully exploit their respective advantages is also regarded an

effective strategy for improving performance. Qi et al. [41]
integrated an EDA with PSO to solve the water distribution
problem. In three studies [42]–[44], DE has been utilized as
a local search method to develop new hybrid algorithms. Sun
and Gu [45] proposed a hybrid evolutionary algorithm com-
bining an EDA and cuckoo search (CS) to solve scheduling
problem.

Although all of the studies discussed above improved EDA
performance from various perspective, several deficiencies
still remain that require improvement:
• In most EDA variants, the available of population infor-
mation is not fully exploited. First, the information of the
current best solution in each iteration is not utilized. Fur-
thermore, the role of promising solutions in enhancing
the local search ability of an EDA has not received much
attention. Moreover, the remaining solutions that are not
utilized in constructing the distributionmodel are always
neglected or abandoned. All these factors increase the
computational cost.

• Developing a novel efficient mechanism for enriching
the population diversity that does not rely on the distribu-
tion model, which can be achieved by taking advantage
of the results derived in each generation, is still an urgent
problem for EDA improvement.

• For a hybrid EDA, switching among sub-algorithms
with different search mechanisms complicates the task
of balancing the exploration and exploitation processes.
Additionally, hybridization may lead to a more complex
execution framework, which will increase the compu-
tational cost. Moreover, hybrid algorithms tend to have
more parameters that require adjustment, which will
reduce the parameter sensitivity of such an algorithm.

Both the deficiencies described above and the development
prospects of EDAs in the field of evolutionary computation
due to their model-based characteristics prompt us to propose
new algorithms of this type. EDAs are currently playing an
increasingly important role in algorithm development. From
CEC 2016 to CEC 2018, most of the top algorithms were
based on the use of distribution models for sampling, such as
UMOEAII [46] in 2016, EBOwithCMAR [47] in 2017, and
HSES [48] in 2018. In contrast to these promising EDA-based
variants, we propose a novel nonhybrid EDA variant using a
multi-leader search (MLS) mechanism in an eigen coordinate
system, called the MLS-EDA. The novel characteristics and
features of our MLS-EDA can be attributed to the following
two mechanisms.
• For each individual in the population, an enhanced
distribution model that considers population location
differences is utilized to produce new candidates. This
mechanism makes full use of the current population
information to improve the distribution model and avoid
wasted computation. Moreover, this mechanism can
diversify the search scope, thus helping to maintain pop-
ulation diversity.

• When the algorithm stagnates, the capacity of the
archive will be adaptively enlarged to store more current
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leader solutions. For each individual, a leader solution
in the archive is randomly selected to guide the individ-
ual performing the local search in a different dominant
region. Thus, the MLS mechanism will be achieved.
This mechanism can exploit multiple high-quality solu-
tions to increase the diversity of the search scope and
reduces the dependence on an ill-shaped distribution of
solutions; thus, this mechanism exhibits strong explo-
ration behavior when the algorithm stagnates.

The performance of our MLS-EDA in solving complex
benchmarks is evaluated using the CEC 2014 and CEC
2017 testbeds with 30D, 50D and 100D tests, and the exper-
imental results are compared with those of several other
well-established algorithms, including the winner of the CEC
2014 test, L-SHADE, and the two top algorithms in CEC
2017, HSES and ELSHADE-SPACMA. Moreover, several
modern EDAs, including VCS and RWGEDA, are employed
to further demonstrate the efficiency of our modification.

The rest of this study is organized as follows:
Section 2 presents a brief description of the original EDA
and a detailed introduction to the MLS-EDA. In Section 3,
the performance of the MLS-EDA is evaluated on the com-
plex CEC 2014 and CEC 2017 test suites, and the results
are statistically analyzed and compared. In the final section,
the conclusions and prospects of this research are presented.

II. MLS-EDA
A. REVIEW OF THE BASIC EDA
The EDA is a model-based algorithm in which the solution
vectors follow a Gaussian probability distribution model as
follows:

G(µ,C) =
(2π)−π/2

(detC)
exp

(
− (X − µ)T (C)−1 (X − µ) /2

)
(1)

where

µ =
1
|A|

|A|∑
i=1

xi, xi ∈ A and A ⊂ X (2)

C =
1
|A|

|A|∑
i=1

(xi − µ) (xi − µ)T, xi ∈ A and A ⊂ X (3)

The symbol A in (2) and (3) denotes a selected set of high-
quality solutions. The EDA uses an estimated Gaussian dis-
tribution based on the selected superior solutions in set A to
iteratively generate new solutions, thus driving the algorithm
to complete the optimization process. In this way, the new
generation is produced as follows:

xi = µ+ yi, yi ∼ N (0,C) (4)

In the standard EDA, the selected high-quality solutions
are mainly distributed in the hyperellipsoid of the original
probability distribution and tend to lie closer to the dominant
region. The long axis of the probability distribution hyperel-
lipsoid estimated from these solutions will be perpendicular

FIGURE 1. The variance in the non-descent direction is gradually
enlarged, while the variance in the descent direction is
gradually reduced.

to the descent direction of the function value. Fig. 1 shows an
illustration of this phenomenon. Consequently, as the num-
ber of iterations increases, the main search direction of the
algorithm become increasingly perpendicular to the descent
direction of fitness, resulting in an ill-conditioned distribution
of solutions, which allows the algorithm to easily fall into a
local optimum. To overcome this defect, we have developed a
modified EDAwith multiple mechanisms, which is discussed
in the following section.

B. DESCRIPTION OF THE MLS-EDA
The modifications proposed in the MLS-EDA consist of
four components: a) a weighted maximum likelihood esti-
mation (MLE) method to improve the mean point quality,
b) a distribution enhancement strategy (DES) to diversify
the distribution scope, c) an MLS mechanism to eliminate
stagnation, and d) tan eigen coordinate framework to modify
the direction of evolution. Further details are presented as
follows.

1) WEIGHTED MAXIMUM LIKELIHOOD
ESTIMATION METHOD
In the basic EDA, the MLE method is used to estimate the
mean point, as shown in (2). In our MLS-EDA, a weighted
MLE method is employed to calculate the weighted mean
point, an approach that has been proven to be more efficient
in many studies [14], [23], [25].

µ =

|A|∑
i=1

ωixi, xi ∈ A and A ⊂ X (5)

where

ωi = ln (|A| + 1) /

 |A|∑
i=1

(ln (|A| + 1)− ln (i))

 (6)

In (6), the ωi are the weight coefficients, arranged in
descending order relative to the solution quality in set A. The
weighted MLE method places greater emphasis on superior
solutions in distribution estimation, thus improving the mean
point quality. As done in most EDA variants, the top half of
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the population is selected in set A [25], [37]; accordingly,
|A| = NP/2, where NP denotes the population size.

2) DISTRIBUTION ENHANCEMENT STRATEGY
In (5), only the half of the solutions of the highest qual-
ity is employed to construct the distribution model, while
the remaining inferior solutions are abandoned. To avoid
this computational waste and to consider the differences in
location between the superior and inferior solutions, a novel
sampling method using a DES in an eigen coordinate system
is explored.

First, each solution is judged as either a superior or inferior
solution according to its fitness ranking in the population,
which is calculated as

Prank (i)=1+
(
1−(f (xi))rank

)
/NP,

(f (xi))rank∈ [1, 2,. . .,NP] (7)

The ith solution will be regarded as a superior solution only
if its fitness ranking Prank(i) is greater than 0.5; otherwise,
it is an inferior solution. Since sampling is performed in
an eigen coordinate framework, the solution vectors must
be transformed from the normal coordinate system into the
eigen coordinate system. The solution vectors in the eigen
coordinates can be determined as follows:{

µ(E) = BTµ

x(E)i = BTxi
(8)

where the symbol E indicates a vector expressed in eigen
coordinates. B is the eigendirection matrix and obtained
through the decomposition of C, as shown in (9).

C = (BD) (BD)T (9)

Generally, a superior solution is usually located closer to
the global optimum point than the mean point, as illustrated
in Fig. 1. Thus, the mean point can be enhanced by moving it
towards the high-quality solution as follows:

µ
(E)
j = µ

(E)
j + r ·

(
x(E)i,j − µ

(E)
j

)
, r ∼ U (0, 1) (10)

The subscript j in (10) denotes the jth dimension. Thus, a new
candidate is produced as follows:

x(E)i,j = µ
(E)
j + Djyi,j, yi,j ∼ N (0, 1) (11)

D in (11) is a vector of the square root of the eigenvalues,
i.e., D =

(√
λ1,
√
λ2, . . . ,

√
λdim

)
, which is obtained as

shown in (9). As shown in (10), the enhanced mean point
contains information on both the distribution and the individ-
ual solution; thus, the distribution scope can be diversified,
as shown in Fig. 2, which is helpful for solving multimodal
problems.Moreover, because (10) is executed on each dimen-
sion individually, it can take advantage of the difference
between the normal coordinates and the eigen coordinates,
as presented in Fig. 2. Because the eigen coordinate system
can eliminates the dependence among the different axes,
the probable distribution of the shifted mean point in the

FIGURE 2. The enhanced mean point is obtained by moving the mean
point towards a superior solution.

FIGURE 3. The enhanced mean point is obtained by moving the mean
point away from the inferior solution.

eigen coordinates (in red) is more satisfactory than that in the
normal coordinates (in green).

On the other hand, an inferior solution is usually located
outside of the fitness contour across the mean point. Accord-
ingly, a new candidate solution can be generated by enhancing
the mean point by moving it away from such an inferior
solution, as shown in (12) and (13).

µ
(E)
j = µ

(E)
j + r ·

(
µ
(E)
j − x

(E)
i,j

)
, r ∼ U (0, 1) (12)

x(E)i,j = µ
(E)
j + Djyi,j, yi,j ∼ N (0, 1) (13)

3) MULTI-LEADER SEARCH MECHANISM
Unlike the CMA-ES, the basic EDAhas a poor ability tomod-
ify its ill-shaped distribution of solution. Thus, the basic EDA
cannot easily eliminate local stagnation. To overcome this
deficiency by enhancing the population diversity of the basic
EDA, we propose the MLS mechanism, which is executed
only when the algorithm stagnates. If the distribution model
shows no change compared with the previous generation,
i.e., the first half of the population is not updated, then the
algorithm is considered to be trapped in stagnation and the
MLS mechanism is activated.

The core idea of the MLS technique is to perform a local
search based on multiple top solutions as leaders. In our
MLS mechanism, an archive (denoted by S) with an adaptive
size is designed and employed to store the current dominant
solutions. Initially, the size of S is equal to 1, meaning that
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FIGURE 4. The MLS mechanism can generate an efficient local search
around the selected leader.

the single current best solution is stored. When the algorithm
stagnates for the first time, the number of solutions in archive
S is increased by 1, meaning the two current best solutions are
stored, and so on. When S reaches its predefined maximum
size, its capacity will no longer be expanded. The next time
that the algorithm stagnates, the size of the archive will be
restored to the initial state and will not change, meaning
that once again, only the single best solution is stored in
S. The maximum size of S is set equal to three-times the
dimensionality of the problem, as is discussed in the next
section.

To sufficiently balance the exploration and exploitation
performance, this mechanism incorporates two different
search behaviors. If the ith solution is not selected in set S, i.e.,
ifPrank(i) < 1−|S|/NP, then theMLSmechanism is executed
around a selected dominant solution, as shown in (14).

x(E)i = x(E)leader + yi
(
x(E)leader − x

(E)
i

)
+ r1 · x

(E)
leader − r2 · x

(E)
i ,

yi ∼ N (0, I) , r1, r2 ∼ N (0, 1) , xleader ∈ S (14)

In (14), xleader is a leader solution and is randomly selected
from archive S. The local search area in the eigen coordinate
system is satisfactory, as illustrated in Fig. 4. As the number
of instances of convergence stagnation increases, exploration
is performed based on more dominant solutions in archive S.
Because these dominant solutions may be located in different
promising regions, the local search expressed in (14) can
improve the exploration behavior of the algorithm in different
dominant regions.

Otherwise, when the ith solution is selected in set S, i.e.,
when Prank(i) > 1 − |S|/NP, the corresponding candidate is
sampled using a shrunken distribution model. This alternative
behavior of the MLS mechanism is executed as follows:

x(E)i = x(E)i + |zi| ·
(
x(E)leader − x

(E)
i

)
+ D′yi,

zi ∼ N (0, 1) , yi ∼ N (0, I) , xleader ∈ S (15)

where

D′
= D · (1− FEs/FEsmax) (16)

The first two terms in (15) represent local exploitation
around the ith solution using the location difference between

FIGURE 5. The MLS mechanism can generate an efficient mean point
around at selected leader. |zi| is used to ensure that half of the
distribution ellipsoid in the descent direction is retained.

the ith solution itself and a randomly selected dominant
solution. This search scope derived from the first two terms
in (15) in the eigen coordinates is illustrated in Fig. 5. The
absolute value of zi is used as a truncation setting, which
ensures that half of the search scope near the dominant area is
preserved. In fact, this process also relies on the use of a leader
solution for local search to generate the distribution mean
point, thus enhancing the distribution and even the diversity of
the population. As presented in (16), the elements of vector
D decrease as the number of evaluations increases, thereby
reducing the search scope. Thus, in later search stages, the
MLS mechanism focuses on a more precise local search
around the randomly selected leader solution.

Both search behaviors expressed in (14) and (15) utilize
a leader solution as the center around which to execute
local exploitation. The critical difference is that the former
behavior uses a location difference to generate new solutions,
while the latter behavior uses a reduced distribution scope for
sampling. In other words, both search behaviors in the MLS
mechanism are designed to achieve the same end.

Finally, the newly obtained solution is transformed into the
normal coordinates through rotation as follows:

xi = B · x(E)i (17)

To ensure the global convergence performance of theMLS-
EDA, a greedy technique is utilized to preserve the superior
solutions in both the current population and the newly pro-
duced population, thereby preventing the loss of high-quality
solutions in the sire generation. The pseudocode for theMLS-
EDA is presented below, and the execution process of the
algorithm is visually summarized in Fig. 6.

C. COMPUTATIONAL TIME COMPLEXITY
ANALYSIS OF THE MLS-EDA
The main factor that typically limits the application of EDA
is the high computational cost, which is related to the dimen-
sionality of the problem. In our MLS-EDA, the time com-
plexity of updating the covariance matrix as expressed in (3),
is O(D2

· NP/2). Moreover, we use the Jacobi method to
decompose the covariance matrix, as expressed in (9), with a
time complexity of O(D3). In the population update process,
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FIGURE 6. Flowchart of the MLS-EDA.

sampling is executed in each dimension for all individuals,
thus leading to a computational cost of O(NP · D). There-
fore, the maximum time complexity of the MLS-EDA is
by O{D2

×max(D, NP/2)}. Additionally, according to the
execution process depicted in Fig. 6, the computational cost
of updating the covariance matrix updating can be avoided
when the algorithm stagnates. Under these conditions, our
MLS-EDA has similar efficiency to the original EDA with
a time complexity less than O{D2

×max(D, NP/2)} in
each iteration.

III. EXPERIMENTAL STUDY USING MODERN CEC
2014 AND CEC 2017 TESTBEDS
There are no standard criteria for convincing verification of
the real contributions of a novel algorithm in the field of
evolutionary computation. We believe that three conditions
are indispensable. First, comparison with advanced algo-
rithms from various families is mandatory. Second, the use
of a complete set of modern complex benchmarks, including
the same conditions and parameter settings, is suggested.
Finally, the advantages of the proposed algorithm should be
properly specified. Thus, we employ the challenging CEC
2014 and CEC 2017 test suites to assess the performance of
the MLS-EDA and carry out two comparisons. In the first

experiment, six promising algorithms from various families
that participated in CEC 2014 are applied to demonstrate the
superior performance of our proposed algorithm. In the sec-
ond comparison, seven modern methods, including the top-
performing algorithms in CEC 2017, are considered as
competitors.

The CEC 2014 test suite contains 30 benchmarks (denoted
by F1 to F30), while the CEC 2017 suite consists of 29 bench-
marks (excluding F2). The tests in these two sets possess
different characteristics and, accordingly, can be categorized
into four groups. Further descriptions of these two test suites
are provided in [49] and [50]. As recommended by the orga-
nizers, each benchmark should be independently run 51 times
with the same maximum function evaluations (FEsmax) to
ensure a fair evaluation. The value of FEsmax is set to
D × 10, 000, where D denotes the dimensionality of the
problem. In this paper, we carry out a full comparison using
30D, 50D and 100D problems. The results are recorded in
the form of error values between the derived optimal result
and the global optimal result, where the global optimum is
determined to be achieved with an error value less than 1e-08.
All simulations reported in this paper were run in the same
hardware environment: a laptop (with a 2.20 GHz i7-8700HQ
CPU and 16 GB of memory) and MATLAB 2018a was
employed for coding and execution.
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AlgorithmMLS-EDA
1: Initialization: NP, S, FEs = 0 and FEsmax;
2: Produce the initial population X and evaluate, FEs = FEs+NP;
3: Update the best solution xBest in the present generation;
4: While FEs≥FEsmax, output f (xbest) and terminate the search process; otherwise
6: Update the distribution model, including µ and C using the half of the solutions of the highest quality in A, by means
of (5), (6) and (3);
7: Calculate the eigenvalue decomposition of C using (9);
8: For each solution xi

Calculate Prank(i);
Rotate xi into the eigen coordinate system and determine x(E)i using (8);
If the algorithm falls into stagnation
Update the size of archive S;
If Prank(i) < 1− | S|/NP
Update x(E)i using the MLS behavior as expressed in (14);

Else
Update x(E)i using the MLS behavior as expressed in (15) and (16);

End if
Otherwise
If Prank(i) >0.5
Update x(E)i using the enhanced mean as expressed in (10) and (11);

Else
Update x(E)i using the enhanced mean as expressed in (12) and (13);

End if
End if

Rotate candidate x(E)i into the normal coordinate system by (17);
Calculate the fitness f ( xi);
End for
9: FEs = FEs+NP and go to step 3;

In Appendix, we present the experimental results obtained
on the CEC 2014 and CEC 2017 test suites, respectively,
for 30D, 50D and 100D tests using the MLS-EDA with the
population size set to 10·D and the maximum size of set S
set to 3·D. These statistical results, including the best, worst,
median, mean and standard deviation (SD) error values, can
be referenced in future studies. Moreover, the convergence
performances achieved on these two test suites is illustrated
in Appendices B and D. Since the values of parameters NP
and | S|max in the MLE-EDA need to be determined, we ana-
lyze the optimal parameter settings for the MLS-EDA before
presenting the comparisons with other techniques.

A. PARAMETER SENSITIVITY ANALYSIS
OF THE MLS-EDA
The parameter sensitivity of an evolutionary algorithm
is essential when addressing different problems. The
MLS-EDA has two key parameters: the population size NP
and the maximum size of set S. In this section, we present
two experimental studies to investigate the optimal parameter
values using the CEC 2014 30D test suite. All benchmarks
are run 51 times with FEsmax = 300, 000 to obtain the
mean error value, and the results are presented for comparison
in Tables 1 and 2.

In Table 1, the results for five population sizes,
NP = 6·D, 8·D, 10·D, 12·D and 14·D, are given. The last
row in Table 1 indicates the ranks of these five settings
according to the Friedman test. The best performance is
achieved by the algorithmwithNP= 10·D. As the population
size decreases or increases, the performance of the algorithm
will decrease accordingly. The reason for this phenomenon is
that a small population size cannot provide sufficient support
to precisely capture the problem characteristics, whereas a
larger population size will cause the number of iterations to
decrease, thus compromising the convergence performance.
Moreover, a larger population size can result in a greater
computational cost since the maximum time complexity is
O{D2

×max(D, NP/2)}.
In Table 2, the rankings are assessed for settings of |

S|max = 1, D, 2·D, 3·D, 4·D and 5·D. When the value
of | S|max is set to 1, this indicates that only the single
best solution is considered for local exploitation in the MLS
mechanism. According to the statistical results presented in
the last row of Table 2, this setting leads to the worst behavior.
In contrast, a larger size of S can significantly improve the
algorithm’s performance. All of the remaining five settings
are acceptable, but | S|max = 3 ·D yields the most promising
results, as indicated by its highest ranking.
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TABLE 1. Mean error results achieved by the MSL-EDA with different population sizes on the CEC 2014 test suite for 30D problems.

Overall, the optimal parameter settings of the MLS-EDA
are NP= 10·D and | S|max = 3 ·D. Notably, we have defined
both of these parameters relative to the dimensionality of the
problem, which is convenient for ensuring the use of parame-
ter settings based on equivalent criteria when the algorithm
is applied to solve problems of different dimensionalities.
However, according to the no-free-lunch theorem, no single
algorithm can be used to satisfactorily solve all problems.
The optimal parameters demonstrated here are still not uni-
versally adequate, and additional application experience will
be needed to further optimize these parameters.

B. MRE-EDA MODIFICATION COMPONENT ANALYSIS
In the previous subsection, the optimal parameter values
are determined. In this part, we further analyze the influ-
ence on the algorithm’s performance exerted by the different
search behaviors driven by our modifications. As described
in Section 2, our improvements mainly consist of two com-
ponents, i.e., the DES and the MLS mechanism. Thus, three
EDA variants are designed by removing one or both of these
components, as presented in Table 3. These three variants,
along with the MLS-EDA itself, are benchmarked for 30D
problems using the CEC 2014 testbed. The same parame-
ter settings are adopted, with 51 independent runs and the
values of FEsmax fixed at 300,000. Table 4 presents the

statistical results, and the last row indicates the differences
in performance among the four MLS-EDA variants. Clearly,
our original MLS-EDA with both components achieves the
best performance in this experiment. For the other algo-
rithms, a lower ranking corresponds to a greater impact of the
lost component on algorithm performance. Algorithm 2 and
Algorithm 3 rank second and third, respectively. According
to their rankings, there is little difference in performance
between these two MLS-EDA variants. The poorest perfor-
mance is exhibited by Algorithm 1, with both modifications
removed. Specifically, as seen from the results in Table 4,
the MLS mechanism improves the algorithm’s performance
in addressing the complex hybridization and composition
benchmarks, while the DES significantly enhances the algo-
rithm’s ability to solve shifted and rotated problems. From
these points of view, our proposed improvements substan-
tially enhance the convergence performance of the basic
EDA.

C. COMPARISON WITH SIX MODERN ALGORITHMS
FROM DIFFERENT FAMILIES ON THE CEC
2014 TESTBED
In this subsection, six promising modern algorithms, namely,
EMNAg [15], RWGEDA [37], DOLTLBO [13], VCS [8],
CPI-JADE [12] and L-SHADE [11], are considered as
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TABLE 2. Mean error values achieved by the MSL-EDA with different maximum sizes of the set S on the CEC 2014 test suite for 30D problems.

competitors to demonstrate the efficiency of our MLS-EDA.
EMNAg is a basic multivariate Gaussian EDA, which we use
to verify the efficiency of our modifications. RWGEDA is
our recently developed EDA variant. DOLTLBO is a suc-
cessful extension of TLBO. VCS is a well-established hybrid
algorithm combining the CMA-ES and DE. CPI-JADE is a
modification of JADE using a new framework. L-SHADE is
an advanced DE algorithmwhose variants have demonstrated
championship performance in successive CEC competitions.
We selected these six algorithms as competitors not only
because they are relatively new members of their respective
families but also because of their promising performance on
the CEC 2014 benchmarks. The parameter settings play a key
role in algorithm performance. To ensure fair comparisons,
the parameter settings of the other six algorithms in this
experiment are adopted in accordance with their respective
source literature, as tabulated in Table 5. Each problem of
different dimensionalities in this experiment is independently
run 51 times to overcome the influence of randomness, with
a fixed value of FEsmax = D×10,000, where D = 30, 50 and
100. The simulation results for the tests with these three
dimensionalities are presented in Tables 15 to 17, respec-
tively, in Appendix E.

As presented in Table 15, the MLS-EDA, RWGEDA, CPI-
JADE and L-SHADE perform robustly in addressing the

TABLE 3. MLS-EDA variants with different search components.

unimodal problems in the 30D test. L-SHADE performs bet-
ter for solving the multimodal benchmarks, while our MLS-
EDA shows significant advantages in solving the last two
groups of functions.

According to the results for the 50D test in Table 16, the
MLS-EDA and RWGEDA performs better in solving F1 to
F3. For the multimodal functions F4 to F16, L-SHADE and
MLS-EDA are the top two methods, with the best perfor-
mance on seven and six benchmarks, respectively. Similar to
the results in 30D test, the MLS-EDA outperforms the other
algorithms in dealing with hybrid functions. However, VCS
and DOLTLBO show competitive performance in solving the
composite benchmarks.

Notably, the advantages of the MLS-EDA are reduced
when solving high-dimensional problems. Nevertheless,
from an overall perspective, the MLS-EDA maintains its
competitiveness when dealing with multimodal problems.
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TABLE 4. Rankings of the four MLS-EDA variants on the CEC 2014 test suite for 30D problems.

TABLE 5. Parameter settings of the seven algorithms in the
CEC 2014 test.

L-SHADE performs better in optimizing the first three
types of benchmarks, whereas VCS and DOLTLBO are the
two best-performing algorithms when faced with composite
functions.

The Wilcoxon signed rank test and the Friedman test are
carried out to statistically evaluate the efficacy of our pro-
posed algorithm. The pairwise comparison results according
to the Wilcoxon signed rank test with α = 0.05 are presented
in Table 6. In this table, ‘‘R+’’ denotes the magnitude by
which the MLS-EDA can surpass a competitor, and ‘‘R−’’
represents the opposite effect. The rightmost column of
Table 6 summarizes the overall comparisons, where the ‘‘+’’
entry indicates the number of cases in which the MES-EDA
shows superior performance relative to the algorithm consid-
ered for comparison, the ‘‘−’’ entry indicates the number of
cases of inferior performance, and the ‘‘∼’’ entry indicates

TABLE 6. Comparison results of the Wilcoxon signed rank
test (α = 0.05).

the number of cases of similar performance. As shown by the
statistical results of the 30D and 50D tests, our MLS-EDA
outperforms all six competitors, with the ‘‘+’’ value always
being the highest, but has a less significant advantage over
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TABLE 7. Rankings of the seven algorithms on the CEC 2014 testbed based on the Friedman test (α = 0.05).

TABLE 8. Mean time costs of the seven algorithms on the CEC 2014 testbed (in second).

L-SHADE, with the p-value being greater than 0.05. In the
100D test, MLS-EDA surpasses EMNAg, RWGEDA and
DOLTLBO and performs similarly to VCS and CPI-JADE,
but it is somewhat inferior to L-SHADE.

In addition to the pairwise comparisons above, a multiple
comparison method, the Friedman test, is performed based on
the mean values. Table 7 presents the rankings of the seven
algorithms according to the Friedman test (α = 0.05) for the
three problem dimensionalities. The MLS-EDA ranks in first
place on the 30D and 50D tests with the smallest ranking
value, while L-SHADE ranks best on the 100D tests. The
last row of this table shows the ranking performances of the
algorithms on all three test sets in terms of a synthetically
calculated score, denoted by SR. SR is calculated in accor-
dance with the rank values in the first three rows of Table 7,
as shown in (18).

SR = (Rank30D + Rank50D + Rank100D) /3 (18)

Based on the SR value, the MLS-EDA is the best per-
forming method among the seven algorithms. The CEC
2014 winner L-SHADE ranks second by a small mar-
gin. The remaining algorithms rank as follows, from best
to worst: RWGEDA, CPI-JADE, VCS, DOLTLBO and
EMNAg. To further highlight the performance differences
among the algorithms in this experiment, the post hoc Iman
Davenport test was carried out based on the SR results.
Further details about this method are provided in [14] and
[51]. The critical difference (CD) value calculated in the
post hoc test is 1.1998. A detailed illustration of the sig-
nificant differences between different competitors in terms
of the CD values according to the mean rank values is pre-
sented in Fig. 7. No significant difference exists between
two algorithms if the average ranking difference between
them is less than the CD value. As shown in Fig. 7, the
MLS-EDA ranks first in this test and performs similarly
to L-SHADE. Moreover, the MLS-EDA shows significantly
superior performance compared with the remaining five
algorithms, especially EMNAg. This significant superiority

FIGURE 7. Multiple comparisons based on the post hoc Iman Davenport
test.

demonstrates the value of the contributions of this work in
modifying the basic EDA.

In addition to solution quality, execution efficiency is
another important factor in algorithm evaluation. The aver-
age time cost of seven algorithms on the same platform
for each benchmark are presented in Appendix F. More-
over, the average time consumption results for each algo-
rithm on the tests of all three dimensionalities is calculated
in Table 8. The symbol ST represents a time score calcu-
lated to compare the efficiency of these seven algorithms as
expressed in (19).

ST = (T30D + T50D + T100D) /3 (19)

In this experiment, CPI-JADE is the most efficient algo-
rithm. The time consumption of MLS-EDA is higher than
that of the basic EMNAg because of its associated mod-
ifications, but the difference is small. The performance
of RWGEDA is similar to that of the MLS-EDA, while
VCS and DOLTLBO are the two algorithms with the
lowest efficiency.

D. COMPARISON WITH SEVERAL WELL-ESTABLISHED
METHODS ON THE CEC 2017 TESTBED
To adequately highlight the performance of our proposed
method, tests on the CEC 2017 benchmarks with dimension-
alities of 30D, 50D and 100D are also performed, and cor-
responding comparisons with advanced modern algorithms
are presented in this subsection. The algorithm considered
for comparison with the MLS-EDA here are EMNAg, NRO
[10], MRDE [52], RWGEDA [37], ELSHADE-SPACMA

VOLUME 8, 2020 37393



X. Wang et al.: EDA With MLS

TABLE 9. Parameter settings of the eight algorithms on the CEC 2017 test.

TABLE 10. Comparison results of the WILCOXON signed rank test
(α = 0.05).

[53], ACoS-JADE [54] and HSES [48]. NRO is a promis-
ing physical-based optimizer that performed well in the
CEC 2017 test, MRDE is a newly developed DE vari-
ant, RWGEDA and ACoS-JADE are two covariance-matrix-
based algorithms, and ELSHADE-SPACMA and HSES are
the two top performers in the CEC 2018 competitions. The
parameter settings of each algorithm are adopted in accor-
dance with the respective original work, as shown in Table 9.
All 29 benchmarks in the CEC 2017 testbed are evaluated
51 times with a predefined evaluation number of D×10,000,
where D = 30, 50 and 100. The statistical data, including the
mean and SD error values, are presented in Tables 19 to 21,
in Appendix G.

As observed in Table 19, the MLS-EDA outperforms the
basic EMNAg in solving the unimodal benchmarks. However,
NRO shows great superiority on the 30D test, achieving the
best mean values on almost all of the benchmarks except
F12, F25 and F28. By contrast, for the 50D test, as shown

in Table 20, NRO is significantly affected by the problem
dimensionality, whereas HSES achieves first rank in more
cases. Our MLS-EDA performs better on F1, F3, F9, F27 and
F28. When addressing the 100D problems, HSES and our
MLS-EDA are the two best-performing algorithms, as pre-
sented in Table 21.

As in the previous experiment, the Wilcoxon signed
rank test is carried out to evaluate the pairwise differences
between the MLS-EDA and the other competitors, as shown
in Table 10. The symbols in this table have same meanings
as in Table 6. In the 30D test, our MLS-EDA exhibits per-
formance similar to that of ELSHADE-SPACMA and HSES
and surpasses EMNAg, MRDE, RWGEDA and ACoS-JADE,
but it is outperformed by NRO. In the 50D and 100D tests,
the MLS-EDA achieves a higher ‘+’ count than any of the
other algorithms except HSES.

Furthermore, the Friedman test is carried out to rank these
eight algorithms according to their performance in the tests
of all three dimensionalities. Table 11 presents the ranking
results based on the Friedman test (α = 0.05). According to
these ranking values, NRO is the winner on the 30D test and
HSES performs the best on the 50D and 100D tests. Although
ourMLS-EDA is not the best-performing algorithm on any of
the three test sets, it shows robust performance earning sec-
ond place in all three competitions. Moreover, when the SR
calculation is used to determine the overall ranking of the
eight algorithms, the winner of the CEC 2018 competition,
HSES similarly ranks the best in this experiment. Our MLS-
EDA lags behind HSES by only a small margin, ranking sec-
ond. Benefiting from its out performance on 30D test, NRO
ranks third. The other algorithms rank as follows, from best
to worst: ELSHADE-SPACMA, RWGEDA, ACoS-JADE,
MRDE and EMNAg.
Fig. 8 illustrates the significant differences between the

different algorithms based on the Iman Davenport test. The
CD value is 1.3219. Clearly, the MLS-EDA shows little
difference from HSES, NRO and ELSHADE-SPACMA but
surpasses RWGEDA, MRDE, ACoS-JADE and EMNAg.

Although HSES achieves the best overall score on the
benchmarks in the CEC 2017 test suite, it is not the most effi-
cient method according to the execution time costs reported
in Appendix H. Table 12 shows the average amounts of time
required by these eight algorithms to solve the benchmarks
of different dimensionalities. The differences between the
efficiencies of the various algorithms can be more clearly
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TABLE 11. Rankings of the eight algorithms on the CEC 2017 testbed based on the Friedman test (α = 0.05).

TABLE 12. Mean time costs of the eight algorithms on the CEC 2017 testbed (in second).

TABLE 13. Error values obtained with the MLS-EDA on the CEC 2014 30D, 50D and 100D tests.

seen from the ST results. The basic EMNAg requires the least
time, while the MLS-EDA performs more efficiently than
any of the other methods except EMNAg. HSES ranks last
with a substantially greater time cost. These findings also
reflect a bottleneck problem hindering the development of
new algorithms. Better algorithm performance is typically
achieved by means of a more complex algorithm structure,
which will cause more time to be required to run the algo-
rithm. However, our MLS-EDA shows advantages in both
accuracy and speed. Thus, ourMLS-EDA,with its new search
mechanisms, exhibits competitive performance on the CEC
2017 test suite.

Through the above two experiments, the superiority of the
MLS-EDA has been fully demonstrated. Here, we clarify
the difference between the MLS-EDA and RWGEDA. These
two algorithms have similar execution frameworks, but their
search mechanisms are different. In RWGEDA, the random

FIGURE 8. Multiple comparisons based on the post hoc Iman Davenport
test.

walk strategies only utilize the best solution to conduct
the local search. This feature is not appropriate for our
MLS-EDA, as confirmed by its weakness as demonstrated in
the above study on parameter sensitivity. Instead, the MLS
mechanism that employs more high-quality solutions is
more efficient. Furthermore, the newly developed MLS-EDA
shows more promising performance than RWGEDA does on
the CEC 2014 and CEC 2017 tests in terms of both accuracy
and efficiency. In some sense, the MLS-EDA is a superior
development of the RWGEDA.
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FIGURE 9. Convergence performance of the MLS-EDA on the CEC 2014 30D, 50D and 100D tests.
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FIGURE 9. (Continued) Convergence performance of the MLS-EDA on the CEC 2014 30D, 50D and 100D tests.

TABLE 14. Error values obtained with the MLS-EDA ON the CEC 2017 30D, 50D and 100D tests.

Moreover, our MLS-EDA considerably outperforms the
basic EMNAg on the CEC 2014 andCEC 2017 tests. Alhough
our method has a slightly higher time cost than EMNAg
does, our proposed mechanisms have still been demon-
strated to be effective in improving the performance of the
basic EDA.

Moreover, the EDA usually requires a large population
size to avoid stagnation [18]. However, our MLS-EDA
can achieve promising performance with a relatively
small population size, thus demonstrating the effective-
ness of our modifications in enriching the population
diversity.
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FIGURE 10. Convergence performance of the MLS-EDA on the CEC 2017 30D, 50D and 100D tests.
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FIGURE 10. (Continued) Convergence performance of the MLS-EDA on the CEC 2017 30D, 50D and 100D tests.

TABLE 15. Mean errors obtained from seven algorithms on the CEC 2014 30D TEST.
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TABLE 16. Mean errors obtained from seven algorithms on the CEC 2014 50D test.

TABLE 17. Mean errors obtained from seven algorithms on the CEC 2014 100D test.
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TABLE 18. Comparison of the computational efficiencies of the seven algorithms on the CEC 2014 test suite.

TABLE 19. Mean errors obtained from eight algorithms on the CEC 2017 30D test.

IV. CONCLUSION
As a novel extension of EDA, the framework of our pro-
posed MLS-EDA based on DES and MLS mechanisms
is described in this paper. Based on experimental evalua-
tion, the optimal algorithm parameter values are discussed,

and the efficiency of the developed search mechanisms in
improving the behavior of the algorithm is verified, demon-
strating that our modifications play an active role in improv-
ing the algorithm performance and avoiding premature
convergence.
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TABLE 20. Mean errors obtained from eight algorithms on the CEC 2017 50D test.

TABLE 21. Mean errors obtained from eight algorithms on the CEC 2017 100D test.

The optimization ability of our MLS-EDA has been
benchmarked using the CEC 2014 and CEC 2017 test
suites. Both experiments are carried out using 30D, 50D
and 100D problems. According to the statistical results,

our MLS-EDA shows high efficiency and accuracy in
both test suites. Moreover, our method shows compet-
itiveness performance relative to other top-performing
algorithms.
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TABLE 22. Comparison of the computational efficiencies of the eight algorithms on the CEC 2017 test suite.

Two possibilities should be addressed in future work.
First, the MLS mechanism used in the MLS-EDA is an
efficient local exploration method that can also be employed
to enhance the performance of other algorithms. Second,
although our MLS-EDA has shown promising performance
in addressing small- and medium-scale problems in this
study, the time complexity of MLS-EDA, which is related
to the problem dimensionality, will limit its applicability in
high-dimensional cases. Developing a more efficient EDA
framework with a lower time complexity will require further
investigation.

APPENDIXES
APPENDIX A
See Table 13.

APPENDIX B
See Figure 9.

APPENDIX C
See Table 14.

APPENDIX D
See Figure 10.

APPENDIX E
EXPERIMENTAL RESULTS ACHIEVED BY THE MLS-EDA,
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See Tables 15–17.

APPENDIX F
COMPARISON OF THE COMPUTATIONAL COSTS OF THE
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See Table 18.

APPENDIX G
EXPERIMENTAL RESULTS ACHIEVED BY THE MLS-EDA,
EMNAg, NRO, MRDE, RWGEDA, ELSHADE-SPACMA,
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