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ABSTRACT Information transmission of innovation and peer effect among firms have significant impacts
on innovation adoption decisions of firms, but those effects usually depend on the different types of inter-firm
networks. Therefore, the diffusion of innovation (DOI) can be regarded as a process occurring in complex
systems composed of different types of interactions, which can be categorized into links belonging to
different layers ofmultiplex networks. This study aims to shed light on the complexity of innovation diffusion
from the perspective of an information-behavior framework based on multiplex networks. The process of
technology innovation adoption is formulated into two stages including information perception and decision
making, and a novel innovation diffusion model based on duplex inter-firm networks, in which one layer
has influence on information transmission and the other carrys the peer effect, is further proposed in this
study. The simulation experiments indicate that the random-scale-free duplex networks are favourable to the
diffusion speed while scale-free-scale-free duplex networks are conducive to the diffusion range. Moreover,
within the scale-free-scale-free duplex networks, the diffusion speed will increase with the increasing of
the power law index in the information network and decrease with the increasing of the power law index
of the behavior network. The study contributes to the literature by establishing duplex network model that
distinguishes links between information and behavior networks, and offers insights concerning optimization
of network configuration in the promotion of DOI.

INDEX TERMS Multiplex networks, diffusion of innovation, information-behavior framework, agent-based
modeling.

I. INTRODUCTION
The theory of propagation dynamics has been extensively
applied in many fields, including epidemic spreading [1], the
emergence and evolution of cooperative behavior [2], herd
behavior in the markets [3], the spread of new products and
technologies [4], etc.. The diffusion of innovation (hereafter
DOI), being one important branch of propagation dynamics,
bears theoretical and practical importance. DOI is usually
defined as a process through which innovation is carried out
in different channels of time by a member of social system.
And it is widely recognized as the materialization of innova-
tion and determines the value of innovation. Accordingly, rich
literature has been accumulated seeking to explain how a new
technology or product is disseminated, which includes the

The associate editor coordinating the review of this manuscript and
approving it for publication was Davide Aloini.

formation of diffusion process [5]–[7], mining of driving or
inhibiting factors [8], [9], and most recently the microscopic
exploration of innovation adoption [10]–[12].

In the early stage of the DOI research, the behavior of indi-
viduals are assumed to be homogenized, and Bass model (or
Bass diffusion model) is developed by Frank Bass to describe
how a new product is adopted in a population through differ-
ential equation modeling [13]. After then this kind of models
has been studied and widely used in forecasting, especially
new products’ sales and technology adoption. Beyond that,
scholars also noticed that innovation diffusionwill be affected
by interaction among the heterogeneous individuals. And the
spatial structure has been taken account of in the studies.
The relationship between network architecture and diffusion
performance is investigated to infer that system performance
exhibits clear small-world properties, in that the steady-state
level of average knowledge is maximal when the structure is
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a small-world. These studies enlighten us that the intricate
relationship in DOI can be captured in the model of complex
networks.

As we known, individuals in the social systems often
interact in multiple ways with others to form a multi-layered
networks [14] For example, social network is composed
of several different types of relationships such as friend-
ship, proximity, kinship, membership, or colleague rela-
tionship [15]. In the inter-urban transportation system, the
road network, the railway network, and the aviation net-
work are coupled to each other to form a multi-level trans-
portation network. Within the existent multiplex network
literature, the prevailing construct of two-layer network are
composed of online information network and offline phys-
ical contact network [16], [17]. The spread of epidemics
is modeled by two-layer multiplex networks of awareness
diffusion and epidemic propagation. The awareness diffu-
sion induces informed individuals to take actions to prevent
infection, hence influencing the infection threshold of disease
spreading [18]. Regarding to information diffusion, the online
information network is similar to the preferential attachment
process due to the user attention mechanism, and its structure
conforms to the scale-free network, while the offline reality
network shows the characteristics of small-world. The cou-
pling relationship enables information to spread faster [19].
In the diffusion of green behaviors, reference [20] finds that
choosing individuals with high popularity in information net-
work to be initial spreaders is not a necessary condition for
the widespread of green behavior but choosing those with
popularity under turning point is inadvisable.

However, most of the research on DOI concentrates on a
single-layer network, which neglects the multiplexity of real
world systems [21]. In particular, few studies portray DOI
from the perspective of multiple networks, which ignore the
similarities between DOI and other diffusion themes such as
disease propagation, information diffusion, and behavior evo-
lution in the field of multiplex networks. DOI share similar-
ities with epidemic spreading, which involves the interaction
between influencing adopters and potential adopters and the
time path could be depicted with a similar S-curve. Scholars
have established the single-layer DOImodels such as SI, SIR,
and SIRS. In addition, DOI is similar to the spreading of
green behavior in that information plays an important role in
the adoption of new technology. With economic development
and technological advancement, the relationship within inno-
vation network is complicated, information exchange and
capital operation are coupled in multiple dimensions of social
relations, exhibiting more complex diffusion topology and
features. For example, in the early stage of DOI, individuals
can only base their adoption decisions on the information
they acquired, so information transmission among individual
imposes the largest impact on innovation adoption; in the
subsequent stages of DOI, individuals’ adoption decisions are
determined by experience and knowledge from those they
are closed related [22]. The networked information percep-
tion and resources or knowledge sourcing implies duplex

relationships within DOI. Therefore, the ignorance of mul-
tiplexity could neither fit the reality well nor consider the
interactions or joint effect of duplex networks.

Motivated by the discussion above, this study estab-
lishes the duplex networks for DOI based on an
information-behavior framework, dividing the individuals’
behavior into two stages of information acquisition and adop-
tion decision-making. The interactions of information acqui-
sition will occur on the layer of the so-called information net-
works but the interactions of adoption decision-making will
occur on the layer of the so-called behavior networks. Since
agent-basedmodeling provides a way to explicitly specify the
micro-level processes that drive the adoption of innovation,
thus revealing the macro adoption dynamics from aggregated
individual behavior and interactions between agents [1].
This paper establishes an agent-based model to formulate
the intra-layer connection and inter-layer interaction mech-
anisms, and the decision algorithm underlying our model
allows heterogeneity among decision-makers and duplex net-
work construction. Since network structure is the substrate of
DOI, an understanding of network structure toward efficient
DOI is of paramount significance. A number of simulations
are performed on Anylogic software to compare across dif-
ferent topologies of duplex networks qualitatively and to
measure the quantitative impacts of topological parameters,
and finally time paths in different topological scenarios are
obtained. The simulation experiments shed lights on the
following three questions: (1) What type of duplex networks
are most conducive to DOI? (2) What are the independent
effects of the topological characteristics of each network on
the speed and range of DOI? (3) How does the combined
topological characteristics of duplex networks affect the
speed and range of DOI? Our results partly lend support
to some previous results on single-layer network, and most
importantly reveal some unique features of DOI contours in
multiplex networks. This study presents a feasible attempt
to explore DOI using multiplex networks, which extends the
application scenarios ofmulti-layer network theory and offers
a versatile framework in future multiplex networked DOI
literature.

The layout of the paper is as follows: we introduce the
model in Section 2. The experiment design and simulation
result analysis are presented in Section 3. Finally, conclusions
are presented in Section 4.

II. DUPLEX NETWORK DOI BASED ON
INFORMATION-BEHAVIOR FRAMEWORK
A. AN INFORMATION-BEHAVIOR FRAMEWORK
Given the fact that the links inside biological, social, informa-
tion, and technological networks are synchronized inmultiple
layers [1], the multilayer network framework has offered
a promising insight to the elucidating of real world phe-
nomenon [23], [24]. Accordingly, recent years have wit-
nessed a rapid growth of the multilayer network studies,
manifesting in the domains of epidemic spreading [1], [24],
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neutral science [25], finance [26], transportation [27] and
so on. A typical distinctive duplex network observed are
probably the information and behavior networks.

Information network refers to the networked relationships
which capture the flow of information or knowledge through
media communications [28]. Despite the varying forms in
terms of citation networks, co-citation networks, and co-word
networks, information network is intrinsically the invisible
channel and process of information transmission. The key
point of relevant studies is how to determine network con-
nections, and can be roughly classified into network topol-
ogy and diffusion mechanism studies [29]. The first strand
of research focuses on the identification of topologies of
various information networks or the influence of topologies
exerted on information diffusion [30], [31]. Reference [32]
investigated diffusion dynamics in small-world networks and
identified a critical penetration threshold in information dif-
fusion, whereas reference [33] found no percolation threshold
in infinite scale-free networks. Scholars have also investi-
gated the bearing of other structural features on diffusion
dynamics, such as community structure [34] and multiplex
networks [35]. The other line of studies pay attention to
the excavation of mechanism of information dissemination
dynamics, and design diffusionmodel to capture or reproduce
information diffusion phenomenon [29]. Some models focus
on the detection of diffusion cascade and propagation paths of
information diffusion [36], [37]. Other models try to predict
the quantity of infected users, depth and scale of information
diffusion [38], [39].

Innovation diffusion is a typical social process of high
uncertainty, in which other individuals exert significant effect
on one’s innovation decision. Such influences of social inter-
actions have been named by many terms, including ‘social
learning’, ‘imitation’, ‘peer influence’, ‘conformity’, ‘peer
effect’, or ‘interdependence preference’ [22]. In this study,
we choose to use behavior network to represent the social
interactions involved in innovation adoption decision. And
our operational definition of a behavior network is a nexus of
relationships that exerting various influences over the innova-
tion adoption decision. Such network encompasses all kinds
of relationships as long as they are originated from stake-
holders who exerting critical effects on individual innovation
motives or capabilities. The typical relationships are R&D
collaboration, supply chain partnership, parent-subsidiary
relationship, industry alliance, government-enterprise, and
even competitors. Several theoretical paradigms concerning
innovation have underscored the importance of stakeholder
effect. In terms of institutional theory, the impact of insti-
tutional environment on the legitimacy, social acceptance,
and access to resources of an organization’s form, structure,
or behavior is called institutional pressure, which is further
classified into regulatory pressure, normative pressure, and
competitive pressure [40]. This implies regulators, alliance
partners, and competitors as important stakeholders in inno-
vation diffusion. In the social network paradigm, collabo-
rative ties embedded in R&D networks, alliance, or supply

FIGURE 1. The information-behavior framework. Note: the upper layer
describes the information diffusion, and it contains two types of nodes,
in which the purple node represents the unaware state and the blue node
denotes aware state of innovation related information. The lower layer is
the behavior layer consist of two types of nodes: innovation adopter in
green and non-adopter (including both potential adopter and
dis-adopter) in red.

chain partnerships will assist in resources access, reputation
establishment, opportunity detection, and knowledge absorp-
tion that are prerequisites for the adoption of innovation [41].
In addition, contemporary innovation is characterized as
an open innovation paradigm due to the increased special-
ization of knowledge production, indicating the imperative
of networked relationships for creating and profiting from
technology [42].

Rather than encompassing information and behavior net-
work into a holistic setting of peer network like other study
does [22], our study makes a distinction between these two
layers of networks due to two reasons. On the one hand, the
topological structures are assumed to be different between
information and behavior networks according to the stylized
facts. Information network is the one that exhibits character-
istics of high degree assortativity, small shortest path lengths,
large connected components, high clustering coefficients,
and a high degree of reciprocity, whereas an information
network is a structure where the dominant interaction is the
dissemination of information along edges characterized by
large vertex degrees, a lack of reciprocity, and large two-
hop neighborhoods [43]. On the other hand, the priority
differs between information and behavior networks. In the
early stage, information transmission matters the most as
individuals can only base their adoption decisions on the
basic information available; in the later stage, individuals’
adoption decisions heavily rely on the experiential knowledge
and resources accessible from those closely linked with [22].
Therefore, the distinguishing of these two layers is neces-
sary for the design of cascade networks toward DOI. The
information-behavior framework is exhibited in Fig. 1.

B. THE DIFFUSION DYNAMICS IN DUPLEX NETWORK
In the seminal work of reference [10], the innovation adop-
tion activity of individual is depicted by an awareness-
motivation-capability (hereafter AMC) framework. Based on
the overarching Complex Adaptive System (CAS) theory,
AMC interconnects DOI element (i.e., the innovation, com-
munication channels, time, and the social system) via three
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behavior drivers: agents’ awareness, motivation, and capabil-
ity, and turned it into an elegant yet comprehensive model for
empirical examination [10]. Despite being confined in only
one layer network, AMC lays a theoretical foundation for
the information-behavior framework in our study. Specially,
we describe awareness in the information network. Aware-
ness represents individual’s understanding of an innovation,
which depends on the dissemination and diffusion speed and
range of information network. The information manifests
in many terms, including publications reported by research
institute, new product release by industry leaders, citation
of patents, etc.. With the continuous reception of external
information, the individual’s understanding of an innovation
will gradually change from unawareness to awareness, which
is a prerequisite for innovation. Motivation and capability are
described in behavior network. Motivation can be expressed
as the individual’s anticipation of expected returns resulted
from the adoption of an innovation, and also reflects the
competitive pressure [10], [44]. Capability represents the
level of relevant competence required to adopt an innovation.
To materialize an innovation, the innovator must engage in
innovation-related cognitions and behaviors. The accumula-
tion of capability could either through autonomous learning,
or from interactive learning with other individuals in the
behavior network [45], [46]. Motivation and capability are
intertwined in the process of innovation-related behaviors,
such as the value exchange in supply chains or the peer-driven
social learning [47].

Accordingly, an agent-based simulation model is devel-
oped to computationally represent DOI in duplex inter-firm
networks. In our model, agents are divided into focal groups
and external groups, in which external groups are the external
environment for innovation diffusion. And focal groups are
potential adopters of new technologies which are the obser-
vation objects in our model. In order to describe individual
states and behavioral rules, we assign five state attributes
to each individual to describe their awareness, motivation,
capability indicators, and their value and signal levels. Each
individual plays both the roles of innovation adopter and
disseminator, and its behavior rules are as follows:

First, as a potential innovation adopter, individuals will
compare their awareness indicators of innovation with their
neighbors in the information network, and update their aware-
ness indicators at the next time according to the rules of social
learning. Then, individuals will compare their motivation and
capability indicators of innovation with those of their neigh-
bors in the behavior network that send out innovation signals,
and update their own motivation and capability indicators in
accordance with their own value and signal level at the next
moment.

Second, for an innovation adopter, its level of innovation
signal is determined by its motivation level and incremen-
tal value gained from innovation adoption. When its signal
level is above the threshold, it becomes the disseminator of
innovation and the learning object of neighbors in behavior
networks, i.e., the lower the threshold, the easier the spread.

At the end of each moment of behavior evolution, each
individual updates its state attributes according to the infor-
mation interaction, motivation formation, capability accumu-
lation rules, and the results of innovation adoption.

We use A =
{
aij
}
to represent the information network

in the form of the adjacency matrix. Behavior network is
denoted by B =

{
bij
}
. Since the awareness dynamic reflects

the process of information exchange, which is triggered by
the information difference. The awareness difference is cal-
culated in information network as the following:

awareness difference =

∑
aijAj(t)∑
aij

− Ai(t) (1)

Meanwhile, the motivation and capability diffusion are
calculated in behavior network:

motivation difference =

∑
bijMj(t)∑
bij

−Mi(t)

capability difference =

∑
bijCj(t)∑
bij

− Ci(t)
(2)

where Ai(t) is agent i’s awareness stock at time t , and Mi(t),
Ci(t) represent the Agent i’s motivation stock and capability
stock respectively.

Agent i’s incremental awareness 1Ai (t + 1) at time t + 1
is described as the following:

1Ai (t+1)=


(∑

aijAi(t)∑
aij
−Ai(t)

)
·δi,

if ∃j, Aj(t)−Ai(t)>0
0, if ∀j, Aj (t)−Ai(t)≤0

(3)

Ai (t + 1)=Ai (t) ·ηAi +1A (t + 1) ·λ′i (4)

δi=
Ni + 1
Ni

(5)

where δi indicates the time coefficient of innovation’s influ-
ence on agent i over time, aij is the element in the temporary
matrix which indicates whether there is a link between the
node i and node j, ηAi represents the forgetting coefficient of
the awareness stock of agent i, λ′i indicates the efficiency
of agent i’s learning from its neighbors, Ni represents the
duration of agent i’s adoption of this innovation.
Agent i’s incremental motivation stock1Mi (t + 1) at time

t + 1 is described as the following:

1Mi (t + 1) =


(∑

bijMj(t)∑
bij

−Mi(t)
)
+1Vi (t) ,

if ∃j, Mj (t)−Mi(t) > 0
1Vi (t) , otherwise

(6)

M (t + 1) = Mi (t) ·ηMi +1M (t + 1)·λ′i (7)

1Vi (t) =

{
(1+ ri (t)) ·δi·ξ, if Adoptioni = 1
0, if Adoptioni = 0

(8)

whereVi (t) is the value agent i gains at time t from innovation
adoption.When agent i adopts the innovation, the incremental
value gains from the adoption of innovation will increase due
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to the adoption of its neighbors, and ri (t) represents the ratio
of innovators in agent i’s neighbors at t .
Agent i’s incremental capability 1Ci (t + 1) at time t + 1

is described as the following:

1Ci (t + 1)=


(∑

bijCj (t)∑
bij

− Ci (t)
)
·ξ,

∃j,Cj (t)> C i (t) and Signalj = 1
0, otherwise

(9)

Ci (t + 1) = Ci (t) ·
(
ηCi + λi

)
+1Ci (t + 1) ·λ′i (10)

where ξ is a random number, reflecting the volatility caused
by market uncertainty, λi indicates the efficiency of the agent
i’s learning from itself. An Agent only learns about capability
from the signaling neighbors, the signaling behavior indicates
that the Agent has been noticed by its neighbors because its
revenue and related indicators have reached a certain level,
and Signal j = 1 indicates that neighbor j has sent a signal.

Agent i’s state of signaling Signal i is described as the
following:

Signal i =

{
1, if Si (t) > T Si
0, otherwise

(11)

Si (t) = Mi (t) ·1Vi(t), if Ai(t) ≥T Ai (12)

where Si (t) is agent i’s signal stock at time t and when it
exceeds its threshold T Si ,agent i will send a signal to let itself
be noticed by its neighbors, causing the neighbors to learn
fromAgent i. Si(t) is determined by its motivation stockMi(t)
and incremental value gained from adoption 1Vni(t).
Agent i’s state of adoption Adoptioni is described as the

following:

Adoptioni=

{
1, if Ai (t)>T Ai , Mi (t)>TMi , Ci (t)>T

C
i

0, otherwise

(13)

where T Ai ,T
M
i ,T

C
i are the thresholds of awareness, motiva-

tion, and capability respectively of agent i. Agent i will adopt
this innovation when its awareness, motivation, and capabil-
ity stock exceed the respective thresholds simultaneously.

III. SIMULATION DESIGN AND ANALYSIS
A. SIMULATION EXPERIMENT DESIGN
In order to observe the DOI process in the duplex networks
based on the information-behavior framework, we design the
agent-based model to simulate diffusion behavior of individ-
uals in social networks in terms of technology innovation,
including information awareness, motivation formation and
capability accumulation. This model examines the impact
of duplex network topology on DOI, and we execute the
simulation experiments based on the Anylogic software.

In the simulation, we examine the duplex networks formed
by the combination of random networks, small-world net-
works, and scale-free networks. The nine topology combina-
tions are denoted by the acronyms of random network (RD),

scale-free network (SF), and small-world network (SW) in
the form of hyphen-connected symbols, such as RD-RD,
SF-SW, and SF-SF. Random network, small-world network,
and scale-free network are generated according to the follow-
ing algorithms.

Random network: Specify the number of nodes N and
the average number of connections L, so that each node
establishes a connection with L nodes on average in a random
connection manner, thereby generating a random network.

Small-world Network: Based on the WS small-world net-
work generation algorithm [48], the number of nodes N, the
number of connections L, and the reconnection probability p
are specified. Firstly, each agent establishes a connection to
the nearest L nodes to form a regular network. This connec-
tion is reconnected to another random node with probabil-
ity p, thereby generating a small-world network.

Scale-Free Network: Based on the BA scale-free network
generation algorithm [49], the number of nodes N, the num-
ber of initial nodes K0, and the number of newly established
connections in each iteration K are specified. The network
initially has K0 nodes and randomly establishes connections.
Then, in each iteration a new node is added, and the new
node selects K (K≤K0) nodes from the current network to
connect with, and the probability p(vi) of a node vi being
selected is proportional to the size of the node degree di, that
is p (vi) =

di∑
j dj

. It is incremented until the total number of
nodes equals to N , resulting in a scale-free network.
In our simulation experiments, agent completes the deci-

sion of information awareness, motivation formation and
capability accumulation in each iteration, and updates its own
state indicators according to the behavior evolution rules.
At the end of each iteration, the system counts the speed of
innovation adoption and the range of innovation diffusion.
Among them, we observe the occurrence of critical condi-
tions through significant changes in the diffusion curve [50],
and use the time taken to reach the adoption rate of 50% to
characterize the diffusion speed [51]. The cumulative adop-
tion rate after a certain number of iterations represents the
size of the diffusion range [52].

The simulation steps are designed as follows:
Step 0: Set the population size, generate duplex networks

according to the structure type and topological character-
istics, initialize the system parameters, and complete the
parameter settings of the focal population and external popu-
lation.

Step 1: According to the agents that have adopted innova-
tive technology in the entire network, obtain the incremental
value gained from innovation adoption and update the signal
stock.

Step 2: In the focal population, each potential innova-
tion adopter compares awareness indicators about innovation
with its neighbors in the information network, and updates
its awareness indicators according to formulas (3) and (4)
at the next iteration. Then the individual will compare the
motivation and capability indicators of innovation with the
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TABLE 1. Basic statistics of simulated networks.

neighbors who sent the innovation signal in the behavior
network, and combine their own value and signal level to
update their motivation and capability indicators according to
formulas (6) to (10). Then, each potential innovation adopter
makes decision based on whether the AMC indicator level
reaches the adoption threshold.

Step 3: Update the statistical indicators in the system,
and calculate the innovation adoption rate and innovation
diffusion speed.

Step 4: Determine whether the iteration termination con-
dition is reached. If the condition is reached, the simulation
stops.

The detailed experimental process is shown in Fig. 2:

FIGURE 2. Flow chart of simulation experiment.

B. IMPACT OF TOPOLOGICAL TYPES ON DOI IN
DUPLEX NETWORKS
To investigate the impact of topological types on DOI in
duplex networks, we generate three kinds of basic networks
(random networks, small-world networks, scale-free net-
works) with nodes number N= 1000 and average degree of 6,

and combine them into 9 different types of duplex networks
such as RD-RD(random-random), SF-SW, SF-SF, etc.We use
the RD network with L = 6, SW network with p = 0.1
and L = 6, SF network with K = K0 = 3, the basic
statistics of the simulated networks are exhibited in Table 1.
Two hundred steps are iterated in 9 kinds of duplex networks
in the simulation experiment, the results are shown in Fig. 3.

According to the simulation results above, we find that the
S-curves of the homogeneous duplex networks (a,e,i) con-
form to the regular pattern of DOI, validating our model in the
description of DOI in case of homogeneous duplex networks.
In the pairwise combination of different networks, scale-free-
scale-free (SF-SF) duplex networks (i) have the widest diffu-
sion range, and random-scale-free (RD-SF) duplex networks
(g) have the fastest diffusion speed. The experimental results
are also consistent with the literature that there is a positive
correlation between the speed of knowledge diffusion and the
degree of randomization in the network, that is, the greater
the degree of randomization of the network, the faster the
speed of knowledge diffusion in the network [53]. In the
process of knowledge diffusion that does not continuously
generate new knowledge, random networks show better per-
formance [54]. The knowledge dissemination performance of
scale-free social networks is better than that of uniform social
networks with the same average degree [55].

In addition, the diffusion speed and range of DOI in the
network combination containing small-world network (b, d,
e, f, h) are relatively inferior. Diffusion efficiency in duplex
networks is affected by the network topology of each layer.
Although it can have relatively good diffusion performance
in scale-free or random homogeneous networks, diffusion
range and speed in the heterogeneous duplex networks will
be slower once it is combined with a small-world network.

In a word, experimental results show that in the duplex net-
works of different topological types, the scale-free network
and scale-free network combination (SF-SF) is advantageous
for diffusion range of innovation. The combination of random
networks and scale-free networks (RD-SF) is comparatively
superior in terms of diffusion speed. And it is necessary to
meet the effective diffusion of both information and behavior.
Deficiencies in any of these levels will lead to a significant
reduction in the overall speed and range of DOI.

C. IMPACT OF TOPOLOGICAL PARAMETERS ON DOI
Considering that the performance of DOI is most promi-
nent in the SF-SF duplex networks, we further analyze the
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FIGURE 3. DOI in duplex networks of different topological types.

influence of the topological parameters of the network on
DOI in the SF-SF duplex networks, focusing on network
density and power law index. Network density character-
izes the density of interconnected edges between nodes
in the network, and is measured by the average degree
in the network [56]. The power law index reflects the
non-uniformity of the degree distribution and is calculated
from the slope of the regression line in the hyperbolic coor-
dinate system of the degree distribution [57]. In order to
investigate the impact of the topological characteristics on
DOI in a SF-SF duplex networks, we conduct two sets
of experiments by fixing the information or behavior layer
and adjust the topological characteristics of the other layer.
Then we report the impact on DOI due to changes in net-
work density and power law index in each layer of duplex
networks.

1) IMPACT OF INFORMATION NETWORK TOPOLOGICAL
CHARACRERISTICS ON DOI
First, in order to examine the influence of the network den-
sity of information network on DOI, we select information
networks with different network densities to build duplex

networks with fixed behavior network parameters, perform
simulation experiments on the network, and observe the
critical conditions, range, and speed of DOI. The selection
rules of experimental data are based on BA scale-free net-
work generation algorithm, and the parameter K0 is fixed
at 3. By adjusting parameter K, a set of network data with
power law index approximately equal to 1.95, and the average
degree ranges from 1.998 to 15.872 is generated, exhibiting
a monotonically increasing trend along K. At the same time,
we record the average path length which ranges from 2.681
to 7.964. The detailed statistics are shown in Table 2.

We choose a scale-free network with K = 3 as the behav-
ior network, adjust the average degree of the information
network and perform sensitivity analysis, and intercept the
diffusion curve at t = 100. We observe from the diffusion
curve in Fig. 4 that the adoption rate increases with the change
of the parameter K, and there is a critical value. When the
parameter K exceeds a certain value, the diffusion curve tends
to be stable. Early in the increase of K (K = 1,2), both the
diffusion range and speed show a rapid increase, but the
diffusion curve is stable near a certain range in the middle
and late stages of K increase (K ≥ 3).
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TABLE 2. Topological characteristic of each layer.

FIGURE 4. Sensitivity analysis of network density on DOI in information
networks.

The experimental results show that under the condition that
the behavior network is fixed, as the information network
density increases, the nodes are more densely connected to
each other, and the average path length is gradually shortened.
There are two reasons for the ‘‘saturation point’’ of innovation
diffusion. On the one hand, the interaction between nodes
is more frequent due to the increase in network density,
which makes the speed and range of diffusion increase, but
the marginal increase is gradually decreasing. On the other
hand, in the duplex networks coupling process, although
the increase in network density has made information dis-
semination more rapid and widespread, the motivations and
capabilities associated with innovation decisions in behavior
networks have not reached saturation, which restricts the
overall diffusion process. This is consistent with the conclu-
sions in section B of part III.

We execute 100 simulation experiments in each different
sample networks, and use the average time of adoption rate
reaching 50% under different power law indexes to proxy
the speed of innovation diffusion. The experimental results
are shown in a scatter plot in Fig. 5. Its horizontal axis is
the power-law index of the sample network, and its vertical
axis is the average time for 28 sample networks to reach 50%
adoption rate in 100 simulation experiments. From the fitted

TABLE 3. Power law index for innovation diffusion experimental data.

FIGURE 5. Time for the adoption rate to reach 50% with varying power
law indexes.

straight line in Fig. 5, the time required for the adoption rate
to reach 50% decreases as the power law index increases, that
is to say, the speed of innovation diffusion increases with the
increase of power law index.

We also record and linearly fit the experimental results of
the time taken for the adoption rate to reach 10%, 20%, 30%,
40%, and 50% under different power law indexes. From the
linear fitting results in Table 4, we can see that the slope is
only−0.0619 when the adoption rate is 10%, and the slope is
−11.15 when the adoption rate is 50%. The growth rate of the
diffusion speed with the power law index increases with the
adoption rate, which means the influence of the power law
index on the diffusion speed is not obvious in the early stage,
but gradually increases with the diffusion process.

We observe the range of DOI by recording the adoption rate
at time t = 100 under different power law indexes. We find
from Fig. 6 that the data points of the innovation diffusion
range with different power law indexes are scattered, and the
fitted straight line indicates no obvious trend.

Two conclusions can be drawn from the above experi-
ments. Firstly, the unevenness degree distribution of informa-
tion network has a significant role in promoting the speed of
innovation diffusion. This effect becomes more pronounced
as the diffusion process evolves. This highlights the role of
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TABLE 4. Linear fitting results of time to the specified adoption rate
under different power law indexes.

FIGURE 6. Adoption rate at t = 100 with varying power law indexes.

FIGURE 7. Sensitivity analysis of network density on DOI in behavior
networks.

opinion leaders or influential central nodes in information
network in that speed of diffusion will be accelerated given
information disseminated through these nodes. Since these
central nodes gradually participate and have an impact in
diffusion process. Therefore, the positive effect of the power
law index on the diffusion speed is gradually significant.
Secondly, the change in the power law index has little effect
on the range of DOI. This is mainly because the overall
network density and average path length have not changed
significantly, the tightness between nodes has not been
improved.

FIGURE 8. Time for the adoption rate to reach 50% with varying power
law indexes.

FIGURE 9. Adoption rate at t = 100 with varying power law indexes.

2) IMPACT OF BEHAVIOR NETWORK TOPOLOGICAL
CHARACTERISTICS ON DOI
First, in order to examine the impact of network density of the
behavior network on DOI, we select information networks
with different network densities to build a duplex networks
with fixed information network parameters, perform simu-
lation experiments in this network and observe the critical
conditions, range, and speed of diffusion. Selection rules of
experimental data are the same as in section (1) of part C.
The detailed data are similar with those in Table 2 except
for the exchange between information networks and behavior
networks.

We select a scale-free network with K = 3 as the infor-
mation network, adjust the average degree of the behavior
network to perform the sensitivity analysis and intercept
diffusion curve at t = 100. We observe from the diffusion
curve in Fig. 7 that the adoption rate shows an increasing
trend with the change of the parameter K. There is a critical
value, when the parameter K exceeds a certain value, the
diffusion curve stabilizes. The result is similar to the informa-
tion network. Therefore, whether it is an information network
responsible for information dissemination or a behavior net-
work driven by decision-making related peer effects, as the
network density increases, the average path length between
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FIGURE 10. Impact of interactions on DOI in duplex networks.

nodes shortens, and the adoption rate of DOI increases to a
certain threshold, driving by diminishing marginal benefits
and coupling of duplex networks.

Second, in order to investigate the impact of the uneven dis-
tribution of the behavior network on DOI, we select behavior
networks with different power law indexes to build duplex
networks and perform two sets of simulation experiments,
record the effects on diffusion speed and range separately
in the case of a fixed behavior network. We executed 100
simulation experiments in each sample networks, and record
the average time of adoption rate to reach 50% under differ-
ent power law indexes to observe the speed of innovation
diffusion. The experimental results is shown in a scatter
plot in Fig. 8. Its horizontal axis is the power law index
of the sample network, and its vertical axis is the average
time for 28 sample networks to reach 50% adoption rate
in 100 simulation experiments. The fitting curve shows a
slight downward trend, considering that the two data points

except t= 21 are excluded, all other data points are t= 19 or
t= 20, and there is no obvious change pattern with the power
law index. This is different from the experimental results in
the information network.

In Fig. 9, the range of DOI is observed by recording the
adoption rate at t = 100 with different power law indexes.
Although the fitted straight line indicates that the diffusion

range increases with the increase of the power law index, the
impact is small, and the data points of the innovation diffu-
sion range under different power law indexes are scattered
and do not exhibit a clear trend. Therefore, the power law
index has little effect on the diffusion speed and range in
the behavior network. Comparing the experimental results
with information network, it can be found that the change
of the power law index in the information network has a
significant effect on the diffusion speed, whereas the effect in
the behavior network is not obvious. This indicates that in the
information-behavior framework, although information and
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FIGURE 11. Heatmap of the interaction of duplex networks on DOI.

behavior activities are carried out in two layers of networks
and determine innovation decisions at the same time, the
spread of information is faster than the diffusion of behaviors,
which makes the spread of information dominates the process
of innovation diffusion.

D. INTERACTIVE EFFECTS OF THE DUPLEX NETWORK
TOPOLOGICAL CHARACTERISTICS ON DOI
In order to investigate the impact of network interaction on
innovation diffusion in duplex network, we adjust the power
law index of the information network and the behavior net-
work simultaneously. First, we select two scale-free networks
with power law indexes of 1.5 and 2.0. The two groups are
combined for simulation experiments. The results are shown
in the Fig. 10.

According to the experimental results in Fig. 10, the duplex
network (b), which is a combination of the information net-
work with power index of 2.0 and the behavior network
with power law index of 1.5, has the fastest diffusion speed
(time = 23), and the duplex network (c), which is a com-
bination of 1.5 and 2.0, has the slowest diffusion speed
(time = 62). The network (a) with double layers of 1.5 has
the largest diffusion range, and the network (d) with double
layers of 2.0 has the smallest diffusion range.

It can be found that when the parameters in the information
network are fixed, the diffusion range and speed decrease as
the power law index of the behavior network increases. When
the parameters in the behavior network are fixed, the diffusion
range decreases as the power law index in the information
network increases, but the diffusion speed increases.

Further, we generate 21 scale-free networks with power
law exponential distributions ranging from 1.5 to 2.0, and
combine them in pairs to form 21∗21 experimental sample
networks. We perform 200 iterations respectively, and exhibit
the simulation results in Fig. 11. In order to compare the
magnitude of the diffusion speed more clearly, we calculate

TABLE 5. Experiment summary.

the time T used to reach the adoption rate of 50% as a speed
of 200

T and display the results by heatmap.
As Fig. 11 indicates that the fastest diffusion speed in

a duplex network is generated by an information network
with a power law index at [1.6, 2.0] and a behavior network
with a power-rate index at [1.75, 2.0]. The diffusion speed
increases with the increase of the power law index in infor-
mation network, and decreases with the increase of power
law index in the behavior network. In other words, the duplex
networks constructed by an unevenly distributed information
network and a uniform behavior network have better DOI
performance.

We summarize the conclusions of all experiments as
follows in Table 5:

IV. CONCLUSION AND RECOMMENDATIONS
Information transmission and peer effect have significant
impacts on innovation adoption decisions of firms, but those
effects usually occur in the different types of inter-firm net-
works. Considering themultiplexity of DOI, this paper is built
on the information-behavior framework to establish an agent-
based model, formulating the distinguished relationships in
information perception layer and peer-driven behavior deci-
sion layer. To explore the time paths of DOI across different
topological setting, simulations are performed in terms of
qualitative comparison among topology combinations and
quantification of effects induced by the change of topolog-
ical parameter. Simulation experiments results verify some
conclusions in the current literature and most importantly
reveal some unique insights concerning network architecture
optimization in duplex network, thus indicating a validity of
the established model and the necessity to explore DOI in
multiplex networks. This study enriches the academic finding
in DOI and benefits those practitioners with policy implica-
tions.

A. MAIN FINDINGS
The main findings of our study illuminate two interest-
ing questions concerning DOI efficiency. One is why DOI
is advisable to model in duplex networks comprised by
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information transmission and behavior decision networks.
The other is what topologies are conducive to the outbreak
and adoption fraction of DOI.

(i) For the necessity of taking multiplexity into consider-
ation, the duplex network of information transmission and
behavior decision built on the theoretical framework of AMC
provide a superiority and flexibility of the agent-based mod-
eling in DOI, which is a further extension on the AMC
framework proposed by reference [10]. First, it formulates
the sequential two stages in DOI, which is intrinsically in
line with the information, experience, and externality mech-
anism proposed by reference [22] from their case stud-
ies of DOI, proving our model’s consistency with reality.
Our model further elaborate reference [22]’s propositions
in that the model captures the causal links from individual
influences and adoption behaviors to multiplex networked
movements of innovation-related signals, and eventually to
collective adoption patterns, thus providing a flexible way
to incorporate elements unfolding at both the microscopic
and macroscopic levels associated with DOI. Most impor-
tantly, the simulation experiments indicate that the outbreak
and adopted fraction of DOI is highly contingent on the
topology of information transmission network. This conclu-
sion corroborates the results of reference [20] on the key
role played by information dissemination in DOI cascades,
therefore the selection of initial spreaders of innovation is of
paramount significance. Any single layer networked analy-
sis is susceptible to underestimate the effect of information
diffusion.

(ii) For the topologies conducive to DOI, qualitative analy-
sis predicts faster adoption of innovation for the combination
of random network in the layer of information dissemination
and scale-free network in the layer of behavior decision,
whereas the widest range of diffusion occurs in the combi-
nation of scale-free networks in both layers. This result is
remarkably different to many previous results on single-layer
network which state DOI is more likely to fail in a random
network than in a highly clustered network [58]. One possible
explanation is that random graph or scale-free network in
the information transmission layer is more conducive to the
awareness perception of new idea or product, since they are
not inhibited by the path dependence or rigid knowledge
or cognitive framework induced by small-world network.
After the identification of facilitating architectures of duplex
networks, the effects of topological parameters on the speed
and range of DOI is quantified. Simulation results reveal that
network density in both layers are beneficial to efficient DOI,
validating density as an acceleration of early-period adoption
rates. This is in line with current literature on the notion
that density improves knowledge transfer and absorption effi-
ciency [59]. However, this effect wears off after network den-
sity reaches a certain point when information is redundant.
Another network parameter investigated is power law index,
which characterizes the degree of heterogeneity of scale-free
networks. In the information network, the diffusion speed
increases with the increase of the power law index whereas

in the behavior network the diffusion speed decreases as the
power law index increases. The adjustment of the power
law index has little effect on the range of diffusion. The
simulation results of duplex network interaction show that
the information network with big power law index and the
behavior network with comparatively small power law index
offer a duplex network structure most conducive to DOI.

B. PRACTICAL IMPLICATIONS
From a practical perspective, this study is of certain value for
people who want to induce more efficient diffusion of certain
innovations (such as the policy makers who contribute to
the increasing of eco-friendly technology propagation), since
it provides the guidance for duplex network configuration
toward efficient DOI. There are mainly two suggestions:
First, the effect of opinion leader or influential hub actors
in the information network should be fully exploited due to
their paramount significance in DOI. The government can
endow more inputs to the cultivation of opinion leaders in
the information network though stimulation or administrative
measure and strengthen the information radiation range of the
hub organizations through the promotion of information plat-
form, industry association and strategic alliance. Second, for
the second layer of duplex networks, government can amplify
the demonstration effects of advanced actors and promote the
cooperation between hubs and potential adopters at the same
time. For example, the government can guide the hub actors to
undertake R&D, test, demonstration andmarketization stages
of innovation, widening the range of technology diffusion at
multiple levels of innovation and facilitate the catch-up of
non-hub actors.

The paper also has some limitations need to be addressed in
future studies. First, the interaction of inter-layers is described
by the adoption rule in which adoption occur only in the
joint exceeding of intra-layer thresholds. More sophisticated
model is expected to formulate the complex relationship
between information transmission layer and behavior deci-
sion layer and to explore the influence exerted by the interplay
between different layers on DOI. In addition, this study uses
a same set of nodes in the duplex networks, which take
into consideration only intra-layer heterogeneity rather than
inter-layer heterogeneity such as population. This simpli-
fied setting can conceal important micro-level characteristics
affecting DOI thresholds. Future studies should take account
of individual heterogeneity across different networks, which
may provide more detailed investigation of time-dependent
effects regarding a variety of social or technical factors
on DOI.
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