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ABSTRACT To improve the level of safety in coal mine production, it is important to enhance the accuracy of
coal mine gas concentration prediction. In the context of deep learning, we proposed amine gas concentration
prediction model based on gated recurrent units (GRUs). The GRU model is not only simple in structure but
also offers high prediction accuracy, and it can make full use of the time-series characteristic of mine gas
concentration data. First, we apply the Pauta criterion and Lagrange interpolation to preprocess mine gas
concentration monitoring data. Then, a spatial reconstruction method is used to construct the training set
for the prediction model. Finally, the mean square error (MSE) is used as the loss function and adaptive
moment estimation (Adam) is used as the optimization algorithm to determine the learning parameters
of the GRU model for predicting gas concentration values. Experimental results show that compared with
models based on support vector regression (SVR), a backpropagation neural network (BPNN), a recurrent
neural network (RNN) and a long short-term memory (LSTM) network, the proposed GRU-based model for
gas concentration prediction achieves reduced error on the test set, and moreover, the GRU model is more
efficient than the LSTM model in terms of run time. Thus, the accuracy and efficiency of gas concentration
prediction are both improved, showing that the proposed model is of high practical value.

INDEX TERMS Deep learning, gated recurrent unit, gas concentration, prediction.

I. INTRODUCTION
Coal is an important pillar of China’s primary energy
consumption, and it is related to the economic and energy
security of China. Frequent mine gas disasters have caused
significant losses to China’s coal industry and of miners’
lives. At present, coal enterprises have installed safety moni-
toring systems, but the main functions provided by these sys-
tems are simply the short-term identification of and response
to disasters. These monitoring systems fail to fully exploit
the value of the available gas data, resulting in insufficient
forecasting ability for mine gas disasters. Therefore, there
is an urgent need to introduce new methods and technolo-
gies for supporting improved safety in coal mine production.
Through the analysis of monitoring data, reliable and accu-
rate forecasting of gas concentration levels can be achieved,
thus improving the early warning capability for coal mine
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gas disasters. Such forecasting will be of great significance
for reducing the economic losses caused bymine gas disasters
and protecting the lives of miners.

Mine gas concentration data are dynamic and nonlinear,
and they are influenced both by many natural factors and by
mining technology; thus, it is difficult to perform forecasting
based on these data using traditional methods [1]. In recent
years, neural networks have been widely applied for nonlin-
ear regression modeling and forecasting. Among them, gated
recurrent unit (GRU)-based networks have been theoretically
proven to be able to represent nonlinear functions with arbi-
trary accuracy. Therefore, in this paper, we propose a GRU-
based algorithm for gas concentration forecasting. The first
step is to apply the Pauta criterion to process the noise in
the mine gas concentration monitoring data. Then, Lagrange
interpolation is applied to interpolate the missing values of
the monitoring data to complete the necessary preprocessing.
Subsequently, spatial reconstruction of the gas monitoring
data is performed to construct the input samples to be used
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to train the GRU network. Then, we choose the mean square
error (MSE) as the loss function and use adaptive moment
estimation (Adam) as the optimization algorithm to construct
a GRU learning model that is suitable for predicting the time-
varying coal mine gas concentration. Finally, coal mine gas
data are used for testing. An experimental evaluation shows
that the error of the proposed GRU-based gas concentration
prediction model is reduced by 7.9% compared with that
of a model based on a long short-term memory (LSTM)
network and that its run-time efficiency is simultaneously
improved by 13.05%, endowing it with better practical value
for application.

The remainder of this paper is organized as follows.
Section 2 reviews some of the relevant literature on mine gas
concentration forecasting. Section 3 describes the dataset and
data processing. Section 4 introduces the theoretical back-
ground on forecasting methods and presents the proposed
GRU-based method of mine gas concentration forecasting.
Section 5 presents the parameter settings of the proposed
model. The experimental results are analyzed in Section 6,
and Section 7 concludes the paper.

II. LITERATURE STUDY
Considerable research has been conducted in the area of
mine gas concentration forecasting. For example, Zhang
Zhao-zhao proposed a brain-like multihierarchical modular
neural network (BMNN) with applications for gas concen-
tration forecasting [2]. The model of BMNN has a brain-like
multihierarchical structure and uses a collaborative learn-
ing approach. Zhang et al. [3] presented research on and
the application of an improved gas concentration prediction
model based on gray theory and a backpropagation neural
network (BPNN) for a digital mine. That paper exploited the
advantages of gray prediction and the ability to revise the gray
predictionmodel using a BPNN. Thus the researchers built an
improved gas concentration prediction model and carried out
specific computer simulations. Stopforth and Davrajh [4] was
to develop equations for close estimations of gas concentra-
tions for the Figaro sensors used, to allow other researchers
the ability to identify the gas concentrations when using the
sensors for different applications. Booth et al. [5] proposed
a solution to the shortcomings of a traditional gas emissions
forecasting method and analyzed the various characteristics
and limitations of gas management design in practice. The
proposed method used an improved spatial dataset for predic-
tionwhile also incorporating basic physics and energy-related
principles. Yu and Shi [6] proposed a gas concentration fore-
casting model based on a radial basis function (RBF) neural
network and chaos theory, in accordance with the nonlinear
and chaotic time-series characteristics of mine gas data.
Liu Kun proposed a method of coal mine gas concentration
analysis based on a support vector machine (SVM)model [7].
In this paper, on the one hand, the authors adopted support
vector regression (SVR) to predict gas concentration values
based on data from other well-performing sensors; on the
other hand, they classified the gas concentration data into

FIGURE 1. The structure of an RNN.

FIGURE 2. The structure of an LSTM neural network.

two classes, corresponding to either totally safe or slightly
high concentrations, by applying a model constructed based
on either C-support vector classification (SVC) or a one-class
SVM.

However, all of the above methods focus on single-feature
learning and prediction for mine gas concentration levels, and
consequently, these methods are disadvantageous in terms of
forecasting accuracy. To improve the accuracy of mine gas
concentration forecasting, techniques based on time-series
forecasting are receiving increasing interest. Since Hinton’s
team won the ImageNet competition using deep learning
in 2012 [8], an increasing number of scholars have begun
to pay attention to deep learning and to apply it in various
fields. Deep learning has achieved breakthroughs in vari-
ous fields, including natural language processing [9], [10],
speech recognition [11], machine translation [12], and image
comprehension [13]. A recurrent neural network (RNN) is
a kind of deep neural network that is effective at process-
ing sequential data. In contrast to conventional feed-forward
neural networks, an RNN preserves, learns, and records the
historical information contained in sequential data by means
of periodically connected hidden layer nodes [14]. As shown
in Figure 1, the structure of an RNN includes an input layer,
hidden layers, and an output layer; U, V, and W are the
weights from the input layer to the hidden layers and from
the hidden layers to the output layer.

Since the parameters of an RNN are shared between layers,
the number of parameters is dramatically reduced, thereby
shortening the training time. However, an RNN can easily
suffer from gradient vanishing or gradient explosion when
processing a long sequence of data.

To solve the problems of gradient vanishing, gradi-
ent explosion and long-term dependence, Hochreiter and
Schmidhuber [15] introduced the LSTM neural network
architecture in 1997. LSTM is an improved design for deep
neural networks based on the RNN architecture; it also has a
chain-like structure, as shown in Figure 2.

38024 VOLUME 8, 2020



P. Jia et al.: Research on a Mine Gas Concentration Forecasting Model Based on a GRU Network

FIGURE 3. The internal structure of an LSTM neuron.

FIGURE 4. Raw data.

However, compared with the simple layers of RNN neu-
rons, the structure of LSTM neurons is more complex,
as shown in Figure 3.

The loop structure of an LSTM neuron includes three
control gates: a forget gate, an external input gate, and an
output gate. These gate structures allow the LSTM neuron
to update, maintain, or delete information contained within
the cell state. An LSTM network is trained using the Back-
propagation Through Time (BPTT) algorithm to determine
its parameters [16]. The BPTT algorithm calculates the error
term of each LSTM neuron in the reverse direction, calculates
the gradient of each weight in accordance with the corre-
sponding error term, and then updates the weights using a
gradient optimization algorithm.

LSTM networks are widely used because they can avoid
the problems of gradient explosion and gradient vanishing
encountered in RNNs. Li Weishan presented preliminary dis-
cussions on the application of LSTMmodels in coal mine gas
forecasting and early warning systems [17] and confirmed
their effectiveness for this purpose. However, the LSTM
architecture is complex in structure and prone to overfitting.
Therefore, we propose a GRU-based algorithm for gas con-
centration prediction. The GRU structure is simpler than the
LSTM structure, with fewer parameters, a shorter training
time, and lower susceptibility to overfitting.

III. RESEARCH DATA
A. DATASET DESCRIPTION
The dataset used in this study was constructed from gas
concentration data for a mine working face. We collected
the dataset, which consists of 10419 mine gas concentration
data points, from January to March 2014, with a sampling

interval of 5minutes. There are nomissing raw data, as shown
in Figure 4. To highlight the advantages of each model,
we divided the dataset into three subsets: one containing
1041 data points, one containing 5209 data points and one
containing all 10419 data points. In each subset, 70% of the
data points were designated as training data, and the remain-
ing 30% were used as test data to evaluate the prediction
accuracy of each model.

B. DATA PREPROCESSING
A typical dataset for the task addressed in this paper consists
of gas concentration data and other related data collected by
monitoring equipment over a certain period of time (e.g.,
one hour, one day, or one month). However, these data will
generally contain various missing values and outliers due
to factors such as process alteration, equipment failure, air
volume regulation or other factors related to human activity.
Therefore, it is necessary to preprocess the gas concentration
monitoring data that are collected in real time to improve the
accuracy of mine gas concentration forecasting.

The first step of data preprocessing is to apply the Pauta
criterion to process the noise in the gas concentration moni-
toring data. The Pauta criterion is one of the most common
and simplest criteria for discriminating error. If the absolute
value of a residual is larger than three times the standard devi-
ation, meaning that inequality (2) is true when combined with
formula (1), then this error is considered to be excessively
large, and the corresponding measured value is considered to
be an outlier that should be rejected, resulting in a missing
value for the corresponding measurement time.

σ =

√√√√√ n∑
i=1

(xi − x)2

n− 1
(1)

|xi − x| > 3σ (2)

where x is the average value of the dataset and σ is the
standard deviation of the dataset.

The second step is to apply Lagrange interpolation to fill in
the resulting missing values of the monitoring data sequence
to obtain a complete set of processed monitoring data.

Finally, the dataset is normalized to values in the range
of [0,1]. The normalization formula is as follows:

norm(xi) =
xi −min(X )

max(X )−min(X )
(3)

where norm(xi) is the normalized value of xi, min(x) is the
smallest value in the dataset, and max(x) is the largest value
in the dataset.

IV. GRU-BASED FORCASTING FRAMEWORK
A. GRU MODEL
An LSTM module has a large number of parameters and a
complex structure; thus, it is prone to overfitting. To over-
come these deficiencies, Cho proposed the GRU structure
as a variant of LSTM in 2014 [18]. The GRU architecture
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FIGURE 5. The internal structure of a GRU neuron.

maintains the characteristics of LSTMwhile having a simpler
structure. The internal structure of a GRU neuron is shown
in Figure 5.

Each of these recurrent neural network variants has a struc-
ture that consists of replicated instances of a particular mod-
ule; however, the structure of the replicated module in a GRU
network is slightly simpler than that in an LSTM network.
A GRU neuron has only two gates, namely, an update gate
and a reset gate, denoted by zt and rt in Figure 5. The update
gate is used to control the extent to which the information of
previous hidden states is carried over into the current state.
The larger the value of the update gate is, the more infor-
mation is preserved from previous states. Similarly, the reset
gate is used to control the extent to which the information of
previous states is ignored; the smaller the value of the reset
gate is, the more information is ignored. Accordingly, short-
term dependencies are usually captured by means of frequent
activation of reset gates, while long-term dependencies are
associated with the activation of update gates. Since the GRU
architecture has only two types of control gates, the calcu-
lation speed of a GRU model is much faster than that of an
LSTM model.

Let rt represent the reset gate of a GRU at time t , with the
following calculation formula

rt = σ (Wrxt + Urht−1) (4)

where σ is the sigmoid function; Xt and ht−1 are the current
input value and the last activation value, respectively; Wr is
the input weight matrix; and Ur is the weight matrix of the
loop connection.

Similarly, let zt be the update gate of the GRU at time t ,
with the following calculation formula:

zt = σ (Wzxt + Uzht−1) (5)

Let ht be the activation value of the GRU at time t , which
is the median value between the last activation value ht−1 and
the candidate activation value h̃t :

ht = (1− zt ) ◦ ht−1 + zt ◦ h̃t (6)

h̃t is calculated as follows:

h̃t = tanh(Wh̃xt + rt ◦ Uh̃ht−1) (7)

where ◦ represents the Hadamard product.

B. MODEL OPTIMIZATION
The magnitude of the loss function in traditional gradient
descent optimization depends on the change in the parame-
ters. Theoretically, the more iterations are performed, the less
the loss function should change from one iteration to the next;
however, the gradient descent algorithm still may not reach a
globally optimal solution. Therefore, the Adam optimizer is
chosen as the optimization algorithm in this work.

The Adam algorithm [19] was proposed by Kingma,
Diederik P., and J. Ba. in 2014. The Adam algorithm is
based on the adaptive estimation of a low-order matrix and
is a stepwise optimization algorithm for a stochastic objec-
tive function. It can dynamically adjust the first-order and
second-order matrices of the gradient of each parameter in
accordance with the loss function. It has the advantages
of easy implementation, high computational efficiency, and
low memory consumption. In deep learning, the mini-batch
technique is adopted, which causes the objective function to
change with the different samples included in each batch.
However, the Adam algorithm can still effectively solve the
optimization problem even with this randomness in the objec-
tive function. It has been proven through experiments that
the Adam algorithm is superior to random gradient descent
optimization.

C. GAS CONCENTRATION FORECASTING FRAMEWORK
The gas concentration in a coal mine varies in a time-varying
and nonlinear manner; thus, it cannot be predicted by means
of a simple linear relationship. Neural networks have obvi-
ous advantages in predicting complex nonlinear time-varying
sequences. Therefore, a gas prediction model based on a
GRU neural network is constructed to predict the trend of gas
concentration data.

Let the time series of previous gas concentration values at
n consecutive moments be denoted by X(t-n+1), X(t-n+2),
. . ., X(t-1), with X(t+1) being the predicted value at the next
moment; then, the GRU-based gas concentration prediction
model can be expressed as follows:

X(t+ 1)=GRU(X(t− n+ 1),X(t−n+ 2), . . . ,X(t− 1))

(8)

The three-layer network framework of the proposed GRU
gas concentration prediction model, which includes an
input layer, a hidden layer, and an output layer, is shown
in Figure 6. The input layer is responsible for preprocessing
the original time series of gas concentration data to satisfy the
requirements for the input to the GRU model; in the hidden
layer, GRUneurons are used to construct a 1-layer loop neural
network; and the output layer is mapped to one-dimensional
sequence of data through a fully connected layer to realize
gas concentration prediction.

V. MODEL PARAMETER SETTINGS
TensorFlow is a GPU- and CPU-based library. It acts as a
backend for the Keras library [20]. Keras is a deep learning
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FIGURE 6. The structure of gas concentration forecasting model.

library that supports the implementation of complicated
prepackaged architectures such as the RNN, LSTM and
GRU architectures. TensorFlow does not provide many
prepackaged architectures but rather supports the design of
new architectures, whereas Keras supports new datasets for
known architectures. In this work, the Keras and TensorFlow
libraries were used for mine gas concentration forecasting.
Additionally, Keras and TensorFlow contain many prepack-
aged deep learning functions, such as activation functions and
loss functions. By using these functions, better results can be
obtained with a given architecture. The model parameters are
explained as follows.

A. PERFORMANCE INDEX
To test the effectiveness of the proposed GRU-based gas
concentration prediction method, it is necessary to choose an
indicator to comprehensively measure and evaluate the pre-
diction effect. The MSE is chosen as the evaluation index in
accordance with both the principles and practice of prediction
effect evaluation. The MSE is defined as the expected value
of the squared difference between the estimated value of the
quantity being predicted and the corresponding true value.
The MSE can be used to evaluate the degree of variation
in the data. The smaller the value of the MSE is, the more
accurately the prediction model describes the experimental
data. The MSE can be calculated using the formula below:

MSE =
1
N

N∑
t=1

(observedt − predictedt )2 (9)

where N is the number of data points.

B. ACTIVATION FUNCTION SELECTION
An activation function is used to convert an input signal into
an output signal, which will then act as the input signal for
the next layer. In each cell, a weight function is used for

processing in combination with the current state input and the
previous state output. In this work, we use the sigmoid acti-
vation function. When information from the previous hidden
state and information from the current input enter a cell, they
are activated by the sigmoid function, with the values of the
vectors being between 0 and 1. A value closer to 0 means that
the corresponding information is more likely to be forgotten,
whereas a value closer to 1 means that it is more likely to
be retained. The sigmoid function is calculated using the
following formula:

f(x) = 1/1+ exp(−x) (10)

C. HIDDEN LAYER STRUCTURE
We have tested several representative combinations of num-
bers of hidden layers and hidden nodes and have found that
the best choices for the values of these two parameters are
1 and 12, respectively.

D. SELECTION OF THE OPTIMIZATION ALGORITHM AND
THE NUMBER OF ITERATIONS
The training algorithm for a neural network usually refers
to the algorithm used to update the weight coefficients such
that the value of the objective function will be gradually
reduced until it converges to a global minimum [21]. In this
work, we have selected the Adam as the optimization algo-
rithm. The Adam algorithm is introduced in Section IV-B.

To address the problems of undertraining and overtraining,
we apply the cross-validation method. If both the validation
error and the training error are steadily decreasing, then the
current model is still undertrained. If the validation error
is increasing while the training error is steadily decreasing,
we consider this behavior to be indicative of overtraining.
Ultimately, we find that when the number of iterations is
10, the training error and verification error of the neural
network model are basically stable. An SVR model has two
very important parameters: C and gamma. Here, C is the
penalty coefficient, which represents the tolerance for error.
The higher C is, the less tolerance there is for error, and the
easier it is to overfit the model. The smaller C is, the less well
fitted the model will be. Gamma is a parameter associated
with the RBF kernel function and implicitly determines the
distribution of the data mapped to the new feature space.
The larger the value of gamma is, the fewer support vectors
there are, whereas a smaller gamma value corresponds to
more support vectors. The number of support vectors affects
the speed of training and prediction. Finally, we set C equal
to 1 and gamma equal to 0.01.

VI. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS
In the experiment, the data were split into two different sets,
one for training and one for testing. The training set was used
to train the forecasting models, while the test set was used
to evaluate the final results. The procedure applied in the
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FIGURE 7. Prediction effect of the SVR model on the test set.

FIGURE 8. Prediction effect of the BPNN model on the test set.

mine gas concentration forecasting experiment is described
as follows:

I. Data preprocessing.
II. Division of the dataset into a training set and a test set,

with the training set comprising 70% of the data and the test
set comprising the remaining 30% of the data.

III. Construction of a 3D array from the training set for
input to the GRU network via spatial reconstruction.

IV. Determination of the parameters of the GRU model,
using the MSE as the loss function and the Adam algorithm
as the optimization method.

V. Determination of the number of training iterations,
namely, the number of epochs, in accordance with the loss
function.

VI. Forecasting on the test set.
VII. Comparison with other gas concentration forecasting

models of different structures and evaluation of these models
in terms of the chosen performance index.

VIII. Visualization of the prediction results after inverse
normalization.

Through the above 8 steps, a mine gas concentration
prediction model was established based on a GRU neural
network.

B. RESULTS AND ANALYSIS
In this experiment, a neural-network-based method was used
for the prediction of mine gas concentration levels. Then,
we considered the MSE and the run time of the model to
evaluate the modeling effect. Through a comparative exper-
imental analysis, we found that the effect of each model is
different on different subsets of data; however, as the amount
of data to be processed increases, the effect of the GRUmodel
becomes superior to that of the other models.

FIGURE 9. Prediction effect of the RNN model on the test set.

FIGURE 10. Prediction effect of the LSTM model on the test set.

FIGURE 11. Prediction effect of the GRU model on the test set.

TABLE 1. Comparison of predictive performance.

First, we tested the models on the subset consisting
of 1042 data points. The prediction effects of the SVR,
BPNN, RNN, LSTM, and GRUmodels on the corresponding
test set are shown in Figures 7, 8, 9, 10, and 11, respectively.
A further performance comparison of these models is pre-
sented in Table 1.

From Table 1, we find that the RNN and LSTM models
achieve higher prediction accuracy than the proposed GRU
model does on the subset with a length of 1042 data points;
therefore, for small data sets, RNN and LSTMmodels are still
preferred in terms of prediction accuracy.
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FIGURE 12. Prediction effect of the SVR model on the test set.

FIGURE 13. Prediction effect of the BPNN model on the test set.

FIGURE 14. Prediction effect of the RNN model on the test set.

FIGURE 15. Prediction effect of the LSTM model on the test set.

Then, we conducted the same experiment on the subset
consisting of 5209 data points. The prediction effects of the
SVR, BPNN, RNN, LSTM, and GRU models on the corre-
sponding test set are shown in Figures 12, 13, 14, 15, and 16,
respectively, and the MSE and run time of each model are
listed in Table 2.

From Table 2, it can be concluded that the error of the GRU
model is less than that of the other fourmodels, indicating that
the prediction accuracy of the GRU model increases with an
increasing number of data.

FIGURE 16. Prediction effect of the GRU model on the test set.

TABLE 2. Comparison of predictive performance.

FIGURE 17. Prediction effect of the SVR model on the test set.

FIGURE 18. Prediction effect of the BPNN model on the test set.

Finally, we conducted the same experiment again on the
whole collected dataset, with a total of 10419 data points.
The prediction effects of the SVR, BPNN, RNN, LSTM,
and GRU models on the corresponding test set are shown
in Figures 17, 18, 19, 20, and 21, respectively, and the MSE
and run time of each model are listed in Table 3.

From Table 3, we can see that the GRU model achieves
smaller errors on both the training set and the test set com-
pared with the other models. Compared with the SVR model,
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FIGURE 19. Prediction effect of the RNN model on the test set.

FIGURE 20. Prediction effect of the LSTM model on the test set.

FIGURE 21. Prediction effect of the GRU model on the test set.

TABLE 3. Comparison of predictive performance.

the error of the GRU model on the test set is reduced
by 44.41%. Compared with the BPNN and RNN models,
the error of the GRU model on the test set is reduced by
21.05% and 7.9%, respectively. Compared with the LSTM
model, the error of the GRU model on the test set is reduced
by 6.8%, and the GRUmodel also shows a 13.05% efficiency
improvement over the LSTM model in terms of run time.

VII. CONCLUSION
To reduce the economic losses caused by mine gas disasters
and protect the lives of miners, it is important to develop an
effective method of mine gas concentration forecasting.

Therefore, in this paper, we have proposed a gas concen-
tration forecasting algorithm to enable the prediction of gas
concentration time series. The optimal number of training
rounds to avoid overfitting was determined by considering
the loss function on the training set. Case studies showed that
with increasing data volume, compared with SVR, BPNN,
RNN, and LSTMmodels, the proposed GRUmodel achieves
both a better prediction effect and lower time complexity,
endowing it with better practical application value.

In future work, we will consider the impact of various
external factors, such as the temperature, humidity, and pres-
sure in the coal mine, on mine gas forecasting and the incor-
poration of prior knowledge to achieve better performance.
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