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ABSTRACT The kernelized correlation filter (KCF) is one of the most successful trackers in computer
vision today. However its performance may be significantly degraded in a wide range of challenging
conditions such as occlusion and out of view. For many applications, particularly safety critical applications
(e.g. autonomous driving), it is of profound importance to have consistent and reliable performance during
all the operation conditions. This paper addresses this issue of the KCF based trackers by the introduction
of two novel modules, namely online assessment of response map, and a strategy of combining cyclically
shifted sampling with random sampling in deep feature space. A method of online assessment of response
map is proposed to evaluate the tracking performance by constructing a 2-D Gaussian estimation model.
Then a strategy of combining cyclically shifted sampling with random sampling in deep feature space is
presented to improve the tracking performance when the tracking performance is assessed to be unreliable
based on the response map. Therefore, the module of online assessment can be regarded as the trigger for
the second module. Experiments verify the tracking performance is significantly improved particularly in
challenging conditions as demonstrated by both quantitative and qualitative comparisons of the proposed
tracking algorithm with the state-of-the-art tracking algorithms on OTB-2013 and OTB-2015 datasets.

INDEX TERMS Visual tracking, kernelized correlation filter, online assessment, random sampling, deep
feature, handcrafted feature.

I. INTRODUCTION

Visual tracking has been studied over several decades, how-
ever, it is still an active research topic in the field of com-
puter vision and pattern recognition [1], [2]. Although visual
tracking has been found application in a wide ranges, such
as intelligent transportation systems (ITS) [3], vision-based
navigation [4], surveillance [5] and motion recognition [6],
it still remains challenging in the presence of spatiotemporal
variation of targets such as occlusion, illumination variation,
and out of view. This causes concerns in outdoor applications
particularly for safety critical applications such as driverless
cars. Reliable visual tracking is essential to perception and
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decision making for ensuring timely and appropriate response
to environment and events under all the possible weather
conditions and traffic conditions. Therefore, improving the
robustness of tracking algorithms in the face of these chal-
lenges has become an urgent problem in their engineering
applications. We believe a promising approach to enhance
the tracking robustness of the existing algorithms is to first
construct evaluation mechanism for online monitoring the
tracking performance, and then improve the tracking per-
formance when it is not reliable by modifying the tracking
algorithm as appropriate. This motivate the research reported
in this paper.

Generally, visual tracking algorithms are categorized as
either discriminative or generative. In the past few years,
due to the disadvantage that generative approaches do not
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make effective use of surrounding information that can distin-
guish a target from its background, discriminative approaches
have gradually become the current mainstream in the field
of visual tracking. The discriminative approaches treat the
tracking problem as a detection task and learn information
about the target from each detection online. Consequently,
the discriminative approaches are also referred to as tracking-
by-detection. Discriminative approaches can also be further
divided into two categories: feature-to-classifier trackers and
deep learning-based trackers.

Feature-to-classifier trackers aim to establish a classi-
fier that distinguishes a target object from its background.
To adapt to the changes of target appearance in dynamic
scenes, these trackers must meet two requirements: firstly,
the feature representing the difference between a target
region and background should be robust and discriminative
with respect to variations in both the extrinsic and intrinsic
environments; secondly, the classifier for detection must be
updateable online. Since online updating can be formulated
as a process of online learning, the uncertainty of the labels
corresponding to the new training samples obtained from
the current tracking results may lead to drifting problems.
Therefore, for feature-to-classifier trackers, in order to avoid
incorrect tracking results contaminating the classifier, it is
very crucial to construct an assessment method to online
evaluate the reliability of the tracking result.

Deep learning-based trackers also contain two subcate-
gories [7]. The first subcategory is the deep feature-based
trackers, which merely use a pre-training deep network to
extract features. In this subcategory, the parameters of the
network are not adjusted during tracking. For example, the
CNT tracker propagates an image forward in a convolutional
neural network (CNN) to extract weak features, and then
uses these features to construct a classifier to distinguish
a target or background [8]. In the framework of spatially
regularized discriminative correlation filters (SRDCF), deep
features extracted from the first layer of the VGG network
was to enhance the performance of the SRDCF tracker [9].
It is worth noting that SRDCF framework can achieve a
better tracking performance than the traditional framework
of discriminative correlation filter (DCF) because it miti-
gates the negative boundary effect of the inherent periodic
assumption of the standard DCF. This conclusion can also be
proved by [10] which investigated and compared the tracking
performances of deep features within both the traditional
framework of the DCF and SRDCF framework. However,
as the SRDCF framework introduces a spatial regularization
component to improve tracking performance, the real-time
performance of the algorithm is greatly reduced. Compared
with handcrafted features, deep features extracted by a pre-
training deep network can represent objects more compre-
hensively and have a stronger ability to classify different
objects [7]. The other subcategory is the tracker that specif-
ically constructs a network framework to extract feature
and evaluate candidate regions of tracking [11]-[14]. For
example, the SiameFC tracker takes the target template and
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current search region as inputs, and exploits a deep network
to generate a response map for the tracked object with a
convolution operation [11]. As an excellent representative of
this subcategory, the computational speed of the SiameFC is
more than 80 FPS on the GPU platform [11], which indicates
that it has outstanding real-time performance.

As ahigh-speed feature-to-classifier tracker, the kernelized
correlation filter (KCF) employs high dimensional features,
e.g., the histogram of oriented gradients (HOG), and Gaussian
kernel regression to compute a response map, to track a target
in accordance with the location of the peak of the response
map [15]-[17]. In general, the advantages of the KCF come
from four aspects. Firstly, it uses cyclically shifted sampling
to achieve a large enough number of samples for training.
Secondly, since convolution operation in the spatial domain
is converted into the element-wise multiplication in the fre-
quency domain by Fourier transforms, the real-time perfor-
mance of the KCF is improved greatly. Thirdly, the KCF
concedes multi-channel features that enable further extension
of its high dimensional features to distinguish the target
from the background by simply summing them in the fre-
quency domain. Lastly, the regression model based on the
kernel method can improve the classification performance.
Considering that the KCF has advantages in tracking perfor-
mance compared with the standard DCF, and has the advan-
tage of computational efficiency compared with the SRDCF,
we choose the KCF as the basic tracking framework of the
proposed algorithm. However, despite its excellent tracking
performance in a normal conditions, the KCF cannot yield a
reliable performance when it confronts with challenges such
as occlusion, fast motion [18], [19]. In our opinion, this is due
to two reasons as discussed below:

(1) Since the majority of correlation filters use a fixed
learning rate to update the regression model in each frame, the
errors from subsequent frames will accumulate continuously.
For example, when occlusion occurs, due to the disappear-
ance of the target in the several consecutive frames, the track-
ing results with no tracked target, as new training samples,
directly contaminates the regression model and lead to track-
ing failures. Therefore, it is vitally important to evaluate the
tracking performance online and then update the regression
model according to the evaluation output.

(2) As a dense sampling scheme, cyclically shifted sam-
pling of the KCF limits the scope of target searching and leads
to tracking failure when the distance of the target positions
in two consecutive frames caused by fast motion exceeds
the search scope. However, merely expanding boundary of
cyclically shifted sampling may result in amplification of the
boundary effect and lead to an inaccurate representation of
the image content [9]. Thus, it would be sensible to incor-
porate a new sampling scheme to increase the search scope
whilst keeping the boundary of cyclically shifted sampling
unchanged.

Motivated by the above observations, this paper firstly
proposes a method of online assessment of response map in
the framework of the KCF, and then proposes a strategy that
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combines cyclically shifted with random sampling in deep
feature space. The main contributions of this paper are as
follows.

(1) This paper proposes a method in which the response
map is used to online evaluate the reliability of the tracking
result in each frame. Specifically, this method firstly designs
two indexes denoting the response map shape, and then con-
structs a 2-D Gaussian estimation model by these two indexes
for the reliability assessment of the tracking result.

(2) It proposes a scheme to enhance the cyclically shifted
sampling of the KCF by adding random sampling which
broadens the search scope of candidate regions when the
reliability of the tracking results of the basic KCF is
insufficient.

(3) To fully take advantages of deep features in perfor-
mance and of handcrafted features in efficiency, this paper
further incorporates a deep feature-based regression model
into the proposed hybrid sampling scheme, and then proposes
a strategy of combining cyclically shifted sampling with ran-
dom sampling in deep feature space. Moreover, according
to the result of online assessment, handcrafted and deep
feature-based regression models are used interchangeably
and updated using different learning rates in the proposed
algorithm.

We compare the proposed algorithm with the state-of-the-
art trackers on large benchmark datasets OTB-2013 [20] and
OTB-2015 [21]. Both quantitative and qualitative experimen-
tal results demonstrate that the proposed algorithm performs
favorably against state-of-the-art tracking algorithms.

The remainder of this paper is organized as follows.
Section 2 discusses the related work, and Section 3 presents
details of the proposed tracking algorithm. Section 4 presents
and analyzes our experimental results and offers related
comparisons with other state-of-the-art tracking algorithms.
Finally, Section 5 presents our conclusions.

Il. RELATED WORK

There are many reviews about visual tracking. This section
only discusses some of the most relevant work motivating
our tracker, including sampling mode for tracking tasks, and
feature representation of targets in tracking tasks.

A. SAMPLING SCHEME FOR TRACKING

The tracking problem can be described as deciding a way to
track an object with little a-priori knowledge. For feature-
to-classifier trackers, sampling is an indispensable tool to
complete online learning and detection. Sampling scheme
is used to collect sufficient training samples in the target’s
neighborhood, where typically each sample characterizes a
sub-window of the same size as the target region. Generally,
sampling schemes used in tracking algorithms are divided
into two types: random and dense sampling.

As a representative of random sampling, particle sam-
pling is based on Monte Carlo methodology. Since both
the computational burden and tracking accuracy are propor-
tional to the particle number, real-time performance is always
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a huge challenge for particle filter-based trackers [22], [23].
In tracking tasks, dense sampling is to collect all the sub-
windows with a certain step size in the target’s neighborhood.
Generally speaking, this scheme leads to a lot of redundancy
because most of the samples have a large amount of overlap
regions in tracking tasks. Fortunately, Henriques et al. asso-
ciated this redundant structure with the circulant matrix [24].
The property of the circulant matrix and the circulant struc-
ture of samples allow the use of fast Fourier transforms
to quickly incorporate information from all sub-windows
and to obtain a regression model for detection. Therefore,
trackers using this sampling exhibit excellent computational
efficiency [25]. However, since the neighborhood area of
dense sampling is limited, it will be difficult to identify a
target whose position is far away from its current position,
for example, due to its fast movement, and reappearance
after occlusion occurs [26], [27]. Therefore, this paper pro-
poses a scheme of combining cyclically shifted with random
sampling to strike a better balance between computational
burden and tracking performance particularly in challenging
conditions.

B. FEATURE REPRESENTATION FOR TRACKING

For the past few years, diverse methods of features represen-
tation have been proposed for tracking tasks [28]. Generally,
the features used in tracking tasks can be divided into three
levels: primary, intermediate (handcrafted) and advanced.
Primary features include edges, contours and color infor-
mation, which are ubiquitous and widely used in tracking
tasks [29]-[31]. Although many primary features, such as
the color histogram, can frequently offer a robust defense
against noise, they may not perform well when variations
occur in illumination. Compared with primary features, inter-
mediate or handcrafted features, such as HOG [32], local
Haar-like features [33] and the scale invariant feature trans-
form (SIFT) [34], have more discriminative abilities that can
distinguish a target from its background. In general, advanced
features fall into two categories. The first category is sparse
features that are further extracted from handcrafted features
by sparse coding, such as sparse coding spatial pyramid
matching (ScSPM) [35]. The second category is referred as
deep features that are mainly generated from the outputs of
different layers of a pre-training CNN, and have shown strong
advantages, e.g. good generalization and migration ability
[7], [10], [36]. However, the computational complexity of
deep features is much higher than that of handcrafted features.
Therefore, the proposed algorithm aims to make use of the
advantage of deep features in performance and of handcrafted
features in efficiency.

C. ONLINE EVALUATION OF TRACKING RESULTS

The idea of online evaluation of tracking performance
originated from the Tracking-Learning-Detection (TLD)
tracker [37], where the tracking performance is evaluated to
decide online learning or detection progress. Motivated by
this work, the parallel tracking and verifying (PTAV) uses
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Siamese network to verify the tracking result calculated by
the DSST tracker and improve the tracking performance [38].
Although the idea of online assessment in this paper is similar
to that in the PTAV tracker, there are several fundamental
differences between them. Firstly, the basic tracking frame-
work is different. Our work was developed based on the KCF,
but PTAV selects the DSST as the basic tracker. Generally,
since the kernel method is used in the KCF framework to
estimate the regression model, the performance of the KCF
tracker is better than the performance of the translation fil-
ter of the DSST. Secondly, our approach is able to adjust
trackers every frame through online assessment but PTAV
only operates on sampled frames. This is because PTAV uses
a Siamese network with substantial computational burden.
To ensure running time efficiency, the verification is run only
on sampled frames and cannot adjust the tracker every frame.
By contrast, the proposed algorithm designs a method of
online assessment of response map which can evaluate and
verify the tracking performance every frame. Thirdly, the
mechanism of increasing the search scope is different where
the performance of the tracker is not reliable. PTAV improves
tracking performances by decreasing frame sampling interval
and increasing the size of the local region to search for the
target. In our opinion, in the framework of the DSST used in
PTAV, expanding the size of the local region excessively may
reinforce the negative effects of boundary effect. Instead, our
algorithm broadens the search scope by combining cyclically
shifted with random sampling to avoid enlarging these local
regions. Lastly, the operation of the tracking part and the
verifier/assessment is different. The tracking part and the
verifier work in parallel on two separate threads in the PTAV
while online evaluation is used as a trigger to switch different
features and sampling schemes in a serial manner in our
proposed algorithm.

ill. METHODOLOGY

The proposed tracking algorithm first uses cyclically shifted
sampling and a handcrafted feature HOG to compute the
response map of each frame in the basic KCF framework,
and then evaluates the reliability of the tracking result of
each frame by online assessment of the response map. If it
is assessed to be unreliable, the proposed algorithm employs
the scheme of combining cyclically shifted with random sam-
pling in deep feature space to improve tracking performance
of this frame. The key to realize the switching between the
two strategies is the online assessment of the response map.
Therefore, the module of online assessment and improved
sampling strategy can be regarded as a whole and embedded
into an existing tracking framework.

A. FRAMWORK OF KCF

Considering the KCF is the essential framework of the pro-
posed tracker, we firstly introduce this framework briefly in
this section. Generally, the KCF framework contains three
modules: regression model training, target detection and
regression model updating.
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1) REGRESSION MODEL TRAINING

Consider a feature map Y, € R">*"*C representing the target
region and its padding, and a Gaussian-shaped label matrix
r € R"™*" where C is the dimension of the feature, m x n is
the size of feature map. For the first frame, based on the given
target region and its padding, the parameters of the regression

2YY
model (kl ,&1) is computed by [15]
2 €.
KYY = exp (——2 <||Yt||2 - F! (Z Y, 0 Y,)))
A =1 )

. r
%=y

k4

where A is a regularization parameter, o is the Gaussian ker-
nel parameter, kYY € 9" is the kernel correlation between

~YY
Y; and Y, itself, k,  is its discrete Fourier transform (DFT),
a; € R"™M is the regression model, & is the corresponding
DFT, Y7 is the complex-conjugate of Y;, F~! denotes the

. ~YY ~ ..
inverse of DFT. k, and &; are the outputs of the training
module.

2) TARGET DETECTION

Depending on the target location in the previous frame, the
KCF generates the candidate patches in the current frame by
cyclically shifted sampling. Given the feature map of the test
image patch Z, € R"*"*C determined by the target location
in the previous frame ¢ — 1, [15]

1
k) = exp (—; (I¥e1 1 + 12412

oF (Z ¥ 0 z))) @
R, = F ! (f(fz o &,,1)

where R, is the response map of the current frame, each
element of R; denotes the possibility of the target being
located in the corresponding position. The position of the
tracked target is determined by the location with the maximal
value of R, € W"*" as

[xt, y:] = argmax R, (i, j) 3)
i€l,2,...,m
jel,2,..,n

where [x;, y;] is the position of the detected target.

3) UPDATE

According to the tracking result of each frame, a new feature
map of the target Y, is produced. In order to learn the latest
target appearance, the KCF uses the following scheme to
update the existing regression model. &; is first updated in
the frequency domain:

N . r
a =1 =8au—1+8 33— )
k4
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followed by updating Y; as and fluctuation degree can denote the reliability of a response
map, we design two indexes to assess them:
Y =48Y; +(1-8)Y,—y ) (1) Maximum of response map Rmax: R, = max(R,),

where § is the learning rate, a fixed value in the KCF.

B. ONLINE ASSESSMENT OF RESPONSE MAP
This section presents a method to online assess the response
map R; calculated by Eq.(2). Assessment results directly
determine whether to employ the strategy of combining cycli-
cally shifted with random sampling in deep feature space.
According to the principle of cyclically shifted sampling,
a desirable response map has only one sharp peak and remains
smooth in all other regions, because there is only one sample
where the target locates at the center. Therefore, the shape
of a response map can reveal the reliability of the tracking
result. As shown in Figure.1 (a) and (b), the response maps
of the 50" and 90" frames of sequence Jogging are regu-
lar, and there is only one sharp peak and the other regions
remain smooth in these two response maps, and their tracking
results are reliable. When the target is close to the telegraph
pole in 60" and 80" frames, the peaks of response maps
become smaller and the other regions of response maps start
to fluctuate due to partial occlusion and background clutter.
As the target disappears in 74" and 78" frames, two peaks
appear and corresponding values decrease further, and the
surrounding region fluctuates seriously. Considering the peak

36952

the high of the peak R, indicates the reliability of the
tracking result.

(2) Area ratio of independence regions AR, which is
defined as follows:

> 3 BGi.j)
AR; _ i=1j=1
mxXn
B(.j) = {(1) gRED =T ©)
else

where 7 is the threshold of segmentation and estimated by
Ostu algorithm [39]. As it is well known, Otsu algorithm
can ideally segment an image where the difference between
the foreground and background is outstanding. Furthermore,
since a desirable response map is sharp around the peak
and smooth in all other regions, the area of the foreground
obtained by the Otsu segmentation algorithm accounts for a
small proportion of the area of the entire desirable response
map. Therefore, the lower AR, the more reliable the tracking
result.

In Figure.1 (c) and (d) respectively shown the changes in
the values of R,y and AR during the tracking process of
Jogging, we can clearly observe that the values of R;,,,, and
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AR significantly change between 65 and 79™ frames due
to the target disappearance caused by occlusion. Figure.1(e)
further shows the distribution of the two indices in 2-D space
where a blue circle marks the location of the indices cor-
responding to frames from 65 to 79" with poor tracking
performance, and by ““x” for successfully tracking the target,
respectively.

Considering that there is a certain correlation between
two parameters, we propose a method to online evaluate the
response map by constructing a 2-D Gaussian estimation
model (the black ellipses of Figure.l (e)). Suppose that the
tracking results of the first S frames of each tracking sequence
are correct, according to the observation vectors containing
the two indices I' = [R!,,AR],t = 2,...,5, 22D
Gaussian distribution model can be calculated by maximum
likelihood estimation (MLE), its mean vector u and covari-
ance matrix A are expressed as follows:

1§:.
u= — I,
N i=1

1 M .
A= v Y@ —wd —w’ @)

i=1

where N is the number of observation vector I'. For the
initialization of 2-D Gaussian estimation model, N = § — 1.
When t+ = § + 1, we can compute the reliability of the
response map R; according to

P(It§ w_1,Aq)
1 1 _
S . (—5(1’—ut_1)TA,11<I’—ut_1>) @®)

27 /|A—1l

If p’;u,_1, A;_1) > ¢, the tracking result of frame ¢ is
reliable and then this vector I’ representing reliable sample
is used to update the 2-D Gaussian distribution model, ¢ is a
threshold. The online assessment method of the response map
is summarized as follows.

Online assessment of the response map using the 2-D
Gaussian model is one of the main contributions in this paper.
It monitors the tracking performance in real time and quanti-
fies the reliability and confidence of the current tracker. It is
not only used as a trigger for selecting one of the two tracking
strategies presented in this paper, but also as a prerequisite
for switching between the detector and the tracker in image
understanding system. Furthermore, it can find a much wide
range of applications. For example, it could be used as a
condition monitoring method for visual tracking, and as an
indicator of the level of uncertainty or confidence of the visual
sensors in the context of multi-sensor data fusion (e.g. which
sensor outcome shall be trusted more in this driving condi-
tion) or fed into decision making (e.g. reduce vehicle speed
or change driving strategy). We will explore this further in
our future work.
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Algorithm 1 Online Assessment of Response Map

Input: the frame index ¢, threshold ¢ and the response

map R,

1. Estimate observation vector of 2-D Gaussian model I’

using R; and Eq. (6)

ifr<S

2. I={P,....Iht=S

3.  Initialize 2-D Gaussian model (ug, Ag) by using I

and Eq.(7);

else

4. Compute I' and p(I'; u;_1, A,_1) using Eq.(8);
ifpd';u, A) > ¢

5. Update I = {I, I'} and using Eq.(7) to calculate 2-D
Gaussian model (u;, A;);

6. Output: the tracking result of frame ¢ is
reliable and 2-D Gaussian model (u;, A;) and I;

else
7. (s, A) = (-1, A )and I =1
8. Output: the tracking result of frame 7 is not
reliable and 2-D Gaussian model (u;, A;) and /;

end if
end if

Return output

FIGURE 2. Comparison of the search scope for cyclically shifted and
random sampling.

C. SCHEME OF COMBINING CYCLICALLY SHIFTED

WITH RANDOM SAMPLING

Although cyclically shifted sampling can guarantee the per-
formance of the tracker in real time, the search scope of this
sampling mode is limited. In most of KCF-based trackers,
the search scope in the current frame is determined by the
location of the tracking box in the previous frame. When the
occlusion occurs, the target may not be is in the search area,
as shown the red dotted line in Figure.2. This may cause the
KCF-based trackers using cyclically shifted sampling to fail
to track the target successfully. Hence, in order to broaden the
search scope of the candidate region for tracking, this paper
proposes a scheme of combining cyclically shifted sampling
with random sampling, which is used to track the target when
the reliability of the tracking results using cyclically shifted
sampling is insufficient. This combination scheme contains
two modules: sampling and detection.
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1) SAMPLING

If [x;—1, y+—1] is the location of the target in frame t — 1, then
X _[x-1+N0,A) ©
i Yi—1 + N, A)

where (X, ¥') is the location of the random sampling in frame
t, and each location i = 1,2,---, 7 represents a tracking

. . . P
candidate region and the corresponding feature map is Y, €
gmxnxC n is the number of random samples, and N (0, A)
is white noise of a Gaussian distribution with standard devi-
ation A.

2) DETECTION

If {Y;_1, &;—1} is the regression model for the previous frame,
and each Z; denotes a feature map of the test image patch with
()_c; y;') as the center poil_lt, We can compute response maps
R; via Eq. (2) and [x;, y;, score;] via Eq. (3), where score;
is the maximum value of all elements in the matrix R;. The
detection result [x;, y;] can be achieved by

[x:, y:] = arg max (scorei) (10)
i€l,2,..,n

As shown in Fig 2 where “x”* denotes the center points of
candidate regions obtained by random sampling, the random
sampling expands the search scope and can ensure that the
target is re-tracked when the occlusion occurs. The proposed
algorithm only enables the random sampling if the track-
ing result of cyclically shifted sampling is unreliable, which
indicates that the target may have temporarily disappeared
in the image frame. Consequently, we do not need update
the module during the process of random sampling to avoid
corrupting the regression model.

D. STRATEGY OF COMBINING CYCLICALLY SHIFTED WITH
RANDOM SAMPLING IN DEEP FEATURE SPACE

Feature representation plays a significant role in all tracking
algorithms. Handcrafted feature, e.g. HOG, has been widely
used in many KCF-based trackers and achieved good per-
formance. In recent years, with the development of deep
learning, it has been shown that the deep features extracted
from a pre-training CNN model exhibit a better performance
compared with handcrafted features in the same tracking
framework. Thus, following the conclusion of Ref. [10], the
proposed algorithm employs the activation of the fifth convo-
lutional layer of a pre-trained VGG-2048 network as the deep
features to replace the handcrafted features when tracking
results based on them are not reliable.

In order to further improve the tracking performance of
the proposed algorithm, this paper uses the deep features
in the scheme of combining cyclically shifted with random
sampling, and then forms a strategy of combining cyclically
shifted with random sampling in deep feature space. When
the evaluation shows that the result obtained by Algorithm 1
is unreliable, this strategy is used to improve the tracking
performance as described below:
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Algorithm 2 Strategy of Combining Cyclically Shifted With
Random Sampling in Deep Feature Space
Input: The location of the target in frame r — 1 [x;_1, y,—1],
deep features-based regression model {Y?_l, 6‘;—1}
1. Obtaining 7, locations of the random sampling (¥, ) in
frame ¢ using Eq.(9).
2. Computing each deep feature map Z? " of the test patch
with (X!, ¥!) as the center point.
3. Using Z?i and {YtD_l, &2 |} to compute response maps
RP! via Eq. (2).
4. Using response maps R to achieve [x/, y!, scorel] via
Eq. (3).
5. Output: Estimating the tracking result of frame ¢ [x;, y;]
using Eq.(10).
Return output

E. PROPOSED ALGORITHM

A new tracking algorithm is proposed by integrating the
online assessment of response map and the strategy of com-
bining cyclically shifted with random sampling in deep fea-
ture space into the KCF framework.

In the first S frames of a test video sequence, the proposed
algorithm trains two regression models based on handcrafted
and deep features, respectively, and initializes a 2-D Gaus-
sian estimation model for response map assessment. In the
subsequent frames, if the evaluation result of the response
map using the handcrafted feature-based regression model
in a frame image is reliable, this regression is updated using
the fixed learning rate. Otherwise, this model is not updated,
and then the strategy of combining cyclically shifted with
random sampling in deep feature space is employed to track
the target. For the deep feature-based regression, it is updated
using a fixed learning rate every k frames if the tracking result
of this frame is reliable. It follows that using either of them
alone cannot effectively improve the tracking performance of
the existing framework. The proposed tracking algorithm is
summarized as follows:

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the pro-
posed tracking algorithm on two challenging public bench-
mark datasets, containing the OTB-2013 Visual Tracker
Benchmark with 50 image sequences [20] and its updated
version OTB-2015 with 100 image sequences [21].

OTB datasets involve 11 attributes, including occlu-
sion (OCC) occurred in 48 test sequences, fast motion (FM)
in 43 sequences, illumination variation (IV) in 38 sequences,
motion blur (MB) in 31 sequences, deformation (DEF) in 45
sequences, out-of plane rotation (OPR) in 63 sequences, scale
variation (SV) in 65 sequences, background clutter (BC) in
30 sequences, out-of-view (OV) in 14 sequences, in-plane
rotation (IPR) in 51 sequences, low resolution (LR) in
10 sequences. One-pass evaluation (OPE), which is to run the
tracker throughout a test sequence with initialization from the
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Algorithm 3 The Proposed Tracking Algorithm

Input: Test sequence, bounding box (x1, y1), S represent-
ing the first S frames, £ is the update interval of deep
feature-based regression model, L denoting the total num-
ber of the frames of the test sequence.

1. Initialize the regression models.

Input the first frame image, + = 1, according to
bounding box (x1, y1), using HOG descriptor and a pre-
trained VGG-2048 network to calculate handcrafted fea-
ture Y and deep feature YID respectively, and initializing
two regression models {Y1, &}, {YID, &ID} using Eq.(1),
t=t+1;

Fort =2:L do

ift <S
2. According to the frame image ¢ and (x;—1, y/—1),
calculating handcrafted feature Y;;

3. Using Eq. (2) and (3) to compute Ry;
4, Output: tracking result of frame ¢ (x;, y;) using
Eq.(3);

5. Using (x;, y;) and Eq. (4) (5) to update regression
models {Y;, a;}

6. Updating a 2-D Gaussian model (u;, A;) for
response map evaluation using Algorithm 1.
7. Using (x;, y;) to calculate deep feature YID , and
using Eq. (1) (4) (5) to update regression model (YD, 6(,D }.
else
8. Return to Step 2-3.
9. Computing I' using R; and p(I’; u,_1, A;_1)
using Eq.(8).
ifpM w1, Ay) > ¢
Return to Step 4-6.
if mod((¢-S)/¢) = 0*
Return to Step.7
end if
else
10. Output: Using Algorithm 2 to achieve
tracking result of frame ¢ (x;, y;).
End if
End if
End for

Return output

* mod((z-S)/#) = 0 denotes the result of dividing t — S by
£ is an integer, and also means that the regression model
{Y,D , &P} is updated using a fixed learning rate every &
frames on the premise that the tracking result of this frame
is reliable.

ground-truth position in the first frame, is used to objectively
evaluate the performance of trackers by two indicators: pre-
cision plot and success plot. The precision plot is defined as
the percentage of frames whose average Euclidean distance
between the center positions of tracked bounding box and
the ground-truth is less than the given threshold [20], [21].
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The success plot denotes the percentage of successful frames
whose overlap rate between the tracked bounding box and the
ground-truth bounding box is larger than the given threshold
[20], [21]. Evaluated trackers are ranked by the area under the
curve (AUC) of each success plot.

The remaining section consists of three parts. The first
part is used to describe the details of experimental setup.
Secondly, effectiveness of contribution of the proposed algo-
rithm analyzed and compared with the tracker without online
assessment of response map and the scheme of combining
cyclically shifted with random sampling. In the last part,
we compare our tracker with state-of-the-art trackers.

A. EXPERIMENTAL SETUP

We run our proposed tracker in MATLAB 2016a on an
Intel i7-7700 CPU (2.8 GHz) PC with 8 GB of memory.
All experiments are carried out using the following param-
eters. For the KCF framework, according to parameter
defaults for the KCF, o of the Gaussian kernel is set to
0.5, the regularization parameter A = 0.001 and the learn-
ing rate § = 0.01. VGG-2048 network for deep feature
extraction can be download from the MatConvNet toolkit
(http://www.vlfeat.org/matconvnet/pretrained/). The size of
the image patch for deep feature extraction is expanded to
224 x 224 x 3 by bilinear interpolation. Moreover, our pro-
posed algorithm directly uses the scale detection module of
the DSST for scale variation [38].

In Algorithm 1, the threshold of ¢ is set to 0.01. This
threshold has a significant influence in the frequency of using
Algorithm 2 during tracking and will be discussed in the
ablation study of this section.

For Algorithm 2, because the value of 1 directly affects the
computing efficiency of random sampling, to ensure that
the function of random sampling can be fully utilized, we
set the value of 1 to 50. The value of A directly determines
the search range of random sampling. When the value 7 is
determined, the entire search area may not be effectively
covered if the value of A is too large. On the contrary, random
sampling degenerates into an exhaustive search if the value of
A is too small. Thus, after analyzing the target displacement
between adjacent frames of the test data set, A of Eq. (9)
is set to equal to the width of the ground-truth in the first
frame of each test sequence. The combined effect of two
parameters on tracking performance will be further discussed
in the following ablation study.

In Algorithm 3, two parameters, S and k, used for deep
feature-based regression model training and update, need to
be preset. Considering that the traditional KCF can normally
track the target successfully in the first 20 frames of all test
sequences used in our experiment, we set S to 20 denoting
the first S frames. In our experiments, update interval of deep
feature-based regression model k equals to 20. In the ablation
study, we will discuss the effects of these two parameters of
Algorithm 3 on tracking performance, respectively.
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FIGURE 3. Performance comparison of the proposed tracker and the other three trackers.

B. FUNCTION OF TWO MODULES
In this section, we analyze the function and impact of these
two proposed modules, namely online assessment of response
map, and a strategy of combining cyclically shifted sampling
with random sampling in deep feature space, by design-
ing comparative experiments between the proposed tracker
and the other three trackers on OTB-2013 dataset. Using
either of them alone cannot effectively improve the track-
ing performance of the existing framework. This is because
Algorithm 1 is the trigger for Algorithm 2 and one module
must be followed by the other. As described above, if there are
no these two modules, the proposed algorithm degenerates
to a KCF tracker. Therefore, adding the KCF to the com-
parative experiment of this section can test the function of
these two modules. To evaluate the influence of online assess-
ment and random sampling without using deep features, we
investigate the tracking performance using the handcrafted
feature, instead of deep features in Algorithm 2, which is
referred to as ‘without deep feature’ in Figure 3. Figure 3
shows the precision plots and success plots of the compar-
ative experiments on the OTB-2013 dataset. From Figure 3,
it can be clearly observed that our tracker integrating these
two modules has significant advantages in precision plots,
compared to the KCF and ‘without deep feature’ trackers.
The results of Figure.3 confirms that integrating these two
modules together is beneficial to improve the performance of
a tracker. Moreover, it plays an important role to use deep
feature in the strategy of combining cyclically shifted with
random sampling for improving the tracking performance.
Considering that the deep feature used in this paper comes
from the DeepSRDCF tracker, we select it as one of track-
ers for comparison to evaluate the effectiveness of the deep
feature. As mentioned above, the SRDCF framework used by
the DeepSRDCEF tracker is superior to the standard DCF and
KCF because it introduces a spatial regularization compo-
nent to mitigate the boundary effect [10]. However, Figure.3
shows that the proposed tracker can achieve tracking perfor-
mance similar as the DeepSRDCEF by integrating the online
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assessment and improved sampling strategy into the KCF
framework. As mentioned above, the main contribution of
this paper is to introduce two modules into an existing track-
ing framework. It is not restricted to the KCF framework as
discussed in this paper. Therefore it is expected that these
two modules can be introduced into the SRDCF framework
to further improve its performance. Furthermore, the real-
time performance of the SRDCF framework is much worse.
Specifically, as shown in table.2, the computational speed
of the DeepSRDCEF tracker is only about 2 frames per sec-
ond (FPS) on our experimental platform is far less than the
12 fps of our tracker.

C. ABLATION STUDIES

The threshold of ¢ in Algorithm 1 is the most important
tuning parameter and directly determines the evaluation result
of response map. When the value of ¢ is chosen to be too
small, most of the tracking results are assessed to be reliable,
the benefit of the proposed approach cannot be fully realized,
and the tracking performance will not be improved signifi-
cantly. On the contrary, if the threshold of ¢ is chosen to be
large, real-time performance of the algorithm is significantly
reduced since the strategy of combining cyclically shifted
with random sampling in deep feature space is employed
quite frequently. Taking Jogging as an example, Figure.4
shows the relationship between the change of ¢ and the num-
ber of the strategy of combining cyclically shifted with ran-
dom sampling in deep feature space activated. Furthermore,
we compare the five different ¢ on the OTB-2013 dataset and
the results are shown in Table 1. Tracking speed in FPS is used
to evaluate the real-time performance of the tracker. From
Table 1, we can find that FPS decreases rapidly as the value
of ¢ increases. When the value of ¢ exceeds 0.01, the increase
trend of precision and success rates is significantly reduced.
Therefore, considering the balance between real-time perfor-
mance and tracking performance, in this paper we choose
0.01 as the value of ¢.
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FIGURE 4. relationship between the change of ¢ and the number of using
proposed modules on the test sequence Jogging.

TABLE 1. Performance comparison between five different ¢ on the
OTB-2013.

& 10" 107 10 10" 10°
Precisionrate  0.748 0.785 0.859 0.861 0.860
Successrate  0.529  0.571 0.632 0.631 0.632

FPS 41 30 12 4 0.5

TABLE 2. Performance comparison between three different A and three
different » on the OTB-2013.

4 n Precision rate Success rate FPS
30 0.749 0.531 14

0.5w 50 0.783 0.568 12

70 0.797 0.603 6

30 0.803 0.608 13

w 50 0.859 0.632 12

70 0.860 0.632 6

30 0.772 0.566 14

2w 50 0.803 0.602 11

70 0.826 0.616 7

w is the width of the ground-truth in the first frame of each test
sequence, and e=0.01.

In Algorithm 2, the values of n and A directly determine
the searching range of random sampling and the computa-
tional speed of Algorithm 2. In order to analyze the effect
of different values of n and A on tracking performance,
we compare the precision rates, success rates and FPSs cor-
responding to the different values of  and A on the OTB-
2013 dataset and the results are shown in Table 2 where
& = 0.01. From Table 2, we can observe two trends: (1)
On the premise of the value of 7 is constant, as the search
area expands, the values of precision rate and success rate
increase first and then decrease. (2) On the premise of the
value of A is constant, increasing the number of random
samples can improve the tracking performance but reduces
the real-time performance. As we all know, the second trend
is easy to understand. An increase in the number of samples
will inevitably lead to an increase in computational burden
and an increase in the search density in a certain area. The
former is the cause of the decline in real-time performance,
and the latter is the reason for the improvement in track-
ing performance. We firmly believe that in the first trend,
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the reason for the improvement in tracking performance at
the beginning is that the expansion of the search area can
obtain more candidate areas, conversely, when the search
area is enlarged to a certain extent, because the number of
samples does not increase proportionally with the expansion
of the search area, the sampling density decreases, some
candidate regions containing the target are ignored, and more
background interference is introduced, as a result, tracking
performance is degraded.

TABLE 3. Performance comparison between three different S on the
0OTB-2013.

S Precision rate Success rate FPS
10 0.841 0.624 14
20 0.859 0.632 12
30 0.742 0.533 11

TABLE 4. Performance comparison between three different k on the
OTB-2013.

k Precision rate Success rate FPS
10 0.859 0.632 10
20 0.859 0.631 12
30 0.858 0.632 12

In Algorithm 3, the tracking results of the first S frames
of each test sequence, which are achieved by the traditional
KCEF, are used to train a deep feature-based regression model.
Since the traditional KCF can successfully track the targets in
the first 20 frames of most test sequences, from Table 3 we
can find that the tracking performance is not much different
when S = 10 and S = 20. Furthermore, when S = 30, some
false results (between 20 to 30t frames) from the traditional
KCEF tracker may contaminate the deep feature-based regres-
sion model, resulting in degraded tracking performance. The
tracking performance indexes for three different update inter-
vals of deep feature-based regression model are shown in
Table 4. Table 4 indicates that changes in the value of k have
little effect on tracking performance.

D. COMPARISONS TO STATE-OF-THE-ART TRACKERS

We evaluate our proposed algorithm against eight represen-
tative algorithms. These trackers can be divided into three
typical categories: (1) Correlation filter-based algorithms
(DSST [40], Staple [41] and SRDCF [9]), (2) CNN-based
algorithms (CNT [8] and SiamFC [11]), and (3) multiple
online classifier-based or sparse coding-based algorithms
(ALSA [42], SCM [43] and MEEM [44]). The comparison
experiments are conducted quantitatively and qualitatively.

1) QUANTITATIVE EVALUATION

Figure 5 contains the precision and success plots for the OPE
test on OTB-2013 and OTB-2015. As shown in Figure 5, the
proposed algorithm performs favorably against all the other
eight algorithms. Taking comparative results of OTB-2015 as
an example as shown in Figure 5 (c), the proposed tracker
performs well for the precision rate with 82.4%, which
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FIGURE 5. Performance comparison of the proposed tracker and state-of-the-art trackers.
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FIGURE 6. Precision plots for attribute-based evaluation on OTB-2015.

is approximate 4% higher than the tracker ranked second.
Moreover, the proposed tracker also achieves the best success

rate of 59.7% among all the trackers.
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We further use the image sequences annotated by
11 attributes to comprehensively evaluate the performance
of trackers. Figure 6 and 7 show the precision and success
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TABLE 5. Real-time performance comparison of nine trackers on OTB-2015.
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plots of the proposed tracker and other 8 trackers respectively
on the OTB-2015. Although there is no tracker that shows
excellent performance on 11 attributes, the proposed tracker
shows excellent performance on most of attributes. Specifi-
cally, the proposed algorithm achieves the best performance
on 9 attributes in term of the precision rate, including illumi-
nation variation (82.1%), out-of-plane rotation (80.9%), scale
variation (77.5%), occlusion (77.2%), deformation (79%),
motion blur (78.7%), out of view (72.5%), background clutter
(86.1%) and low resolution (87.6%). In term of the success
rate, the proposed algorithm significantly outperforms the
compared trackers on 6 attributes, including out-of-plane
rotation (57.6%), occlusion (56.6%), deformation (57.5%),
in-plane rotation (56%), out of view (54.6%) and background
clutter (60.9%). It can also be seen that the robustness of
the proposed algorithm in the presence of various challenges
significantly outperforms the other 8 tracking algorithms.
Moreover, Table 5 shows the speeds of nine algorithms
in FPS, obtained from the average values when running
OTB-2015 on our computational platform. Considering that
the SiamFC needs to run on the GPU, we do not test the
computational speed of the SiamFC in this comparison exper-
iment of real-time performance. In the nine trackers, the
proposed tracker ranks third. Although the calculation speed
of the proposed method is slower than that of the Staple
and DSST, Figure 5 shows that the tracking performance of
our method is significantly better than these two trackers.
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Table 5 also demonstrates that although the proposed algo-
rithm uses deep features, its computational speed is still much
faster than SRDCF without deep features and CNT which is
one of the CNN-based trackers.

2) QUALITATIVE EVALUATION

This section provides a qualitative analysis of the pro-
posed algorithm, the tracker without these two proposed
modules and the other eight algorithms, with the tracking
results shown in Figure.§8. In the Girl2, when full occlusion
occurs, only our algorithm can track the target successfully
at Frame 144. In the Human3, when partial occlusions occur
that the target crosses a pole and passes by other pedestrians,
only our algorithm and MEEM can accomplish the tracking
task at Frame 144. This clearly shows that the proposed
algorithm exhibits an excellent performance in re-tracking
the target when the target reappears after being occluded.
In the MotorRolling, despite all the other nine algorithms
failed to capture the target, the proposed algorithm can cap-
ture the rotated target successfully. In the Biker, the head
of the biker moves quickly from left to right. In the Jump-
ing, the player bounces up and down at a high rate. For
these two sequences, except for our algorithm, CNT and
SiamFC_3S, the other algorithms could not capture the fast-
moving target reliably. In the Human6, the target moves out
of view in Frame 380 and 548, respectively. Our algorithm
can re-track the target when it re-entered the field of view in
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FIGURE 8. Qualitative comparison of ten trackers.
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Frame 385 and 554, respectively. Motion blur occurs when
the target region is blurred due to the motion of the target or
camera. In the BlurOwl, our algorithm, SRDCF and MEEM
achieve superior performance than the other algorithms in
coping with this challenging condition.

V. CONCLUSION
This paper aims to improve robustness and reliability of
visual tracking in challenging operation conditions. In the
promising KCF framework, two new functional modules
have been proposed and developed to further enhance its
tracking performance. An online assessment method has been
proposed to evaluate tracking performance and reliability
based on the response map. To this end, a new criterion was
developed by constructing a 2-D Gaussian estimation model
based on the peak and the area ration of independence regions
in the response map defined in the paper. When the tracking
performance is assessed to be unreliable, a strategy of com-
bining cyclically shifted with random sampling was proposed
to improve the tracking performance. These two proposed
modules are then integrated into the current KCF tracker to
constitute a new tracking algorithm. With this framework,
deep features have also been exploited to further enhance its
tracking performance and reliability. We extensively test our
algorithm on two well documented benchmark datasets with
very encouraging results. Detailed qualitative and quantita-
tive analysis and comparisons with eight existing competitive
tracking algorithms clearly demonstrate attractive tracking
performance of our proposed algorithm in terms of accuracy
and reliability without a significant increase of the compu-
tational burden in coping with a wide range of challeng-
ing operations, including illumination variation, out-of-plane
rotation, scale variation, occlusion, deformation, motion blur,
out of view, background clutter and low resolution. A tuning
parameter is introduced to trade off between the reliability
and accuracy of the tracking and its real-time performance.
The proposed online performance and reliability assess-
ment method could find a wide range of applications such
as real-time tracking performance monitoring, and character-
ization of the confidence or uncertainty level of the visual
tracking information for the purpose of data fusion with other
sensing sources, or as an input to follow-on decision making.
It is expected that it would have a significant implication in
a wider application of visual tracking, particularly for safety
critical situations such as autonomous driving. This will be
explored in our future work.
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