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ABSTRACT Using the data-driven control formulation, an iterative dynamic programming approach which
is based on a multi-dimensional Taylor network is established to design the near optimal regulation of
discrete-time nonlinear systems. For discrete-time general nonlinear systems, the iterative adaptive dynamic
programming algorithm is developed and proved to guarantee the property of convergence and optimality.
Three networks are constructed, namely, the identification network, critic network and action network.
Moreover, a globalized dual heuristic programming technique with detailed implementation is developed.
The cost function and its derivative can be approximated by this novel architecture. Besides, without the
consideration of the system dynamics, this technique can learn the near-optimal control law simultaneously
and adaptively. In addition, this technique greatly improves the existing results of the iterative adaptive
dynamic programming algorithm in terms of reducing the requirement of the control matrix. Furthermore,
because of the approach that is based on the multi-dimensional Taylor network, the amount of calculation
needed is also greatly reduced. The simulation experiment is described to illustrate the effectiveness of the
data-driven optimal regulation method proposed in this paper.

INDEX TERMS Adaptive dynamic programming, data-driven control, multi-dimensional Taylor network,
nonlinear control.

I. INTRODUCTION
A wide range of applications involve optimal control in
engineering technology. To optimize the performance index
of the controlled system, the controller design is the basis
of the optimal control research [1]. Therefore, optimal con-
trol has become one of the main topics of modern control
theory [2]. Unlike the optimal control problem of linear
systems, the optimal control problems of nonlinear sys-
tems usually require solving nonlinear Hamilton-Jacobi-
Bellman (HJB) equations [3]. However, it is very difficult
to solve nonlinear partial differential equations, even though
some equations cannot be solved under certain conditions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun Junwei .

Therefore, the emergence of dynamic programming provides
a new method for optimal control [4], [5]. A novel iterative
two stage dual heuristic programming is proposed to solve
the optimal control problems for a class of discrete time that
is switched nonlinear systems subject to actuators satura-
tion [6]. In the past few years, adaptive-based methods have
been well developed [7]–[9], such as heuristic dynamic pro-
gramming (HDP) [10], dual heuristic dynamic programming
(DHP) [11], and globalized dual heuristic dynamic program-
ming (GDHP) [12]. In literature [13], it is discussed that a
robust adaptive control scheme based on a cascaded structure
with a full state feedback controller with integrator terms as
inner control loop and computed torque as an outer control
loop for flexible joint robots. Based on the adaptive laws
and finite-time stability theory, a nonsingular terminal sliding
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mode control is designed in literature [14]. Literature [15]
proposes a new output-constrained robust adaptive controller
for a class of uncertain multi-input multi-output (MIMO)
nonlinear systems. These methods which are simple to imple-
ment, do not require the controlled object model. Because of
these advantages, the adaptive dynamic programmingmethod
is well developed [16]. It is concerned with a novel gener-
alized policy iteration algorithm for solving optimal control
problems for discrete-time nonlinear systems [17]. In litera-
ture [18], a simple, effective method is given for designing
the autonomous memristor chaotic systems.

In the current technological development of large data,
with the research on data-driven thinking and the study
of learning algorithms, the adaptive dynamic programming
(ADP) algorithm has become an effective means of optimiz-
ing design and intelligent control [19]–[21]. For the intro-
duction of this algorithm, a large amount of researches on
the ADP algorithm have emerged [22]–[25]. A novel data-
driven robust approximate optimal tracking control scheme
is proposed for unknown general nonlinear systems by using
the ADP method [26]. A new iterative ADP method is pro-
posed to solve a class of continuous-time nonlinear two-
player zero-sum differential games [27]. In literature [28],
it is showed how to implement ADPmethods using only mea-
sured input output data from the system. An online adaptive
policy learning algorithm (APLA) based on ADP is proposed
in literature [29]. The first proposed HDP algorithm based
on greedy iteration was reported in reference [30]. It mainly
studies the infinite time optimal control design. In the basic
ADP algorithm, it is generally necessary to construct two
networks, namely, a critic network and an action network.
The critic network is used to approximate the cost function,
and the action network is used to approximate the control
function [31]. Therefore, the training of the action network
relies on the system dynamics in the existing iterative ADP
algorithms. However, the structure of HDP cannot directly
output the derivative function information of the cost func-
tion. Moreover, in general, network construction is mainly
based on neural networks (NN) [32]. Memristor-Based Neu-
ral Network Circuit is discussed in literature [33]. As is
known, a NNwith a larger hidden node number tends to make
the control more complex and increases the computation
burden for the control system. Moreover, the NN neuron has
exponential functions, which contribute to the complexity of
the calculation and cause the NN control to fail to meet the
real-time requirements.

Recently, the multi-dimensional Taylor network has been
proposed. The multi-dimensional Taylor network (MTN) is a
new structure [34]–[40]. The MTN that is a simple function
of the state, input and is easy to analyze and solve for its
polynomials. The MTN is good at approximating nonlin-
ear dynamical systems, even unstable ones, as polynomials
approach infinity well and can also accurately express the
polynomial dynamical systems. In addition, the MTN only
involves multiplication and addition; thus, its simple com-
putation makes desirable real-time control possible. Due to

the unique structural characteristic of MTN, its output is
a linear combination of finite difference and product of its
input, which is more suitable for computer implementation.
Besides, the discrete MTN eliminates the dependence on the
system model and reduces its design complexity. The adap-
tive controller based onMTNwas proposed in [36]. However,
the parameters of that controller are fixed. Then, an MTN
tracking control scheme is proposed for a class of stochastic
nonlinear systems with unknown input dead-zone [37]. And
it is investigated the problem of adaptive MTN control for
SISO uncertain stochastic non-linear systems [38].

To address the above issues, a data-driven approximate
optimal control method for discrete-time nonlinear systems
based on multidimensional Taylor network dynamic pro-
gramming is proposed. The main contributions of the pro-
posed control schemes are as followings:

1 Three networks, namely, the identification network, critic
network and action network, were constructed based on the
MTN. The parameter selection algorithm and the detailed
control process are given.

2 The convergence of the algorithm is proved. The adaptive
algorithm proposed in this paper can be guaranteed to be
convergent under infinite time conditions.

3 The simulation experiment proves the effectiveness of the
optimal control method proposed in this paper.

II. PROBLEM DESCRIPTION
Consider the following discrete nonlinear systems:{

x(k + 1) = F(x(k),u(k))
y(k) = x(k)

(1)

where x(k) = [x1(k), x2(k), · · ·, xn(k)]T ∈ �x ⊂ Rn is the
state vector of the system;
u(k) = [u1(k), u2(k), · · ·, um(k)]T ∈ �u ⊂ Rm is the

control vector of the system; and
y(k) = [y1(k), y2(k), · · ·, yn(k)]T ∈ �y ⊂ Rn is the output

vector of the system.
In addition, when k = 0, x(0) = [x1(0), x2(0), · · ·, xn(0)]T

is the initial vector of the system.
Here, the following assumptions are made:
Assumption 1: System (1) is controllable, that is, there is a

set of control laws to stabilize the system.
Assumption 2: The nonlinear mapping F(·) is Lipschitz

continuous within the set �x , and F(0, 0) = 0. This outcome
shows that x(0) = 0 is a balanced state of the system under
the control law u(0) = 0.
Control target: In the infinite time domain, designing the

output feedback control law u(y) to stabilize the system from
the initial state to the equilibrium state and minimize the cost
function at the same time.

Cost function:

J (x(k)) =
∞∑
p=k

γ p−kU (x(p),u(p)) (2)
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where U is the utility function, U (0, 0) = 0, and for
∀x(k),∀u(k),U (x(k),u(k)) ≥ 0.

Utility factor γ ∈ (0, 1].
Quadratic utility function:

U (x(k),u(k)) = xT(k)Px(k)+ uT(k)Qu(k)

is chosen in this paper, where P and Q are Positive definite
matrices.

The cost function provides a standard for us to evaluate
the effect of learning. For a controllable system, through a
control scheme from allowable solutions, the cost function
of the system is continuously reduced during the process of
movement, and that is the control target.

Set the optimal cost function

J∗(x(k)) = min
∞∑
p=k

γ p−kU (x(p),u(p)) (3)

Further available

J∗(x(k))

= min

U (x(k),u(k))+ γ
∞∑

p=k+1

γ p−k−1U (x(p),u(p))

 ,
Thus, J∗(x(k)) satisfies the discrete time HJB equation

J∗(x(k)) = min
{
U (x(k),u(k))+ γ J∗(x(k + 1))

}
(4)

The corresponding optimal control u∗(k) is

u∗(k) = argmin
{
U (x(k),u(k))+ γ J∗(x(k + 1))

}
(5)

This finding shows that the next time state vector x(k + 1)
is required to solve the optimal control u∗(k) at the current
moment. However, this requirement is impossible at the cur-
rent moment. Therefore, an iterative algorithm based on the
multidimensional Taylor network is proposed in this paper to
obtain an approximate solution.

III. MULTI-DIMENSIONAL TAYLOR NETWORK
The MTN can approximate any nonlinear functions with a
finite point of discontinuity. Neat structure is the merit of
MTN, whose parameters are easy to adjust.
The detailed application of the MTN can be found

in [18]–[20].
Let

z(k) = [z1(k), z2(k), . . . znz (k)] (6)

The basic structure of MTN is shown in Fig 1.
In other words, there exists a set of parameter vectors

W j(k) = [wj1(k),wj2(k), · · · ,wjN (nz,t)(k)] such that the out-
put of MTN Out jn(k) can be expressed as

Out jn(k) =
N (nz,t)∑
i=1

wji(k)
n∏
s=1

zλs,ii (k). (7)

FIGURE 1. Basic structure of MTN.

where N (nz, t) is the total number of the expansion, wji(k) is
the weight of the ith product term, λ(s, i) is the power of zs(k)

in the ith product term, and
n∑
s=1

λs,i ≤ t .

Setting η(z(k)) = [1, z1(k), z2(k), . . . , znz (k),

. . . , z21(k), z1(k)z2(k), . . . , z
t
nz (k)]

T

we obtain

Out jn(k) = Wj(k) · η(z(k)). (8)

IV. ITERATIVE ALGORITHM CONVERGENCE ANALYSIS
To prove the convergence of iterative algorithms, two basic
sequences {Vi(x(k))} and {vi(x(k))} are constructed here.
{Vi(x(k))} denotes the cost function sequence, and
{vi(x(k))} denotes the approximate optimal control laws. v is a
vector, and the number of elements is the same as the number
of elements in the control vector, i = 0, 1, · · ·.
Set V0(·) = 0, and v0(x(k)) = argmin

u(k)
{U (x(k),u(k))}

The iterative process is as follows:

vi(x(k))

= argmin
u(k)
{U (x(k),u(k))+ γVi(x(k + 1))}

= argmin
u(k)
{U (x(k),u(k))+ γVi(F(x(k),u(k)))} (9)

Vi+1(x(k))

= min
u(k)
{U (x(k),u(k))+ γVi(x(k + 1))}

= U (x(k), vi(x(k)))+ γVi(F(x(k), vi(x(k)))) (10)

Stop until Vi→ J∗ and vi→ u∗.
Here, the following two lemmas are used.
Lemma 1 (Monotonicity): The cost function sequence
{Vi(x(k))} is as shown in equation (10), where V0(·) = 0.
With the control law sequence {vi(x(k))} given by equation
(9), {Vi(x(k))} is a monotone non-decreasing sequence.
In other words, ∀i, 0 ≤ Vi(x(k)) ≤ Vi+1(x(k)).
Lemma 2 (Boundedness): If the system is controllable

and the cost function sequence {Vi(x(k))} is given by
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equation (10), there is an upper bound D such that ∀i, 0 ≤
Vi(x(k)) ≤ D.
Theorem 1: The cost function sequence {Vi(x(k))} is given

by equation (10); the control law sequence {vi(x(k))} is given
by equation (9); and V0(·) = 0; then the cost function
sequence {Vi(x(k))} converges to J∗(x(k)).
In other words, when i → ∞, Vi(x(k)) → J∗(x(k)),

and {vi(x(k))} converges to the optimal control law u∗(x(k)).
In other words, lim

i→∞
vi(x(k)) = u∗(x(k)).

Proof: According to Lemmas 1 and 2, the cost
function sequence {Vi(x(k))} is monotone non-decreased
and bounded. Thus, there is a limit V∞(x(k)), that is,
lim
i→∞

Vi(x(k)) = V∞(x(k)).
Additionally, for ∀u(k),∀i, as seen from equation (10):

Vi(x(k)) ≤ U (x(k),u(k))+ γVi−1(x(k + 1)) (11)

According to Lemma 1, for ∀i, Vi(x(k)) ≤ V∞(x(k)). Thus,
we can obtain

Vi(x(k)) ≤ U (x(k),u(k))+ γV∞(x(k + 1)) (12)

When i→∞,

V∞(x(k)) ≤ U (x(k),u(k))+ γV∞(x(k + 1)) (13)

Furthermore, u(k) of the formula 13 is arbitrary, then we
can obtain

V∞(x(k)) ≤ min
u(k)
{U (x(k),u(k))+ γV∞(x(k + 1))} (14)

However, for ∀i

Vi(x(k)) = min
u(k)
{U (x(k),u(k))+ γVi−1(x(k + 1))} (15)

and Vi(x(k)) ≤ V∞(x(k)); thus, we can obtain

V∞(x(k)) ≥ min
u(k)
{U (x(k),u(k))+ γVi−1(x(k + 1))} (16)

Set i→∞, and according to (14) and (16)

V∞(x(k)) = min
u(k)
{U (x(k),u(k))+ γV∞(x(k + 1))} (17)

Similarly, v∞(x(k)) is the limit of vi(x(k)).
In other words, lim

i→∞
vi(x(k)) = v∞(x(k)).

According to (9) and (10)

V∞(x(k)) = min
u(k)
{U (x(k),u(k))+ γV∞(x(k + 1))}

= U (x(k), v∞(k))+ γV∞(F(x(k), v∞(k))) (18)

where

v∞(k) = argmin
u(k)
{U (x(k),u(k))+ γV∞(x(k + 1))} (19)

known by (18) and (3), with (19) and (4), we can obtain

V∞(x(k)) = J∗(x(k)), and v∞(k) = u∗(x(k)).

Thus,

lim
i→∞

Vi(x(k)) = J∗(x(k)),

lim
i→∞

vi(k) = u∗(x(k)).

The proof is completed.

V. ITERATIVE ALGORITHM AND ITS IMPLEMENTATION
For the general HJB equation of the nonlinear system is
difficult to solve, the optimal control law and the optimal
iterative function can be obtained via an iterative algorithm
in principle.

However, because the controlled system is unknown, the
construction of the system dynamics {Vi(x(k))} and {vi(x(k))}
is required. A dynamic iterative implementation based on the
multidimensional Taylor network is proposed in this section.
The model mainly includes the construction of three net-
works, namely, the identification network, critic network and
action network.

A. IDENTIFICATION NETWORK
Before implementing the iterative control process, an iden-
tification network must be built to ensure that the control
process does not require dynamic information of the system.
The weight vectors of the identification network are ωm ∈
RNm , where Nm is a number of the multi-dimensional Taylor
network identification network expansion items.

The output of the identification network:

x̂(k + 1) = ωT
mηm(x(k)

T, v̂Ti (x(k))) (20)

where ηm (·) is the expansion items of the multi-dimensional
Taylor network identification network.

The error function of the identification network is

em(k) = x̂(k + 1)− x(k + 1) (21)

The training objective function is

Em(k) =
1
2
em(k)Tem(k) (22)

The weight vectors of the identification network are
updated via the gradient method:

ω(j+1)m = ω(j)m − αm

[
∂Em(k)

∂ω
(j)
m

]
(23)

where αm > 0 is the model learning rate, and j is the training
weight iteration index.

When the identification network is fully trained and the
weights are no longer changed, the training of both the critic
network and the action network is started.

B. CRITIC NETWORK
The role of the critic network is to approximate the cost
function Vi(x(k)) and the partial derivative of the cost func-
tion ∂Vi(x(k))

∂x(k) .
Let λi(x(k)) be a co-function.
Thus:

λi(x(k)) :=
∂Vi(x(k))
∂x(k)

. (24)

According to Theorem 1, when i→∞, we have

Vi(x(k)) = J∗(x(k)). (25)
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FIGURE 2. The architecture network.

Thus, because

λi(x(k)) =
∂Vi(x(k))
∂x(k)

(26)

when i→∞, the co-function is also convergent. Therefore,

λi(x(k))→ λ∗(x(k)) (27)

Set Nc to be the number of multi-dimensional Taylor net-
work critic network expansion items. Thus, the weight vector
of the critic network is ωc ∈ RNc . At the ith iteration,
the output of the critic network is[

V̂i(x(k))
λ̂i(x(k))

]
=

[
ωVTci
ωλTci

]
η (x(k)) = ωT

ciη (x(k)) (28)

where ωci =
[
ωVci, ω

λ
ci

]
. Expanding the equation, we can

obtain

V̂i(x(k)) = ωVTci ηc (x(k)) (29)

λ̂i(x(k)) = ωλTci ηc (x(k)) (30)

where ηc (·) is the expansion items of the multi-dimensional
Taylor network critic network.

Although the introduction of co-functions increases the
amount of computation to a certain extent, the cost function
can be output directly. Furthermore, the control effect is also
improved to some extent.

The structure is shown in Fig. 2.
The training objective of the critic network consists of two

parts, namely, the cost function and the co-function, i.e.,

Vi(x(k)) = U (x(k), v̂i−1(x(k)))+ γ V̂i−1(x̂(k + 1)) (31)

λi(x(k)) = 2Qx(k)+ 2
(
∂ v̂i−1(x(k))
∂x(k)

)T

Rv̂i−1(x(k))

+ γ

(
∂ x̂(k + 1)
∂x(k)

+
∂ x̂(k + 1)
∂ v̂i−1(x(k))

∂ v̂i−1(x(k))
∂x(k)

)T

× λ̂i−1(x(k + 1)) (32)

The training errors include two parts:

eVci(k) = V̂i(x(k))− Vi(x(k)) and

eλci(k) = λ̂i(x(k))− λi(x(k)). (33)

Setting EVci (k) =
1
2e

VT
ci (k)eVci(k) and

Eλci(k) =
1
2
eλTci (k)e

λ
ci(k),

the objective function is

Eci(k) = (1− β)EVci (k)+ βE
λ
ci(k) (34)

The weight of the critic network is updated by the gradient
descent method to obtain

ω(j+1)c = ω(j)c − αc

[
(1− β)

∂EVci (k)

∂ω
(j)
ci

+ β
∂Eλci(k)

∂ω
(j)
ci

]
(35)

where αc > 0 is the learning rate of the critic network, j is the
training weight iteration index, and 0 < β < 1 is a constant
used to reflect the weight of EVci (k) and E

λ
ci(k).

C. ACTION NETWORK
The role of the multidimensional Taylor network action net-
work is to approximate the optimal control law. Set Na to
be the number of multi-dimensional Taylor network action
network expansion items. Thus, the weight vector of the
action network is ωa ∈ RNa , and the output of the critic
network is

v̂i−1(x(k)) = ωT
a(i−1)ηa(x(k)) (36)

where ηa (·) is the expansion items of the multi-dimensional
Taylor network action network.

Set the error function

ea(i− 1)(k) = V̂i−1(x(k + 1))− S(k) (37)

where S(k) = 0 is the target value of V̂i−1(x(k + 1)).
Thus, the Objective function is

Ea(i− 1)(k) =
1
2
eTa(i−1)(k)ea(i− 1)(k) (38)

Tominimize the objective function, theweight of the action
network is adjusted using the gradient method:

ω
(j+1)
a(i−1) = ω

(j)
a(i−1) − αa

∂Ea(i−1)(k)
∂ω

(j)
a(i−1)

 (39)

where αa > 0 is the learning rate of the action network, and
j is the training weight iteration index.

The traditional control methods too much rely on the
dynamic information of the controlled object. In the process
of training the action network, it is necessary to use the
direct information of the control matrix or rely on the neu-
ral network to express it. However, using traditional control
strategies such as the basic framework, the control method
proposed in this paper can guarantee the convergence of iter-
ative algorithms. Moreover, the proposed method can relax
the dynamic requirements of the system, making it easier to
achieve the control effects.

The basic control structure is shown in Fig. 3.
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FIGURE 3. The architecture of iterative dynamic programming.

D. CONTROL PROCESS
Suppose x(k) is in any control state, and J∗(x(k)) is the
optimal cost function. According to theorem 1, when the
iteration index i→∞, Vi(x(k))→ J∗(x(k)).
However, it is impossible to perform an iterative algorithm

infinitely. As a result, the error ε is introduced so that∣∣J∗(x(k))− Vi(x(k))∣∣ ≤ ε (40)

to guarantee the cost function can converge after a finite
number of iterations. This approximation in the practical
sense can meet the needs of the general engineering design.

However, in the general situation, the optimal cost function
J∗(x(k)) is unknown in advance. It is difficult to use the error
as a stopping criterion. Therefore, the following stopping
criterion is used here:

|Vi+1(x(k))− Vi(x(k))| ≤ ε. (41)

Theorem 2: For nonlinear systems (1) and cost functions
(2), in the iterative process, the convergence criteria (40) and
(41) are equivalent.

Proof: If |J∗(x(k))− Vi(x(k))| ≤ ε is established, then
we have the following:

J∗(x(k)) ≤ Vi(x(k))+ ε (42)

According to Theorem 1, the following inequality is
established:

Vi(x(k)) ≤ Vi+1(x(k)) ≤ J∗(x(k)) (43)

In other words, Vi(x(k)) ≤ Vi+1(x(k)) ≤ Vi(x(k))+ε; thus,
we can obtain

0 ≤ Vi+1(x(k))− Vi(x(k)) ≤ ε (44)

Therefore, equation (41) is established.
Moreover, according to theorem 1,

|Vi+1(x(k))− Vi(x(k))| → 0.

In other words,Vi(x(k))→ J∗(x(k)). Thus, for any small ε,
we have |Vi+1(x(k))− Vi(x(k))| ≤ ε.
When i→∞,∣∣J∗(x(k))− Vi(x(k))∣∣ ≤ ε is established.
The Proof is completed.
A design criterion is provided by theorem 2. Therefore, in

practical applications, applying the control strategy proposed
in this paper can obtain more reasonable control effects.

FIGURE 4. Identification model.

Theorem 2 validates the equivalence between formula
40 and formula 41. And the important role of the Theo-
rem 2 lies in that it provides practical design criteria of
approximate optimal regulation for discrete-time nonlinear
systems using iterative MTN dynamic programming method.

VI. SIMULATION EXAMPLE
To validate the controller proposed in this paper, consider the
following nonlinear system:

x1(k + 1) = 0.68 · x1(k)+ 0.1 · x2(k)
x2(k + 1) = 0.93 · x2(k)− 0.23 · x21 (k) · x2(k)

−0.16 · x21 (k)+ u(k)+ 0.1 · (x31 (k)+x2(k)) ·
1−e−u(k)

1+e−u(k)
y(k) = x1(k)

(45)

Setting x(k) = [x1(k), x2(k)]T, the utility function is as
follows:

U (x(k), u(k)) = xT(k) · x(k)+ uT(k) · u(k)

The initial parameters of the system are

x1(0) = 0, x2(0) = 0.15.

When the excitation function is

ur (k) = 0.8 · sin(k
/
17)+ 0.7 · cos(k

/
80)+ 0.4 · sin(k

/
27)

the curve of the identification model by the identification
network proposed in this paper is shown in Fig. 4.

For the method proposed in this paper, when the dimension
n of the controller is equal to 2, the unit step response curve
is as shown in Fig. 5.

Alternatively, the BP neural network self-adaption recon-
stitution algorithm gives the unit step response curve shown
in Fig. 5.

Fig. 5 shows that the data-driven approximate optimal con-
trol method based on the multi-dimensional Taylor network
has a faster response.

To verify the follow-up response performance of the con-
troller, when k = 10, with the input curve overlaying a
sinusoidal signal, Fig. 10 shows the response curves.

Fig. 6 reveals that the data-driven approximate optimal
control method tracks the desired signal more quickly. And
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FIGURE 5. Output comparison.

FIGURE 6. Output comparison.

FIGURE 7. Error comparison.

convergence proof of the proposed algorithm has been
described in detail in literature [39] and literature [40].

The algorithm proposed in this paper and the neural net-
work algorithm are all differential adjustment algorithm. That
is, the error occurs first in the system, and then the controller
acts to reduce the error and eventually to zero. Under this
control mechanism, the faster response speed can ensure that
the system fluctuates within a relatively small error range.
To illustrate this problem, Fig. 7 shows the absolute error
curves of the two algorithms.

It can be seen from the figure that the absolute error of the
algorithm proposed in this paper is always smaller than that
of the contrast algorithm. Thank you again for your valuable
comments.

VII. CONCLUSION
For discrete time nonlinear systems, which are based on
a data-driven approach, an approximate optimal iterative

dynamic programming method based on MTN was proposed
in this paper. Moreover, the convergence of the iterative algo-
rithm was proved. Based on MTN, three networks were con-
structed: the identification network, critic network and action
network. As the construction and execution of the control
network do not require dynamic information of the controlled
system here, the dependence on the structure of the controlled
object model will be greatly reduced. The effectiveness of the
method proposed in this paper was verified by the simulation
results. Compared with the traditional NN control method,
the iterative algorithm proposed here based on MTN has
faster response speed.

The current research focuses on theoretical analysis in this
paper. The convergence of the algorithm under time-infinite
conditions was proved. Directions of further research include
determination of how to promote the results to a limited time
and how to prove the convergence of iterative algorithm in
finite time. In addition, an approach to combine theoretical
methods with practice requires further study.
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