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ABSTRACT The Notification Oriented Paradigm (NOP) introduced a new organization of software and
hardware logic based on notifications among computational entities. This NOP new organization avoids
processing redundancy and allows processing unit decoupling, therefore permitting proper processing
performance and processing parallelism/distribution. Thus, the NOP provides means to make efficient use
of the parallel execution capabilities of modern computing systems. However, as expected, the execution
dynamics of NOP, based on notifications, is not efficiently performed by the hardware of most current
computing systems. This paper presents a new solution called Notification-Oriented Computer Architecture
(NOCA), which is suitable for the execution of software developed according to the NOP computing model.
The NOCAwas designed according to principles of generality and scalability, which allow it to execute NOP
software of any size by fetching the application from memory. The proposed architecture is organized as a
fine-grained multiprocessor that hierarchically executes instructions through sets of specialized processing
cores. Preliminary experiments performed on prototypal FPGA implementation of the NOCA showed
the expected behavior of executing NOP applications according to its theoretical computing model. This
paper also presents experiments performed on a NOCA simulator extending the scale of parallelization of
applications. Results show improvements in maximizing the speedups at higher scales of parallelization,
as well as minimizing the effects of processor-to-memory communication bottlenecks by reducing the
number of required memory accesses during execution.

INDEX TERMS Computer architecture, notification-oriented paradigm, parallel computer architecture,
computing paradigm.

I. INTRODUCTION
Computer architectures have lately evolved towards the
design and construction of processors with multiple cores
[1], [2]. However, performance improvements are dependent
on the efficient use of the multiple parallel cores made avail-
able by these novel execution platforms. This is an issue for
both von Neumann-based and alternative architectural solu-
tions for parallelism, namely as dataflow approaches, whose
parallel processing capabilities are usually not adequately
exploited by the current high-level and flexible programming
solutions [3]–[5].
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As a matter of fact, some of the most used state-of-the-
art programming techniques, such as the Object-Oriented
Paradigm (OOP) from imperative programming or Rule-
Based Systems (RBS) from declarative programming, are
subject to limitations or deficiencies related to coupling and
redundancies that impair the use of parallelism features pro-
vided by multicore architectures. Those deficiencies regard
to coupled and unnecessary logic-causal evaluations caused
by a loop and/or search orientation of the usual paradigms in
general [6]–[8]. As a consequence, there is an increasing need
for techniques and tools that are suitable for the development
of parallel software [9], [10].

In this context, the Notification-Oriented Paradigm (NOP)
has been proposed, based on a previous control and inference
theory [7], [11]. The NOP proposes eliminating some of
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those deficiencies found in the current most used sequential
paradigms, namely imperative and declarative ones. How-
ever, at same time, a new paradigm should preserve and
improve some qualities from those ancient paradigms, such
as named state from imperative paradigm (namely from the
object-oriented sub paradigm), as well as high-level develop-
ment from declarative paradigm (namely from the logic sub
paradigm) [7], [11], [12].

This new paradigm called NOP is characterized by a logi-
cal model organized as logical-causal and factual-executional
entities whose inference occurs collaboratively by means of
very precise notifications among them. The logical-causal
entities act as Rule entities whose activation occurs reac-
tively in response to state changes of the factual-executional
entities, called Fact Base Elements (FBE). By using precise
notifications among constituents of the FBEs and the Rules,
the need for additional inference mechanisms to perform
the matching among them is eliminated [7], [11]. These
properties of the NOP allow decreasing or even eliminat-
ing code/entity redundancies and coupling, thereby improv-
ing the processing performance and facilitating parallelism
and distribution. Moreover, the NOP development occurs by
means of a high-level declarative style that automatically
establishes the notification links [7], [10], [12]–[15].

The NOP solutions have been experimented to improve
performance and even parallelism/distribution in the usual
von Neumann-based platforms, both mono and multi-core
ones [10], [14]. However, such platforms cannot fully achieve
NOP benefits. Thus, in order to provide a platform that allows
the proper execution of NOP applications, this paper presents
a computer architecture referred to as Notification-Oriented
Computer Architecture (NOCA).

The NOCA aims at implementing the dynamics of the
NOP execution model as closely as possible to its theoretical
model, in a manner that particularly allows it to implicitly
profit from the facility of distribution and parallelism pro-
vided by the NOP. Moreover, the NOCA aims at generality
in the sense that it is capable of alternating the execution
of different NOP applications only by replacing software in
memory, which is a feature traditionally expected for the so-
called modern computers.

In this paper, the NOCA is described by presenting its
structural and dynamic models in detail, which is prototyped
and tested in an FPGA platform. In addition, results of exper-
iments in a software simulator are presented by comparing
the execution performance of NOP software running on the
NOCA at different scales of parallelization, as well as the
consequent effects on the speedup and memory and bus
contentions.

This paper is organized as follows. Section II summarizes
the theory concerning the NOP. Section III shows related
work. Section IV details the proposed architecture. Section V
presents the case of study, results from the experiment, and
the discussion about these results. Section VI compares the
NOCA with other current architectures. Section VII presents
conclusions and perspectives for future work.

II. NOTIFICATION ORIENTED PARADIGM (NOP)
The NOP was proposed as a new paradigm for systems,
firstly software but subsequently hardware as well, in order
to provide a new logical model that intends to contribute
to higher productivity and quality in the development and
execution of automated processes. Particularly, this paradigm
intends to promote a better system execution performance and
greater construction facility of complex systems, especially
parallel and distributed systems [7], [10]–[18].

The NOP logical model allows reducing or even elimi-
nating some of the issues concerning classical development
paradigms such as Imperative (IP) and Declarative (DP)
Paradigms, which respectively and even particularly include
Object-Oriented Programming (OOP) and Rule-Based
Systems – (RBS). As examples of those issues, it can be
pointed out the often strong coupling among entities on
logical-causal calculation as well as structural and temporal
redundancies [7], [11].

Structural redundancies occur when a given logical and/or
causal calculation is unnecessarily repeated elsewhere in the
code. In turn, temporal redundancies occur when a given
logical and/or causal calculation is unnecessarily re-executed
over time, even though the data involved in this calcula-
tion has not changed since its last execution [7], [8], [19].
These redundancies tend to cause code coupling, which
makes processing parallelism and distribution more difficult
to achieve [11], [12].

A. NOP STRUCTURE
A system developed according to the NOP, referred to as a
NOP system, comprises a set of logical-causal and factual-
executional entities declaratively defined by the designer.
These entities collaborate by means of very precise notifi-
cations among them, thereby defining an innovative infer-
ence process that is distinct from those used in IP and
DP [7], [11], [16].

The NOP logical model can be described by means of a
class diagram, as shown in Fig. 1. The factual-executional ele-
ments are modeled by means of the Fact Base Element (FBE)
class. Each element is defined by an FBE and aggregates a set
ofAttributes (i.e., notifiable state variables) andMethods (i.e.,
functions or operations able to be instigated) described by the
Attribute and Method classes, respectively.

FIGURE 1. NOP logical model [7].
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FIGURE 2. NOP Rule entity example expressed as a logic-causal rule.

The logical-causal elements, in their turn, are modeled
by means of the Rule class. Each entity defined as a Rule
represents a logic-causal rule, as exemplified in Fig. 2.
Still, each Rule (entity) aggregates a Condition and an
Action respectively, described by the Condition and Action
classes. Also, each Rule is an entity to be notified by some
FBE [7], [11].
The Condition of a Rule defines the logical calculation on

a set of Premises whose result determines whether the Rule
is activated or not. Each Premise is an instantiation of the
Premise class and comprises a relational expression of two
Attributes or an Attribute and a constant.
In turn, the Action of a Rule is responsible for triggering

a set of Instigations, which are described by the Instigation
class. These Instigation instances represent what must be
processed when a Rule’s Action is activated. Actually, Insti-
gations activateMethods to be executed, which are described
by theMethod class. TheMethods contain the functional logic
that acts over FBE Attributes [7], [11].

Fig. 2 presents an example of Rule expressed in the form
of a logic-causal rule. This Rule is part of a traffic control
simulator using traffic lights (semaphores) encapsulated as
FBE s. The Condition of this Rule handles the decision of
decreasing the ‘‘closed’’ time of a Semaphore FBE, depend-
ing on the number of vehicles waiting for the semaphore to
‘‘open’’. This Condition evaluates three Premises that per-
form the following evaluations of the Semaphore FBEs: a) Is
the number of queued vehicles greater than or equal to 10?
b) Is the semaphore closed? c) Is the semaphore closed for
30 seconds or more?

In this example, the Action contains two Instigations to a)
reset the remaining time for Semaphore1, which will sub-
sequently trigger another Rule that will change its state to
‘‘open’’; and b) reset the remaining time for the Semaphore2,
which is the opposite semaphore belonging to the same cross-
ing, to change its state, subsequently triggering another Rule
that will change Semaphore2’s state to ‘‘closed’’. Effectively,
what each Instigation does is to instigate one or more Meth-
ods responsible for performing the services or operations
defined by an FBE.

B. NOP INFERENCE
The given NOP organization of entities and their relationship
allows an innovative form of inference process based on noti-
fications, nowadays called Notification Oriented Inference
(NOI) [7]. The NOI is exemplified in Fig. 3, which shows
the notifications among NOP entities, such as FBEs notifying
Rules by means of Attributes, Premises, and Conditions.

FIGURE 3. Example of notification chain [17].
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In short, in NOI, for each change in the state of each
Attribute of an FBE, this Attribute precisely notifies its
concerned Premises, which perform their logical operation,
thereby updating their states. Also, for each change in the
state of each Premise, this Premise precisely notifies its
concerned Conditions, which perform their logical-causal
calculation, thereby updating their state [7], [11], [16].

If the result of that calculation of a Condition is true,
the respective Rule is approved and can be activated if
there is no conflict. In the case of conflict, distinct prior-
ities of Rules can be used to solve it under some given
approach. Once a Rule is activated, this results in the exe-
cution of its Action. Upon execution, the Action notifies its
connected Instigations, which, in turn, are responsible for
notifying the corresponding Methods and triggering their
execution [7], [11], [16].

Still, the notification links are connected in build time. For
instance, when a Premise mentions an Attribute, the latter
takes into account the former as a receiver for its notifications
in runtime. Naturally, the links connected in build time allow
the execution dynamics above described and exemplified
in Fig. 3.

Fig. 3 presents an example of a NOP system composed of
six logical-causal entities (i.e., Rules) and two factual entities
(i.e., FBEs). This figure illustrates the composition of the
notification chain that integrates the entities according to the
NOP logical model. It also shows the structure that enables
the execution dynamics according to NOP.

The bold lines in Fig. 3 represents the notification flow for
Rule activation, starting with an Attribute change and propa-
gating to the notified elements in order to the approval of a
set of Rules as a result. The lighter dotted lines, in their turn,
represent the notification flow for Rule execution, resulting in
the activation ofMethods that update Attribute values as indi-
cated by the dashed lines. It can be noticed that the essence
of computation under the NOP is organized and distributed
among reactive entities, which collaborate by means of noti-
fications. This framework defines the notification mechanism
and the application execution flow as a consequence.

The NOP leads to a new form of system designing, under
which the execution flows are distributed among a set of quite
uncoupled entities (e.g., Attributes, Premises, Conditions,
and Rules). Different parallel or sequential execution flows
may exist due to the logic of the NOP entities, without the
designer having to set their structural linkages. Thus, the par-
allelism expression is intrinsic to the NOP logical model,
making it an alternative for the design of parallel software
in a way, potentially even more advantageous than existing
techniques [7], [13], [17].

C. PREVIOUS NOP IMPLEMENTATIONS
Some previous approaches to design systems, accord-
ing to the NOP, have been developed. These approaches
include: NOP frameworks (in C++, C#, Java. and Elixir),
allowing the implementation of NOP software, for von Neu-
mann architecture, using typical OOP abstractions such as

classes and objects, but now under notification approach
of-course [16], [18]; prototype of a language and compiler
called NOPL, for von Neumann architecture, that allow gen-
erating low-level language, namely C/C++, but under the
NOP background [16]; circuit templates called NOP Digital
Hardware (DH), afterward associated with new version of
NOPL that allow the high-level implementation, in total con-
formance with NOP principles, of a determined application
in reconfigurable hardware [13]; and a NOP co-processor
(CoNOP), which is based on NOP-DH and can be recon-
figured for a determined application, thereby allowing the
hybrid execution of the NOP inference process in collabo-
ration with a von Neumann core [17], [20].

All these implementations have been absolutely important
to demonstrate a set of NOP properties, such as declarative
high-level implementation, implicit entity decoupling allow-
ing parallelism and distribution, actual avoidance of entity
redundancy allowing high performance in execution terms,
and usefulness for both software and hardware. However,
even if very useful, these approaches present certain short-
comings in executing notification-oriented software.

The approach based on the C++ framework relies
on software structures that are typical of the Imperative
Paradigm (IP) as well as on data structures to implement
the notification dynamics of the NOP, which can aggregate
significant overhead to the execution performance. Even
so, the results present performance improvements when
compared to usual C++ imperative implementation and
CLIPs/Rete declarative implementation, and these perfor-
mance improvements are even increased when running the
C++ framework as a fine-grained multithreaded application
in a multicore system [7]. Nevertheless, in order to minimize
such aforementioned overhead, in each core, some effort
has been employed in developing a NOP language/compiler
prototype to generate C/C++ source code specific for each
NOP application, therefore optimizing and simplifying the
use of the data structures [16].

The hardware-based approaches, in their turn, map the
design of a NOP application (or part of it, as in the CoNOP)
directly into a specialized electronic circuit. This mapping
results in a high-performance circuit that is specific to a
NOP application and executes in a highly-parallelized way,
in opposition to the sequential execution imposed by imple-
mentations running on von Neumann cores. Nowadays, this
mapping can be performed by means of an adaptation of
the NOPL (NOP language/compiler) that generates VHDL,
thereby allowing developing a hardware-based NOP applica-
tion from a high-level development language. However, those
solutions lack generality and scalability, in the sense that any
change on the application logic implies the hardware recon-
figuration of the platform where it is implemented and has its
size limited to the capacity of that hardware device [17].

In this current paper, it is presented another hardware solu-
tion to NOP called NOCA (Notification-Oriented Computer
Architecture). The NOCA proposes a new hardware-based
approach that aims to minimize or even eliminate some of
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the drawbacks of the previous approaches. However, before
presenting the NOCA, the next section reviews related work
about architectural concepts that have been considered when
designing the NOCA and are pertinent for its better under-
standing.

III. RELATED WORK
The ease with which software is developed and executed
represents one of NOP’s implicit characteristics that should
be addressed in the new proposed architecture. This section
briefly reviews the history of parallel computer architectures,
in particular the most relevant ones, to allow afterward posi-
tioning the NOCA in relation to these models, inclusive in
terms of ease of development.

Along with the recent history of computing, much effort
has been made to develop and improve computer architec-
tures, aiming to run software with some level of parallelism.
Two computing models have been, particularly, more widely
employed in the design of parallel computer architectures:

1) Von Neumann model, in which a program is stored
in memory and has its next instruction fetched by the
processor from the memory address pointed to by a
program counter. The address pointed to by the pro-
gram counter is incremented with sequential addresses
or updated with results of branch instructions used to
redirect the program control flow.

2) Dataflow model, according to which the program
operations (instructions) have their execution enabled
and performed as the data (operands), on which they
depend, become available [3].

A. PARALLELISM IN THE VON NEUMANN MODEL
It is possible to achieve some parallelism at several abstrac-
tion levels, even under an essentially sequential execution
model such as the von Neumann model. Instruction Level
Parallelism (ILP) may be achieved by employing techniques
such as pipelining. This technique allows more than one
instruction to be executed at the same clock cycle by a
processor by dividing its processing into many execution
stages [21].

At a higher level of abstraction, Thread Level Parallelism
(TLP) may be achieved by partitioning software into different
control flows, which can be concurrently executed but with
well-defined synchronization points. At the hardware level,
architectural resources such as multithreading aim at facilitat-
ing TLP by controlling the thread execution and scheduling
according to the state of other threads. For example, this
occurs in a situation when a thread is stalled due to a pending
I/O operation with high latency [22]–[24].

Another technique for TLP implementation is based on
Chip Multiprocessor (CMP) architectures, which are com-
posed of multiple execution cores on the same chip, also
called multicore architectures. Even though this technique is
currently the most commonly employed approach for design-
ing microprocessors, this kind of architecture presents some
additional challenges, e. g. managing concurrency among

simultaneous memory accesses performed by the different
cores as well as ensuring cache memory coherency in imple-
mentations where each core has a separate cache for its
individual use.

Concerning programming issues, the focus on developing
computers compatible with the von Neumann model along
the years [25] has favored the propagation of compatible pro-
gramming models and languages. The programming model
of a von Neumann computer, that is fundamentally based on
variables as storage, control instructions as a way to manage
the execution flow, and assignment instructions to implement
memory reads and writes [26], is the technological base for
the imperative paradigm and, consequently, to the most pop-
ular procedural and object-oriented programming languages,
such as C/C++, Java, among others. Thus, the developer’s
adaptation to new frameworks, development environments or
imperative programming languages that are compliant to the
von Neumann model requires relatively little effort, which
is a considerable advantage over using other less popular
computing or programming models.

As a disadvantage, regardless of the category or level of
parallelism, the von Neumann model presents a character-
istic known as ‘‘von Neumann bottleneck’’ that consists of
frequently fetching instructions from memory outside the
execution core, whose latency and bandwidth are typically
limited [25]. These limitations have increased in the latest
years due to the effect known as ‘‘memory wall’’, which
is the increasing discrepancy between the processor execu-
tion performance and the memory access performance [27].
According to [25], this discrepancy reached a factor of
1000 by 2007 and kept on increasing.

Indeed, the von Neumann model was not primarily
designed for the execution of parallel software. Even though
the execution of programs can be parallelized to some extent,
this parallelization would impose the ways of communication
and synchronization between the involved threads, with the
consequent execution overhead [28]. Additionally, the exe-
cution model constrains the expression of the parallel logic
by the programmer.

B. PARALLELISM IN THE DATAFLOW MODEL
In the context of the dataflow model, in its turn, the program
structuring itself favors the parallel execution of individual
instructions. That means instructions are able to be executed
as long as their operands are available. From a technological
point of view, several architectural techniques have been
developed to help improve some characteristics of dataflow
execution. One example is the use of an Explicit Token
Stores (ETS) for optimizing the search and dispatch of the
available data to the proper execution units [29] Another
example is the I-Structures, consisting of memory blocks that
define specific synchronization semantics in order to generate
a notification to a dataflow instruction about the availability
of the data on which it depends [30].

Examples of typical architectures based on the dataflow
model are SDF [5], WaveScalar [31] and MAD [32].
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The SDF (Scheduled Dataflow) consists on a hardware that
executes small non-blocking threads according to the avail-
ability of their input operands, thus in a dataflow-oriented
way; the WaveScalar groups the dataflow instructions to be
executed in sets called ‘‘waves’’, which are defined in build
time in order to keep the instructions that produce and con-
sume the data close to each other, therefore facilitating the
flow of data between them; and the MAD aims at optimizing
memory access performance by means of a dataflow execu-
tion strategy.

The dataflow model is theoretically more suitable for par-
allel computing than the von Neumann model because its
execution is intrinsically parallel and because it presents more
suitable abstractions for the development of concurrent pro-
grams [33]. However, some issues regarding the need to do a
search process for operand matching and the impact of fine
execution granularity on the pipeline and on the number of
accesses to lower memory levels, affect the performance of
those architectures and have hampered their use. There are
also some drawbacks inherent to the dataflow programming
model, such as the absence of variables that make dataflow
programming more similar to a functional programming
model that can be difficult to use and inefficient for many
applications [4].

C. NOP IN HARDWARE VERSUS ARCHITECTURES BASED
ON VON NEUMANN AND DATAFLOW MODELS
Concerning the dynamics of the execution model, the main
differences between hardware solutions based on NOPmodel
and on von Neumann and dataflow models reside in the
following aspects:

1) The execution of NOP applications is fundamentally
non-sequential since it basically depends on the map-
ping between facts (data) and Rules (relations among
data and the consequent actions). This mapping can
naturally lead to the simultaneous (thus, potentially
parallel) triggering of several Rules.

2) The execution of NOP instructions is not dependent
on the availability of operands, as in dataflow instruc-
tions, but on the availability of notifications that are
generated as a result of the causal-logical calculations
applied over data being updated. Indeed, the semantics
of NOP Methods allows them to operate over data
stored inmemory without necessarily consuming them,
but keeping the ability to generate notifications due to
changes in Attribute values.

As a matter of fact, NOP approaches in hardware such
as NOP-DH and CoNOP are alternatives to the current
architectures. Nevertheless, one problem of the current NOP
approaches in hardware would be that each application in
NOP-DH must be a specific circuit, and in CoNOP, the num-
ber of NOP entities to be executed is limited to a given
number. In this sense, the NOCA is proposed in order to
allow a NOP application to be loaded from memory to a set
of processors and executed in a more scalable and flexible
way.

IV. DESCRIPTION OF THE PROPOSED ARCHITECTURE
This section presents the proposed notification-oriented com-
puter architecture, referred to as NOCA [17], [34].1 This
architecture supports NOP software execution by means of
its own assembly code, which can be generated by means
of a Rule-based high-level NOP programming language/
compiler [16]. This model gives flexibility to the application,
once applications can be developed in a high-level language
and changed or replaced in memory when needed.

A. NOCA LOGICAL MODEL
The development of the NOCA was based on a set of generic
requirements related to the NOP features and to its execution
model, as listed below.

1) The NOCA shall be capable of executing software
solely composed of NOP elements and, optionally,
of sequential functions according to the von Neumann
model.

2) The NOCA shall be generic, in the sense that any
change in the NOP application being executed depends
only on software changes, thus not requiring any hard-
ware reconfiguration.

3) The NOCA shall define a low-level instruction set (and
corresponding assembly language) that implements the
functionalities of the NOP notification elements.

4) The NOCA shall define processing units that are capa-
ble of executing the low-level architecture instructions
and the flow of notifications with parallelism.

5) The NOCA shall be capable of executing a NOP appli-
cation even if it is composed of more notifying ele-
ments than the number of processing units available
for their execution. This enables scalability in the sense
that the size of a NOP application to be executed is
limited only by the amount of memory available for
storing the respective software.

Based on these requirements, the logical model for the
NOCA was designed as shown in Fig. 4. The notification
model is positioned on the left side and the way the model
elements map to the NOCA instruction set is in the middle.
Some of the model elements (Rule, Action and Instigation)
are not mapped to any specific instruction, once they do not
perform any calculation or causal-logical operation but act as
aggregators or notification routers for NOP software only.

In its turn, the package on the right side of Fig. 4 shows
the instruction set mapped to some hardware processes,
which are responsible for executing the respective instruc-
tions. These processes are grouped together as sets, each
of them representing a group of processors that send and
receive notifications across the same channels. In addition,
it is defined: a specific process for Attribute change detection,

1This architecture was subject of a Ph.D. thesis [17] and has been previ-
ously and shortly described in [34] in Portuguese language. Indeed, NOCA
is described in [34] with fewer details than presented herein and the reported
experiments, performed on a FPGA implementation, do not contain neither
the NOCA integration with NOP Language/Compiler nor the data obtained
from the NOCA simulator.
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FIGURE 4. NOCA logical model [17].

associated with the corresponding repository; a process
responsible for scheduling actions and solving conflicts
among Rules (S/CS); and a von Neumann auxiliary core,
which is controlled by the S/CS for the execution of sequen-
tial Methods when required. As a complement, repositories
for Attributes and Premises/Conditions/Methods (P/C/M) are
also defined, which are memory regions responsible for stor-
ing the data and instructions that correspond to each of the
respective NOP entities. A set of memory-mapped I/O inter-
faces is also defined in order to allow NOCA interfacing with
external systems.

The Attribute processor uses the communication channel
that connects it to the Premise hardware processes to send
a notification when an Attribute changes. All the hardware
processes responsible for Premise processing are able to
consume this notification simultaneously. However, it will
be effectively processed only by the subset of processes to
which Premises, whose causal-logical calculations depend on
that notification, are allocated. In case the logical value of
any Premise is changed, the corresponding process notifies
the hardware processes responsible forCondition processing,
which consume this notification in case they depend on that
Premise. Similarly, if the logical value of any Condition is
changed, the corresponding process notifies the hardware

processes responsible forMethod processing, which consume
this notification in case they depend on that Condition, and
execute the operation defined by the corresponding Method.

In addition, the Scheduler/Conflict Solver module also
consumes notifications sent through all the notification chan-
nels mentioned, allowing it to execute the conflict resolution
tests and internal processes as well as instruction allocation
and deallocation to the hardware processes responsible for
instruction execution. This allocation and deallocation mech-
anism allows the execution of NOP programs with more
entities than the number of available hardware processes,
thereby enabling the scalability of applications, as stated on
NOCA requirements.

B. NOCA INSTRUCTION SET ARCHITECTURE (ISA)
The Instruction Set Architecture (ISA) of the NOCA, which
is based on its logical model, has the following features:

1) Definition of instructions corresponding to Premises
(PREMISE-OP), Conditions (CONDITION-OP), and
Methods (METHOD-OP). Each of these instructions
defines the sources (i.e., other NOCA instructions)
from which it receives notifications (according to
NOP logical model), its corresponding operation (rela-
tional, logical or logical-arithmetical, respectively) and
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a list of other NOCA instructions that it can notify
(according to NOP logical model). METHOD-OP
instructions can optionally contain the address of
another METHOD-OP instruction corresponding to a
dependent Method.

2) There is a specific instruction for an Attribute
(ATTRIBUTE-DECL). This instruction is stored in
the repository of Attributes and keeps the value of the
Attribute as well as defines configuration data relative
to its role in the notification mechanism (for example,
whether it is notifying or not) and the list of Premises
to be notified when the Attribute value changes.

3) Additionally, an instruction is defined for triggering a
von Neumann method execution (METHOD-VN-OP).
This instruction is executed by the S/CS, which sends
a signal for the von Neumann core to start the method
execution (METHOD-VN-OP). This instruction is exe-
cuted by the S/CS, which sends a signal for the von
Neumann core to start the method execution.

Table 1 summarizes the instruction set.NP is the number of
notified Premises, NC is the number of notified Conditions,
NM is the number of notified Methods, and NDM is the
number of notified dependent Methods.

TABLE 1. NOCA instructions.

C. NOCA MICROARCHITECTURE
From the design assumptions and logical model previously
presented, a microarchitecture organization for the NOCA is
proposed, as described in the next sections.

1) MICROARCHITECTURE GRANULARITY
The fundaments of the NOP execution model imply the
potentially parallel propagation of notifications among the
notification chain elements (Attribute, Premises, Conditions,
Actions, Instigations, and Methods) that are connected for
implementation of the causal logic. That is, it is possible
that elements of different types in the notification chain are
running their operations simultaneously at any given instant
in time.

Each notification chain element has its behavior executed
by a specific processing unit, exclusively allocated for the
execution of this task, and able to be reallocated for executing
other elements when necessary. These units are specialized

according to the operation type, in order to make their hard-
ware simpler and thus facilitate higher degrees of scalability
for a certain hardware platform, besides hierarchizing them
to simplify the interconnections for notification propagation.
Indeed, a unit that executes a certain type T of NOP element
needs to be interconnected only to those units that generate
notifications for type T or that receive notifications generated
by type T.

In summary, the NOCA defines a fine-grained microar-
chitecture with specialized processors that are dedicated to
executing one instruction at a time. The following types of
specialized processing units are defined:

1) PP (Premise Processor): processing unit responsible
for executing the logical calculation of a PREMISE-OP
instruction.

2) CP (Condition Processor): processing unit responsible
for executing the logical calculation of CONDITION-
OP instruction.

3) MP (Method Processor): processing unit responsible
for executing the operation of a METHOD-OP instruc-
tion upon notification of a true logic value of a Condi-
tion (performed by a CONDITION-OP instruction).

2) MICROARCHITECTURE OVERVIEW
Fig. 5 presents the NOCA microarchitecture overview. The
sets of PPs, CPs, and MPs are shown in the middle, with
the respective connections. The S/CS is connected to each
processor of each set via an allocation path (bus), allowing
this module to perform allocation and deallocation operations
to/from each processor when necessary.

The upper part of Fig. 5 shows the memory subsystem,
which is divided into 3 modules: the NOP Attributes mem-
ory, the NOP Premises/Conditions/Methods memory, and
the Startup and von Neumann memory. The NOP Attributes
memory is responsible for storing the application fact base.
The NOP Premises/Conditions/Methods memory is respon-
sible for storing the application Rule base,which is the set
of Premises, Conditions, and Methods. The Startup and von
Neumann memory block are accessed by the von Neumann
core for the execution of startup routines and sequential von
Neumann methods triggered by the S/CS.

Fig. 5 also shows the notification activator on the left
side. It corresponds to a set of I/O peripherals that are able
to update Attribute values, through the Attribute R/W path,
and thus initiate a new notification cycle (see Section ‘‘I/O
Interfaces’’ for further details).

3) INTERCONNECTION AMONG PROCESSING UNITS
In order to implement the communication channels pre-
sented in the logical model (Fig. 4) and implemented by
the microarchitecture (Fig. 5), the interface between every
two interconnected hierarchical groups of processing units
(Attribute repository/memory to PPs, PPs to CPs, and CPs to
MPs) is performed by means of a single notification propa-
gation bus. Although this interconnection organization could
theoretically lead to scalability, reusability, and reliability
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FIGURE 5. NOCA overview [17].

limitations [35], [36] due to bus contention and electric issues
related to signal propagation [21], [37], in practice it simpli-
fies the NOCA design. The mentioned limitations, in their
turn, are minimized by the NOP’s intrinsic characteristic of
relatively low traffic on notification buses, since notifications
are only propagated when changes in Attributes states occur.
Concerning the bus used by the S/CS to fetch and update

instructions during the scheduling process, its contention is
also dependent on the amount of propagated notifications,
as they trigger the allocation of instructions into the special-
ized processing units. However, the greater the amount of
processing units of each type and the amount of reevaluations
of the same logical-causal expression due to the notification
dynamics, the smaller tends to be the need for instruction
(re)allocation, therefore minimizing contention on the
scheduler bus.

For instance, in iterative applications where the same NOP
elements are frequently re-notified, the contention is mini-
mized as those NOP elements tend to remain allocated to
specific processors for a longer time. This is similar, to some
extent, to what is performed in WaveScalar [31] by using
wavecaches to group dependent instructions and minimize
the latency of execution. However, it is adapted to the NOP
dynamics, which triggers changes into the allocated instruc-
tions only when incoming notifications demand new instruc-
tions to be allocated.

4) MEMORY SYSTEM AND STARTUP PROCESS
In the NOCA, both Attribute and P/C/M memories can be
partitioned into internal and external memory devices and,
optionally, define cache memory levels for access time opti-
mization. The main difference between Attribute and P/C/M
memories resides in the ability of the former to send notifi-
cations to PPs and to the S/CS, via a specific interface, when
the value of a notifying Attribute is changed.

The NOCA also defines a startup and von Neumann mem-
ory space, as shown in Fig. 5. It comprises a non-volatile
memory, to store the startup code and von Neumann meth-
ods, as well as a RAM working memory to store data
used by these methods (stack and global variables). The
von Neumann methods are sequential routines executed by
the von Neumann core, when triggered by the METHOD-
VN-OP execution, which are optional parts of a NOP applica-
tion that can be better executed according to sequential logic.

The startup routines are sequential methods, executed by
the von Neumann core upon NOCA start, with the purpose of
initializing the Attribute and P/C/Mmemories. The initializa-
tion includes: copying the Attribute and P/C/M instructions
to the corresponding memory spaces; propagating the default
values of Attributes to their dependent Premises by means
of notifications; and propagating the initial logic values of
Premises to their dependent Conditions also by means of
notifications.
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5) PP (PREMISE PROCESSOR)
Fig. 6 details the structure of a Premise processor (PP).
Notifications addressed to Premises are received via
PP-NOTIF_IN interface and have their source addresses (i.e.,
the address of the Attribute whose value change generated
the notification) compared to the operand addresses of the
allocated Premise (i.e., the values of the Operand 1 address
and Operand 2 address registers).In case the notification
source address matches any of the operands, the notification
is consumed by executing the relational operation corre-
sponding to the allocated Premise (Operator register).If the
logical result of the executed relational operation is different
from the previous value (as tested by theComparator circuit),
PP generates a notification via the PP-NOTIF_OUT interface.
This notification is filled with the address of the notifying
Premise (Premise address register value) and forwarded to
thePremise-Condition notification path (bus) to be consumed
and processed by the destination Conditions.

FIGURE 6. Premise Processor (PP) [17].

The allocation and deallocation process, in its turn, is per-
formed via the PP-ALLOC interface, which is connected to
the S/CS via a specific bus. This process updates the values
of the Operand 1 address, Operand 2 address, Operand 1,
Operand 2, Operator, Flags, and Premise address registers.

6) CP (CONDITION PROCESSOR)
Fig. 7 details the structure of a Condition processor (CP).
Notifications addressed to Conditions are received via
CP-NOTIF_IN interface and have their source address (i.e.,
the address of Premise or SubConditionwhose change of log-
ical value generated the notification) compared to the operand
(Premises) addresses of the allocated Condition (values of
Premise 1 address and Premise 2 address registers). In case
the notification source address matches any of the operands,
the notification is consumed by executing the logical oper-
ation corresponding to the allocated Condition (Operator
register).

FIGURE 7. Condition Processor (CP) [17].

If the logical result of the executed logical operation is dif-
ferent from the previous value (as tested by the Comparator
circuit), CP generates a notification via the CP-NOTIF_OUT
interface. This notification is filled with the address of the
notifying Condition (Condition address register value), with
the priority of this Condition (Prio register value) to be
eventually used by the S/CS conflict solver process, and
forwarded to the Condition-Method notification path (bus)
to be consumed and processed by the destination Methods.
Additionally, the notification is also forwarded back to the
Premise-Condition path (bus) to be eventually consumed by
another Condition whose logical calculation depends on the
logical value of the notifying (Sub)Condition.
The allocation and deallocation process, in a similar way

to PPs, is performed via the CP-ALLOC interface, which is
connected to the S/CS via a specific bus. This process updates
the values of the Premise 1 address, Premise 2 address,
Operand 1, Operand 2, Operator, Flags, Prio, and Condition
address registers.

7) MP (METHOD PROCESSOR)
Fig. 8 details the structure of a Method processor (MP).
Notifications addressed to Methods are received via the
MP-NOTIF_IN interface and have their source address (i.e.,
the address of Conditions whose change of logical value
generated the notification) compared to the address of the
Condition that triggers the allocated Method (value of the
Condition / Master Method address register). In case
the addresses match and the logical value of the Condition
is true, the notification is consumed by executing the opera-
tion defined by the allocated Method. The MPs support the
execution of the ‘‘minimal Method’’ only, which is defined
by means of the METHOD-OP instruction with one of the
following formats:

Res = opn1 OP opn2

Res = OP opn1
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FIGURE 8. Method Processor (MP) [17].

In which opn1 and opn2 are operands, in the form of
Attributes, constants or addresses that are fetched from
the Attribute memory by the Operand fetch circuit, when
required, via MP-RW_AT interface and Attribute R/W path
(bus), and stored into theOperand 1 andOperand 2 registers.
OP is the operation defined by the allocated METHOD-
OP instruction (Operator register), which is used by the
Arithmetical-Logical Unit (ALU) to execute the correspond-
ing Method operation. If necessary, the Reference-based
Operand fetch circuit may be used to fetch other data from
the Attribute memory via the MP-RW_AT interface. Res,
in its turn, is the address of an Attribute that receives the
result of the operation by means of a write operation that
is performed in the Attribute R/W path (bus) by the Result
writeback circuit. Due to the relative simplicity of the mini-
mal Method, the MP hardware is also simple, facilitating its
on-scale replication in the hardware device (e.g., FPGA or
ASIC) in which the NOCA is implemented.

In case the MM (Master Method) flag is on, the MP
generates a notification to the Condition-Method path (bus)
via theMM_NOTIF-OUT interface. This notification is filled
with the address of the allocated Method (Method address
register) with the purpose of directly triggering the execution
of other Methods that depend on it, enabling the execution
of a sequence of operations without needing to execute the
complete notification cycle.

The allocation and deallocation process, in a similar way
to PPs, is performed via the MP-ALLOC interface, which
is connected to the S/CS via a specific bus. This process
updates the values of the Condition / Master method address,
Operand 1 address/value, Operand 2 address/value, Result
address, Operator, Flags, and Method address registers.

8) S/CS (SCHEDULER/CONFLICT SOLVER)
The S/CS (Scheduler/Conflict solver) is split into 3 sub-
sections, each one responsible for managing the alloca-
tion and deallocation of Premises (P-Scheduler), Conditions
(C-Scheduler),and Methods (M-Scheduler) via the respec-
tive paths (buses) connected to PPs, CPs, and MPs.

Each subsection implements a set of allocation and
replacement tables used by the allocation and deallocation
processes.

Additionally, the subsections share the access to the P/C/M
memory for fetching the instructions to be allocated and
updating the status of the instructions being deallocated. The
whole scheduling process is dynamic and centralized into the
S/CS, which is a different approach from architectures such
as TIA (Triggered Instruction Architecture), where the set of
triggered instructions must be pre-configured to be scheduled
into specific processing elements [38].

The processes executed by each of the subsections are
triggered by the notifications received through the respective
notification paths (buses). The destination addresses of noti-
fications are checked, and the corresponding allocation and
deallocation process is started if needed. Particularly for the
P-Scheduler, the execution of allocation may involve fetching
the value of the second operand, used by the corresponding
PREMISE-OP instruction, through the interface that is con-
nected to the Attribute R/W path.

In addition to the instruction allocation and deallocation
processes, S/CS executes processes that are responsible for
ensuring determinism and solving conflicts among approved
Rules. The determinism process is triggered by specific flags
defined by the ISA with the purpose of ensuring that a cer-
tain set of instructions, which are dependent on the same
notification, have their execution started simultaneously as
the notification arrives. To do so, S/CS must provide for
the allocation of all the instructions of the deterministic
set being considered into their respective processing units,
before enabling them to process the incoming notification.
The conflict solver process, in its turn, is executed when two
or more Conditions marked as conflicting are approved (i.e.,
change their logical value to ‘‘true’’). In this case, S/CS shall
choose one of the approved Conditions to be the conflict
winner, by evaluating a priority value that is defined in the
CONDITION-OP instruction opcode. The notification gen-
erated by the winner Condition is propagated, whereas the
notifications originated from the other conflicting Conditions
are ignored.

Some S/CS operations need to have their flow of execution
controlled. When a PP/CP/MP is busy (i. e. under allocation
process or still processing a previous notification), it signals
the S/CS via a proper bit. When this happens, the busy
PP/CP/MP does not consume any incoming notification that
is directed to it. Instead, the S/CS detects this condition and
enqueues the notification into a specific FIFO for that bus
because it snoops every notification bus. So, it can be later
reissued when the PP/CP/MP is ready again, which is called a
‘‘delayed notification’’ protocol. If some of the S/CS delayed
notification FIFOs gets full, the S/CS holds the notification
generators, so the enqueued delayed notifications can be
delivered, and the FIFO gets able to hold further incoming
notifications.

S/CS also executes the METHOD-VN-OP instructions in
the M-Scheduler. This causes the triggering of a notification
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to the von Neumann core, which is responsible for executing
the corresponding von Neumann Method.

9) I/O INTERFACES
The notification activator (I/O interfaces), shown in Fig. 5,
corresponds to a generic set of memory-mapped peripher-
als that can be used to control specific I/O interfaces. The
control registers for these peripherals are memory-mapped,
allowing the ‘‘minimal Method’’ implementation supported
by MPs as the instruction METHOD-OP (see Section ‘‘MP
(Method Processor)’’) to be also used to read/write from/to
these peripherals. The read/write operations can be performed
as direct accesses to the registers’ memory addresses, as well
as reads/writes to/ from Attributes that are mapped to these
addresses.

The peripheral devices that implement the input interfaces
can also be programmed to start a notification cycle. This is
achieved by declaring a common Attribute and configuring
the input peripheral to directly update this Attribute, allowing
generating notifications to the connected Premises and thus
similarly emulating the hardware interrupt mechanism that
is commonly implemented by processors based on the von
Neumann model.

D. BUILDING AN APPLICATION AND EXECUTING IT IN
THE NOCA
Fig. 9 presents an example of an assembly for a NOCA appli-
cation, corresponding to the NOP Rule presented in Fig. 2.
The corresponding NOP high-level code, shown in Fig. 10,
can be written directly into a text editor or generated from the
NOP high-level language (NOPL) by the NOP compiler [16].

FIGURE 9. NOCA assembly example.

The assembly syntax is compatible with a prototypi-
cal assembler that was developed as a support tool. The
binary code for each instruction is generated from the
assembly code. The instructions are allocated in contiguous
addresses, starting from a base address defined as an assem-
bler command-line option or redefined bymeans of the@ tag,
such as the declaration @00C00800 shown in Fig. 9. This
allows creating memory allocation sections that are useful,
for example, for debugging purposes.

Each instruction of the NOCA ISA defines a set of memory
references corresponding to the instructions from which they

FIGURE 10. NOPL code example.

receive notifications and also to the instructions to which they
send notifications when necessary. These references can be
encoded as numeric addresses or as instruction labels (such as
SEM0_STATE_CLOSED_P and R0SEM0_M0 in Fig. 9. The
labels are replaced by the corresponding memory addresses
during the assembler processing.

The base addresses for PREMISE-OP, CONDITION-OP,
METHOD-OP, and METHOD-VN-OP instruction allocation
shall be contained into the address space configured to be
used by the P/C/M Memory Control. The base address for
ATTRIBUTE-DECL instruction allocation, in its turn, shall
be contained into the address space configured to be used by
the AttributeMemory Control.

The execution of a NOP application by the NOCA involves
the following operations:

1) Execution of the startup routines (presented in
Section ‘‘Memory System and Startup Process’’) by the
von Neumann core, in order to initialize the Attribute
and P/C/M memories. This initialization includes:
copying the instructions related to Attributes and
P/C/M to the respective memory spaces; propagating
the default value of each Attribute to its dependent
Premises, by means of notifications; and propagating
the initial logical value of each Premise to their depen-
dent Conditions, also by means of notifications.

2) Update the value of an Attribute to start the notification
process, which can be performed by the startup code or
by the notification activator (Section ‘‘I/O Interfaces’’).
This update causes the propagation of a notification to
the PPs and to the S/CS via the Attribute-Premise noti-
fication path (bus).The S/CS fetches the PREMISE-OP
instructions referenced by the Attribute from the P/C/M
memory and allocates them at the PPs, in case they are
not already allocated.

3) Every concerned PP executes its PREMISE-OP
instruction and eventually generates a notification
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to the CPs and to the S/CS via the Premise-
Condition notification path (bus). The S/CS fetches the
CONDITION-OP instructions referenced by the noti-
fying Premise from the P/C/M memory and allocates
them at the CPs, in case they are not already allocated.

4) Every concerned CP executes its CONDITION-OP
instruction and eventually generates a notification
to the MPs and to the S/CS via the Condition-
Method notification path (bus). The S/CS fetches the
METHOD-OP instructions referenced by the notifying
Condition from the P/C/M memory and allocates them
at the MPs, in case they are not already allocated.
Additionally, the S/CS can trigger the von Neumann
core in case the CONDITION-OP references a
METHOD-VN-OP instruction, causing the execution
of a sequential von Neumann method referenced from
the memory address contained in this instruction.

5) Every concerned MP executes its METHOD-OP
instruction if the corresponding Condition notified
‘‘true’’. The execution of a METHOD-OP instruction
updates the value of an Attribute in memory (via
Attribute R/W path), eventually starting a new notifi-
cation cycle.

Given the detailed descriptions for the NOCA and its
application building process, the next section shows a case
of study that was designed and experimented in order to test
and evaluate the NOCA’s characteristics. For this purpose,
a NOCA processor was first implemented as a prototype in
FPGA and subsequently in the form of a simulator [39].

V. CASE OF STUDY
A case of study was developed to allow evaluation of the
NOCA. It aimed at evaluating the NOCA performance at
different scales of parallelization (i.e., the number of PPs,
CPs, and MPs) by means of a simulator (see Section B). This
included not only the speedup and variations in execution
time but also the variations in contention and percentage of
utilization for some of the NOCA internal buses.

As these are preliminary experimentation data, which are
used not only for this performance comparison but also for
testing and debugging the NOCA prototypes, the case of
study was kept limited enough. This was done in order not
to introduce uncertainties related to the software behavior,
which could interfere with evaluating the behavior and cor-
rectness of the prototype itself.

A. SOFTWARE IMPLEMENTATION
The case of study consists of simulating the activation and
reading of a set of sensors. Each sensor is represented by an
entity that defines the following Boolean Attributes: isRead,
which indicates whether the sensor has already been read; and
activated, indicating whether the sensor is active or inactive.
The application Rules (presented as an example Rule

named Rule_ReadSensor on Fig. 11) consist of changing the
isRead Attribute to ‘‘TRUE’’ as the following Conditions
are met: the sensor is active, and it has not been read yet.

FIGURE 11. Rules defined for the case of study.

The example of Rule Rule_ReadSensor, as shown in Fig. 11,
is instantiated for each of the N sensors (the figure shows its
instantiation for sensor number 1).

Thus, the execution dynamics consist of running M iter-
ations, at which N sensors have their states changed to
‘‘active’’. In case the active sensor has not been read yet,
i.e., isRead equals to ‘‘FALSE’’, the corresponding Rule is
activated and the sensor is read. The number of active sensors
is changed for every experiment, changing the number of
activated Rules as a consequence.

In addition, this application defines another entity respon-
sible for counting the sensors that have already been read on
the current iteration. This entity defines the Attribute count,
storing the value to be atomically incremented at every sensor
read. When the value of count reaches the limit of activated
Rules (i.e., the total of sensors to be read defined by the
LIMIT_OF_ACTIVATED_RULES constant), the Attributes
are reinitialized and a new iteration is executed. This Rule is
shown in Fig. 11 as Rule_Counter.

The application for the case of study was implemented
using the NOP high-level language (as exemplified in Fig. 10)
and further compiled by theNOP compiler to generate NOCA
assembly (as exemplified in Fig. 9).

In terms ofNOCAassembly, every sensorAttribute, as well
as the count Attribute of the counting entity, is directly
mapped to Attributes, by using the declaration instruction
ATTRIBUTE-DECL. The application Rules are mapped
to Premises by using PREMISE-OP, Conditions by using
CONDITION-OP, andMethods by using METHOD-OP, nat-
urally respecting their corresponding logical relations.

B. EXECUTION PLATFORM
The previous experiments presented in [34] were performed
on a NOCA prototype implemented in FPGA. This imposed
some scale limitations (maximum of 4 processors of each
type) due to the relatively high complexity of the synthesized
hardware, therefore limiting the replication of processing
units due to the limited amount of hardware resources pro-
vided by the prototyping platform.

Because of the scale limitations imposed by the FPGA
prototype, a NOCA simulator called NOCASim [39]
was proposed. This simulator allows the execution of a
NOP application into a NOCA processor with a larger

VOLUME 8, 2020 37299



R. R. Linhares et al.: NOCA — A Notification-Oriented Computer Architecture: Prototype and Simulator

parallelization scale than the FPGA prototype, provided that
the multiple processing units can be replicated by means of
multiple software instances (i.e., object instances).

NOCASim is a software simulator for a specific NOCA
implementation, which aims at simulating the execution of
NOP software, built according to the NOCA ISA, similar
to the NOCA prototype implemented in FPGA [39]. The
internal structure of NOCASim is modularized according to
NOCA logical model (Fig. 4), by means of a set of classes
and objects that represent each of the logical blocks and
their corresponding implementation in an object-oriented lan-
guage (Java). This allows multiple instances of the classes
that represent the processing units (PPs, CPs, and MPs) to be
created, as previously mentioned.

The simulation occurs on a clock-by-clock basis and allows
visualizing the NOCASim internal states as well as gener-
ating log data for further processing. Every clock updates
the internal states of the NOCASim in a way similar to the
updates on the digital circuits that compose the NOCA pro-
totype implemented in FPGA. This similarity was validated
by means of unit tests, where single instances of the NOCA
logical blocks were simulated, and the resulting timings were
compared to the corresponding timings on the same modules
of the NOCA prototype in FPGA [39].

The NOCASim used for the case of study is run on a laptop
with a Core i7 4500U processor (2 physical cores), 8 GB of
RAM memory, and Windows 10 installed as OS.

C. RESULTS
For executing the experiment, the percent of activated Rules
(i.e., activated sensors) and the number of processing units are
changed for every run. The performance data (i.e., number of
clock cycles) and percent of bus contention are thenmeasured
and obtained from the NOCASim log data. The experiment
instantiates 100 sensors, which are activated for every run in
percentages starting from 10% up to 100%, in steps of 10%.
The number of processing units of each type (PPs, CPs, and
MPs) is varied from 4 to 8, 16, 32, 64, 128, 256, and 512.

Table 2 shows the number of NOP elements that are pro-
cessed as a function of the percent of Rules activated for this
application. Fig. 12 presents a chart with the performance
data for every percent of activated Rules, as a function of
the number of processing units of each type. This chart
shows that, as the number of processing units increases,
the NOCA performance also increases. This happens because
an ever-increasing number of instructions remains allocated
on the respective processing units, thus depending on a
smaller number of (de)allocations and on a smaller number
of P/C/M memory accesses as a consequence. As the num-
ber of processing units becomes greater than the number of
NOP elements to be processed, the performance is no longer
increased.

Fig. 13 presents the calculated speedup as the number
of processing units is multiplied by 2. This chart shows
that the NOCA presents speedup rates up to 2.5 as the
number of processing units exceeds the number of processed

TABLE 2. Number of NOP elements as a function of the percent of
activated Rules.

FIGURE 12. Performance chart for different percentages of activated
Rules as a function of the number of processing units [39].

FIGURE 13. Speedup as the number of processing units is multiplied
by 2 [39].

NOP elements. From this point on, doubling the number of
processing units does not present any significant performance
gains. As stated before, this happens because, as the number
of processing units equals the number of NOP elements, there
is no more need to fetch instructions from P/C/M memory
as the instructions remain allocated into their respective
processing units.

Fig. 14 presents the percentage of P/C/M memory bus
utilization (sum of the percentages in states different from
IDLE) as a function of the number of processing units of each
type and the percentage of activated Rules. The percentage
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FIGURE 14. Percentage of P/C/M bus utilization [39].

of bus utilization decreases as the number of processing units
increases. This happens because, as the number of processing
units increases, there is a decrease in the number of instruc-
tion (de)allocations on the PPs, CPs and MPs that would
occur as the Rules are re-executed on the multiple iterations
of the case of study.

D. DISCUSSION
The execution of the case study into the NOCASim allows
experimenting with a larger scale of parallelization, as repli-
cating the NOCA processing units (PP, CP and MP) depends
only on replicating their respective instances in software.
Thus, it is possible to reduce the limitations in the scale of
parallelization that were imposed by the previous implemen-
tation in FPGA [34].

This experiment shows that the scale of parallelization
effectively influences the execution performance, as increas-
ing the number of processing units decreased the execution
time. However, as the number of processing units is equal
to or greater than the number of equivalent NOP elements
to be processed, the performance is no more increased. This
is due to the fact that the basic NOP elements (Premises,
Conditions and Methods) cannot have their internal execu-
tion parallelized (i.e., they define the minimum granularity
level), thus imposing a maximum level of parallelization for
a given NOP application. Moreover, despite the NOP being
intrinsically parallel, the NOCA logical model itself imposes
some sequentialization due to characteristics such as bus
concurrency, need for instruction allocation by the Scheduler,
memory accesses, and initialization of a NOCA application
performed by routines running on a von Neumann core.

Regarding the bus activity, the experiment shows that
the notification buses remain relatively idle even with the
increase on the number of processing units and the increase
on the average number of executed Rules (and the increase
on the frequency of notifications, as a consequence) which
occurs as a function of the speedup. This can be interpreted as
evidence that the NOP eliminates redundancies (i.e., unnec-
essary processing and the consequent flow of notifications)

due to its execution model. The same does not happen to
the Attribute memory bus because the number of Attribute
accesses increases at the same rate as the number of executed
Rules increases and the MPmodel requires Attributememory
accesses for everyMethod execution (not a load/store model).

Inversely, as the number of processing units increases,
the P/C/M memory bus utilization decreases. This happens
because the NOCAmakes use of temporal locality principles,
mainly when the number of processing units is equal to or
greater than the number of NOP elements to be re-processed.
In this scenario, recently allocated instructions remain on
the processing units and do not need to be re-fetched from
memory, thus helping on NOCA’s performance improvement
as the number of processing units is increased.

Additionally, the decreasing impact of P/C/M memory
access on the overall NOCA performance, as the scale of par-
allelization increases, was shown by means of an extra exper-
iment, where the memory latency was reduced from three
cycles to one. By reducing the memory latency to one third
and keeping a small number of processing units of each type,
the NOCA performance was increased by 30%. However,
as the scale of parallelization increased, this performance
gain was not observed anymore. This happens because, as the
scale of parallelization increases beyond a certain limit, every
NOP element of the tested application remains allocated to
a specific processing unit and, thus, the number of P/C/M
memory accesses for allocation and deallocation tends to
zero.

VI. NOCA VERSUS CURRENT ARCHITECTURES
As a main distinctive characteristic, the NOCA has been
developed to be fully compatible with the NOP execution
model. Therefore, it has been conceived from scratch to
execute rule-based software without the need for an inference
engine, which is conceptually different from what happens
under execution models such as von Neumann and dataflow.
However, some of its architectural aspects have been inspired
and/or can be compared to previous work regarding architec-
tures targeted to different execution models.

Regarding the execution dynamics, dataflow-based archi-
tectures such as SDF [5], WaveScalar [31], and MAD [32]
trigger the execution flow by data arrival at the input queues
of the computation blocks, so the data are processed regard-
less they have their values changed or not. This is different
from what happens in the NOCA, which processes notifica-
tions that are generated only upon data change.

Similarly, the NOCA does not execute programs sequen-
tially as typical architectures based on the von Neumann
model such as ARM Cortex-A9 [40] and IA-32 [41] do
because NOP does not define a program counter. However,
the NOCA benefits from the possibility of sequential execu-
tion, bymeans of the implementation of the concept of depen-
dentMethods. This is performed by allowing their respective
MPs to notify one another directly. Also, the NOCA can
dispatch code that is inherently sequential to an auxiliary von
Neumann core.
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Regarding the scheduling mechanism, the NOCA works
differently from architectures such as TIA [38]. Even though
each TIA processing element (PE) has its own scheduler,
it schedules only the triggered instructions that have been
pre-configured in build time to be scheduled into that PE. The
NOCA, on its turn, defines a single scheduler that is capable
of scheduling instructions in runtime to any of its special-
ized processing units, depending only on the compatibility
between the instruction type and the processor type. This
runtime scheduling allows higher flexibility and scalability
on scheduling.

Regarding the caching or fetching of new instructions,
WaveScalar [31] caches instructions into the wavecaches by
grouping dependent instructions, which minimizes latency of
execution as consequence. The NOCA also keeps the instruc-
tions cached into its specialized processing units because it is
not necessary to replace them with other instructions imme-
diately if there are no incoming notifications to be processed
by different instructions. However, the dynamics is different
and the NOCA does not depend on a compile-time mapping
for grouping instructions together.

With respect to the partitioning and parallelization of
execution, the NOCA is a fine-grained architecture with spe-
cialized processing units designed to execute simple instruc-
tions that map to the NOP logical model. The concept of
fine-grained execution (sometimes called ‘‘microthread’’ in
the literature) is inspired by architectures such as SDF [5]
and SDAARC [1], although they perform their fine-grained
execution scheduling based on dataflow rather than the noti-
fication flow used by the NOCA.

VII. CONCLUSION AND FUTURE WORK
The proposal of the NOCA is an alternative to conventional
parallel computer architectures based on von Neumann or
dataflow model since the NOCA was developed so as to
totally adhere to the NOP, whose execution model is based
on notifications. Particularly, this allows the NOCA to take
advantage of the parallel execution characteristics coming
from the structure of NOP applications.

The NOCA is a flexible and generic computer architecture.
Flexibility and generality are achieved due to the fact that,
distinctly from previous implementations of execution plat-
forms for NOP software, the NOCA allows software devel-
opment based on a flexible process. That is, the software is
fetched from a program memory, thereby making it editable
and flexible. Still, the hardware consists of a fixed proces-
sor implementation in terms of internal architecture, thereby
being generic for the execution of any NOP application. The
experimented case of study shows that NOCA can present
significant speedup even for relatively simple NOP applica-
tions, such as the one experimented, for scales of paralleliza-
tion in the order of tenths of processors or more. This happens
because NOP software executed by the NOCA is able to
efficiently exploit the availability of multiple processors due
to the relatively low granularity of a NOP application.

The experiment also shows that the P/C/M memory bus
utilization decreases significantly as the scale of paralleliza-
tion increases and the re-execution of Rules does not demand
a great amount of P/C/M memory accesses for instruction
allocation and deallocation, provided that the entities that
compose these Rules (Premises, Conditions, and Methods)
remain allocated on the respective processors. This character-
istic, combined with the hierarchization of instructions to be
executed by specific processors, define a new caching level
in the NOCA, which takes advantage of temporal locality
(i.e., elements that are frequently re-notified tend to remain
allocated to a certain processor when they receive a new
notification).

As observed in the case of study, in a scenario where a
set of logic/causal processing elements (Rules) needs to be
repeatedly re-evaluated and re-executed, this caching charac-
teristic eliminates part of the effects of the communication
bottleneck between the processors and the memories. Such
a bottleneck is still a problem on modern architectures based
on vonNeumann principles [25], despite the efforts to provide
support for parallelization in order to increase performance.
In these terms, the possibility of retaining the current instruc-
tions into the processors while they are not required to execute
new instructions is an innovative aspect of NOCA’s execu-
tion model when compared to the von Neumann’s execution
model.

It is worth mentioning that, even in cases where the appli-
cation size (in the amount of NOP entities) is greater than the
number of available processing units, the amount of P/C/M
memory access can be relatively low. This can happen in situ-
ations where the application being executed defines different
use cases that activate only subsets of Rules, therefore not
requiring all the NOP entities to be necessarily allocated at
least once during the application execution.

However, the use of a single memory space for storing
Premises/Conditions/Methods can become a bottleneck when
the utilization of the corresponding bus by the S/CS is rel-
atively high. This is particularly true in situations in which
the relatively small parallelization scale requires frequent
(de)allocations of instructions from/to the processing units
since they depend on read or write accesses to the P/C/M
memory.

Although the Attribute and P/C/M memories implement a
cache level to improve their access performance, in practice,
this improvement is hampered by the lack of spatial locality of
a NOP application since the execution flow is not necessarily
sequential across adjacent instructions in memory. Therefore,
it is necessary to further examine the memory access dynam-
ics of the NOCA in order to propose a caching strategy that
is more adequate to its notification model.

Finally, the case of study also shows that the utilization
rate for the notification buses is not high, even when adding
more processors as producers and consumers of notifications.
Thus, the frequency of notifications tends not to be a bottle-
neck in increasing the parallelization efficiency, at least for
the amounts of hundreds of processors of each type.
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Besides the case of study that is presented on this paper,
it is worth mentioning that NOP applications, running on
NOCA, have been previously compared with the same appli-
cations under IP approach and running on a von Neumann
platform. These comparisons are presented in [17] and [34]
and show that the NOP with NOCA can outperform IP with
von Neumann in cases where the IP execution demands a
high number of logical-causal processing, despite the per-
formed experiments have not been exhaustive and have not
yet been executed in adequate scale of parallelization due to
the limitations of the former FPGA prototype.

Future research may focus on the following topics: investi-
gate the effects of increasing the NOCA parallelization scale
with respect to the parallelization efficiency; perform further
comparisons between the NOP with NOCA and IP with von
Neumann implementations, using test cases with different
characteristics (more structural redundancies, predominantly
sequential calculation, higher scale of parallelization, among
others); investigate the effects of changing some NOCA
memory subsystem parameters on its execution performance,
mainly the P/C/M cache configuration and memory latency;
develop techniques to optimize the NOP assembly code,
including the development of an adequate compiler.

As a general result of this research and its implications,
better-founded conclusions about the advantages and short-
comings of the NOCA (and of the NOP) can be achieved,
allowing a better assessment of the applicability of this tech-
nology to the development of systems in general.
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