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ABSTRACT Solving dynamic Sylvester matrix equations is a prevalent research topic and many methods
have been arisen to solve the dynamic Sylvester equation, but few of them consider the noise effect.
To investigate the new approach which can suppress the noise effect, integration feedback is added in the
conventional Newton-Raphson iterated (CNRI) algorithm to form the proposed integration-implemented
Newton-Raphson iterated (IINRI) algorithm based on the control theorem. Besides, this paper transforms
the dynamic Sylvester equation into a linear equation which turns into the zeroing finding problem in further
by constructing the error function. According to the theoretical analyses and the simulation results, the IINRI
algorithm has higher accuracy and strong robustness under different noises (e.g. the constant noise, the linear
noise, and the bounded random noise) while the performance of the CNRI algorithm is seriously degraded
by the noises, which reveals that the IINRI algorithm is an efficient and powerful approach to solve dynamic
Sylvester equation under noise perturbations.

INDEX TERMS Dynamic Sylvester equation, integration-implemented, Newton-Raphson iterated
algorithm, noise suppression.

I. INTRODUCTION
Finding the solution of dynamic Sylvester equation
plays a crucial role in many fields, such as in control
system [1]–[3], image processing [4]–[7], and stability anal-
ysis [8]. Thus, many efficient approaches are presented to
solve the dynamic Sylvester equation in the last decades,
mainly including iterative algorithms [9]–[14] and recurrent
neural network models [15]–[21]. For example, Xie and
Ma divide the Sylvester-transpose matrix equation into two
subsystems and derive the iterated algorithm based on least-
squares optimization [11]. Regarding the recurrent neural
network, it is very popular in recent years and has been
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exploited as a solution to a variety of problems [22]–[26].
Liao et al. introduce an adaptive parameter gradient neural
network (GNN) with avoiding the matrix inverse [15]. Fur-
thermore, a modified zeroing neural network (ZNN) model
is presented with shorter convergence time [20]. Generally
speaking, the ZNN model can utilize the time-derivation
information of coefficients to obtain the theoretical solution
to dynamic problems, while the cost is to possess higher
computing complexity. Besides, it is worth pointing out
that the derivation term is extremely susceptible to noise
perturbations. Therefore, the above-mentioned algorithms are
deemed isolated from noises during the calculation process,
which limits their applications in the practical workspace.

Noises widely occur in the computing system, which may
degrade the accuracy of computing solution or even cause the
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algorithm to fail. For example, the ZNN model can find the
theoretical solution without the noises while it would diverge
under the linear noise perturbation [27], [28]. Though many
techniques have been exploited to suppress noises, such as
calibration algorithm, filter, and others [29]–[33], noise is
still inevitable in the system. For example, the truncation
error, the rounding error, and the offset error can be seen
as the noise perturbation. Thus, suppressing noises from the
perspective of the algorithm property is of great necessity
and significance. Though few methods can suppress noises
based on numerical theory, there are manymature approaches
to cope with various noises in control theorem. In the light
of control theory, the Newton-Raphson iteration algorithm
can be deemed as a proportional feedback system [34], [35].
Besides, it is acknowledged that an integration feedback
term can effectively suppress noises. Therefore, motivated
by that conception, an integration-implemented Newton-
Raphson iterated (IINRI) algorithmwith low computing com-
plexity is proposed in this paper.

The rest of this paper is divided into four sections. The
derivation and formulation of the IINRI algorithm for solving
the dynamic Sylvester equation are introduced in Section II.
For comparison, the conventional Newton-Raphson iterated
(CNRI) algorithm is also presented in this section. Section III
investigates the accuracy and convergence of the IINRI algo-
rithm, especially under various noisy environments. The-
oretical analyses demonstrate the superiority of the IINRI
algorithm on noise suppression and provide a strategy to
improve the accuracy versus various types of noises. For illus-
tration, simulation results are presented in Section IV, which
well verify the correctness of the corresponding theoretical
analyses aforementioned. Finally, Section V concludes this
paper. At the end of this section, the highlights of this paper
are summarized below.
1) This paper proposes an IINRI algorithm derived from

the CNRI algorithm, improving the accuracy from O(τ )
to O(τ 2).

2) In the presence of various types of noises, the IINRI
reveals its strong robustness and high accuracy. Espe-
cially, under the constant-noise workspace, the IINRI
algorithm still keeps the excellent performance as the
same as in the case of the noise-free workspace nomatter
how large the constant noise is.

3) Theoretical analyses and numerical simulations are pro-
vided to prove and verify the superiority of the IINRI
algorithm.

II. PROBLEM AND THE PROPOSED IINRI ALGORITHM
At the beginning of this section, the dynamic Sylvester equa-
tion is introduced. Then, the IINRI algorithm derived from
the CNRI algorithm is proposed, which is implemented with
an integration item for suppressing noises.

A. DYNAMIC SYLVESTER EQUATION
The dynamic Sylvester equation can be formulated as

M (t)Z (t)− Z (t)N (t)+ L(t) = 0, (1)

with parameter matrixes M (t) ∈ Rm×m, N (t) ∈ Rn×n, and
L(t) ∈ Rm×n. The major task of this paper is to find the
unknown matrix Z (t) ∈ Rm×n, making it infinitely close to
the theoretical Z∗(t).
For monitoring and controlling the solving process,

an error function is constructed as:

E
(
Z (t)

)
= M (t)Z (t)− Z (t)N (t)+ L(t), (2)

where E
(
Z (t)

)
∈ Rm×n. According to the Kronecker product

theory, we have

vec(AYB) = (BT ⊗ A)vec(Y ),

where A, B, and Y are matrixes. Besides, vec(·) symbolizes
the vectorization operation, and ⊗ stands for the Kronecker
product. Thus, E

(
Z (t)

)
can be vectorized as

e(t) =
(
In ⊗M (t)

)
z(t)−

(
NT(t)⊗ Im

)
z(t)− l(t), (3)

where In and Im are unit matrixes of size n2 and m2, respec-
tively. Moreover, e(t) ∈ Rmn, z(t) ∈ Rmn, and l(t) ∈ Rmn

denote the vectorization of E
(
Z (t)

)
, Z (t), and L(t), respec-

tively. For simplicity, (3) can be rewritten as

e(t) = A(t)z(t)− l(t), (4)

with A(t) =
(
In ⊗M (t)

)
−
(
NT(t)⊗ Im

)
∈ Rmn×mn.

B. PROPOSED IINRI ALGORITHM
Sampling the system at time instant t = kτ with τ denoting
the sampling interval, a discrete-time form of (4) can be
obtained as

ek = Akzk − lk . (5)

Thus the CNRI algorithm for solving (5) can be expressed as

xk+1 = xk − A−1k ek . (6)

Subsequently, (6) can be rearranged as

Ak
xk+1 − xk

τ
= −

1
τ
ek = ėk , (7)

where ėk is the time derivative of ek . For the purpose of
suppressing noises, an integration item is added in (7), which
can be formulated as

ėk = −
1
τ
ek − ατ

k∑
i=0

ei, (8)

of which α > 0 is a scale factor. Combining (7) and (8),
the IINRI algorithm is proposed as

xk+1 = xk − A−1k (ek + ατ 2
k∑
i=0

ei). (9)
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III. THEORETICAL ANALYSES
In this section, the accuracy and convergence of the IINRI
algorithm (9) are analyzed. Besides, the performances of the
IINRI algorithm (9) under different noisy environments are
investigated. Before these analyses, an equivalent expression
of the IINRI algorithm (9) is presented as below. Polluted by
the noise perturbation ε ∈ Rmn, (8) can be expressed as

ėk = −
1
τ
ek − ατ

k∑
i=0

ei − ε. (10)

Correspondingly, the IINRI algorithm (9) can be
rewritten as

xk+1 = xk − A−1k (ek + ατ 2
k∑
i=0

ei + τε). (11)

In the light of Taylor expansion, the expansion formulation of
(10) with respect to ėk can be expressed as

ek + τ ėk + ατ 2
k∑
i=0

ei + τε + O(τ 2) = 0. (12)

Expanding ėk as

ėk =
ek+1 − ek

τ
, (13)

(12) can be rewritten as

ek+1 + ατ 2
k∑
i=0

ei + O(τ 2)+ τε = 0. (14)

A. NOMINAL CONVERGENCE
To investigate the convergence and accuracy of the IINRI
algorithm (9), the following theorem is provided.
Theorem 1: Finding the solution of dynamic Sylvester

equation with the IINRI algorithm (9), the Euclidean norm
of error ||e||2 converges to O(τ 2) when 0 < ατ 2 < 1.

Proof: The jth subsystem of (14) without the noise ε at
the (k + 1)th time interval can be expressed as

ejk+1 + ατ
2

k∑
i=0

eji + O(τ
2) = 0. (15)

Similarly, the jth subsystem of (14) without the noise ε at the
k th time interval can be expressed as

ejk + ατ
2
k−1∑
i=0

eji + O(τ
2) = 0. (16)

Then, subtracting (15) by (16) could yield

ejk+1 = βe
j
i + O(τ

2), (17)

where β = 1− ατ 2. Based on (17), the relationship between
ek+1 and e0 can be evolved as

ejk+1 = βe
j
k + O(τ

2)

= β
(
βejk−1 + O(τ

2)
)
+ O(τ 2)

= β2ejk−1 + βO(τ
2)+ O(τ 2)

= β2ejk−1 + O(τ
2)

.

.

.

= βk+1ej0 + O(τ
2).

If 0 < β < 1, i.e., 0 < ατ 2 < 1, it has

lim
k→∞

ejk+1 = lim
k→∞

βk+1ej0 + O(τ
2) = O(τ 2). (18)

Thus,

lim
k→∞
||ek+1||2 = O(τ 2). (19)

The proof is thus complete. �
From above analyses, solving the dynamic Sylvester equa-

tion by the IINRI algorithm (9), the initial state x0 con-
verges to the theoretical solution with residual error O(τ 2).
Moreover, compared with the the CNRI algorithm (6) whose
accuracy is O(τ ) [36], the IINRI algorithm (9) can improve
the accuracy to O(τ 2).

B. THE ROBUSTNESS AGAINST CONSTANT NOISES
The constant noise, the offset, and the mean of random noise
are usually encountered in industry production. To investi-
gate the performance of the IINRI algorithm (9) under the
constant-noise perturbation, the following theorem is pro-
vided.
Theorem2: Solving the dynamic Sylvester equation by the

IINRI algorithm (9) under the constant noise ε, the Euclidean
norm of error ||e||2 converges to O(τ 2).

Proof: The IINRI algorithm (9) perturbed by the con-
stant noise ε can be formulated as

ek+1 + ατ 2
k∑
i=0

ei + O(τ 2)+ τε = 0. (20)

Similar to the Proof of Theorem 1, the difference between the
expression at the (k + 1)th and the k th time interval of the jth

subsystem of (20) can be expressed as

ejk+1 = βe
j
i + O(τ

2), (21)

which is the same as (17). Thus, the proof is omitted and
completed. �
It is necessary to emphasis that the steady-state residual

error of the IINRI algorithm (9) is independent of the constant
noise. That is to say, no matter how large the constant noise
is, the accuracy of the IINRI algorithm (9) always is O(τ 2).

C. THE ROBUSTNESS AGAINST LINEAR NOISES
To demonstrate the robustness of the IINRI algorithm (9)
against the linear noise, the following theorem is provided.
Theorem3: Solving the dynamic Sylvester equation by the

IINRI algorithm (9) with the linear noise εk = kτγ +
ω, where γ ∈ Rmn and ω ∈ Rmn are independent
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of time, the Euclidean norm of error ||e||2 converges to
||γ ||2/α + O(τ 2).

Proof: The IINRI algorithm (9) perturbed by the linear
noise kτγ can be formulated as

ek+1 + ατ 2
k∑
i=0

ei + O(τ 2)+ τ 2γ k = 0. (22)

Regarding to the linear noise, formula (17) turns into

ejk+1 = βe
j
i + O(τ

2)+ τ 2γ j. (23)

Then doing the backward iteration, ejk+1 can be approximated
as

ejk+1 = βe
j
k + τ

2γ j + O(τ 2)

= β2ejk−1 + τ
2γ j(1+ β)+ O(τ 2)

.

.

.

= βk+1ej0 + τ
2γ j(1+ β + . . .+ βk )+ O(τ 2).

= βk+1ej0 + τ
2γ j

1− βk

1− β
+ O(τ 2).

Therefore, when k →∞, it has

lim
k→∞

ek+1 =
γ j

α
+ O(τ 2). (24)

Obviously, the steady-state residual error generated by the
IINRI algorithm (9) with the linear noise is ||γ ||2/α+O(τ 2).
The proof is thus completed. �

Fortunately, for that linear noises, the high accuracy of
the IINRI algorithm (9) can be guaranteed by enlarging the
scale factor α. Besides, in the case of γ = 0, the linear
noise can be deemed as the constant noise and the accuracy
is approximately O(τ 2), which verifies the correctness of
Theorem 2.

D. THE ROBUSTNESS AGAINST BOUNDED RANDOM
NOISES
Regarding to the case perturbed by the bounded random
noises, the following theorem is provided. Theorem4: Solving
the dynamic Sylvester equation with the IINRI algorithm (9)
polluted by the bounded random noise εk ∈ (−εm, εm) where
εm is the boundary of the random noise, the Euclidean norm
of error ||e||2 is with the boundary ||εm||2/ατ + O(τ 2).

Proof: From (14), the IINRI algorithm (9) perturbed by
the bounded random noise can be expressed as

ek+1 + ατ 2
k∑
i=0

ei +O(τ 2)+ εk = 0, (25)

Similarly, (25) can be rewritten as

ejk+1 = βe
j
k + τ4ε

j
k + O(τ

2), (26)

where 4εjk = ε
j
k − ε

j
k−1(k ≥ 1). Besides, according to (25),

e1 + ατ 2e0 +O(τ 2)+ ε0 = 0. (27)

Thus, doing backward iteration based on (26) and (27) leads
to

ejk+1 = βe
j
k + τ4ε

j
k + O(τ

2)

= β
(
βejk−1 + τ4ε

j
k−1 + O(τ

2)
)
+ τ4ε

j
k + O(τ

2)

= β2ejk−1 + βτ4ε
j
k−1 + τ4ε

j
k + βO(τ

2)+ O(τ 2)

= β2ejk−1 + β
1τ4ε

j
k−1 + β

0τ4ε
j
k + O(τ

2)

.

.

.

= βk+1ej0 + β
k+1ε

j
0 + . . .+ β

0τ4ε
j
k + O(τ

2).

Utilizing the triangle inequality theorem obtains
4ε

j
k ≤ |ε

j
k | + |ε

j
k−1| ≤ 2εjm. Thus, e

j
k+1 satisfies

ejk+1 ≤ β
k+1ej0 + β

k+1ε
j
0 + 2τεjm(λ

k
+ . . .+ λ0)+ O(τ 2)

= βk+1ej0 + β
k+1ε

j
0 + 2τεjm

1− βk+1

1− β
+ O(τ 2).

Since 0 < β < 1, when k →∞, it further has

lim
k→∞

ejk+1 =
2εjm
ατ
+ O(τ 2). (28)

Subsequently, the steady-state residual error can be estimated
as

lim
k→∞
||ek+1||2 =

2||εm||2
ατ

+ O(τ 2). (29)

The proof is thus completed. �

IV. SIMULATION VERIFICATON
In this part, numerical simulations are performed to demon-
strate the convergence process of the unknown matrix Z (t)
and the residual error ||e(t)||2. Besides, comparison simula-
tions are performed between the CNRI algorithm (6) and the
IINRI algorithm (9), without or with noises, illustrating the
higher accuracy and the noise-suppressing property of the
IINRI algorithm (9). The coefficient matrixes of the dynamic
Sylvester equation are set as

M (t) =
[

sin(t) cos(t)
− cos(t) sin(t)

]
,

N (t) =
[
0.1 sin(t) 0

0 0.2 cos(t)

]
,

and

L(t) =
[
0.1 sin2(t)− 1 −0.2 cos2(t)
0.1 sin(t) cos(t) 0.2 sin(t) cos(t)− 1

]
.
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FIGURE 1. Simulation results solved by the IINRI algorithm (9) and the CNRI algorithm (6) without noises. (a) Dynamic of computing and
theoretical solution. (b) The residual error synthesized by the IINRI algorithm (9) with four random initial states. (c) Residual error with τ = 0.01 s.
(d) Residual error with τ = 0.001 s.

In addition, the Sylvester equation example satisfies the
unique solution condition, whose theoretical solution can be
expressed as

Z (t) =
[
sin(t) − cos(t)
cos(t) sin(t)

]
.

A. SIMULATIONS WITHOUT NOISES
Fig. 1(a) illustrates the dynamic of computing solution with
the blue solid curve, while the theoretical solution is depicted
with the red dash-dot curve. The computing solution can well
trace the theoretical solution, which indicates the efficiency
of the IINRI algorithm (9). To verify the universal of the
IINRI algorithm (9), the simulations are performed from
four different random initial states. Subsequently, the residual
errors are plotted in Fig. 1(b). All residual errors converge to
about 10−4. Moreover, Fig. 1(c) and (d) depict the residual
error synthesized by the CNRI algorithm (6) and the IINRI

algorithm (9) with β = 0.9 for different sampling intervals
τ = 0.01 and τ = 0.001, respectively. Obviously, the resid-
ual error synthesized by the IINRI algorithm (9) changes
in an O(τ 2) manner, which verifies the correctness of the
theoretical analyses provided before. Besides, comparing to
the CNRI algorithm (6) whose accuracy is O(τ ), the IINRI
algorithm (9) possesses higher accuracy indicating its
superiority.

B. SIMULATIONS WITH VARIOUS NOISES
For the constant noise, Fig. 2(a) and (b) show the residual
error with the sampling interval τ = 0.01 and α = 103

under different constant-noises ε = 1 and ε = 10
respectively. Besides, as the theoretical analyses indicate,
the values of residual error synthesized by the IINRI
algorithm (9) are almost the same as in Fig. 2(a) and (b).
Thus, the IINRI algorithm (9) can suppress the constant noise
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FIGURE 2. Simulation results solved by the IINRI algorithm (9) and the CNRI algorithm (6) with constant noises. (a) Residual error with τ = 0.01 s
and ε = 1. (b) Residual error with τ = 0.01 s and ε = 10. (c) Residual error with τ = 0.001 s and ε = 10.

FIGURE 3. Residual error synthesized by the IINRI algorithm (9) and the CNRI algorithm (6) under linear noise perturbation. (a) Residual error with
τ = 0.01 s, α = 100 and γ = 1. (b) Residual error with τ = 0.01 s, α = 100 and γ = 10. (c) Residual error with τ = 0.01 s, α = 1000 and γ = 1.

FIGURE 4. Residual error synthesized by the IINRI algorithm the (9) and the CNRI algorithm (6) under bounded random noise perturbation. (a) Residual
error with τ = 0.01 s, α = 100 and εm = 0.05. (b) Residual error with τ = 0.01 s, α = 100 and εm = 0.5. (c) Residual error with τ = 0.01 s,
α = 1000 and εm = 0.05.

regardless of its value. However, the steady-state residual
error synthesized by the CNRI algorithm (6) is proportional
to the value of the constant noise. Thus, the performance
of the CNRI algorithm (6) can be degraded by the constant
noise. Moreover, as shown in Fig. 2(a) and (c), the residual
error satisfies changing in an O(τ 2) manner, which verifies
Theorem 2.

With the linear-noise perturbation, as Fig. 3 evidence,
the IINRI algorithm (9) is of strong robustness and the

residual error would converge to a stable state while resid-
ual error synthesized by the CNRI algorithm (6) is diver-
gent. Among Fig. 3, Fig. 3(a) illustrates the convergence of
residual error with linear noise ε = kτ and α = 100.
From Fig. 3(a) to (b), the slope of the linear noise increases
from 1 to 10, the steady-state error of the IINRI algorithm (9)
is ten times larger than before. Fortunately, increasing α can
suppress the noise. As depicted in Fig. 3(c), by increasing α,
the steady-state residual error can be suppressed efficiently.
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Finally, the robustness of the IINRI algorithm (9) against
the bounded random noise is investigated. Fig. 4(a) and (b)
demonstrate the performance with bounded random noises
ε ∈ [−0.05, 0.05] and ε ∈ [−0.5, 0.5]. With a larger random
noise boundary, the accuracy of the IINRI algorithm (9)
would degrade. As illustrated in Fig. 4(c), the convergence
performance of the IINRI algorithm (9) can be improved by
increasing α and the accuracy can reach to 10−3.

V. CONCLUSION
This paper has proposed an IINRI algorithm to solve the
dynamic Sylvester equation by inserting the integration
feedback of the residual error. According to the theoretical
analyses and simulation results, the IINRI algorithm is of
the strong robustness and high accuracy under various noise
perturbation. Especially for the constant noise, the noise
effect can be eliminated no matter how large the constant
noise is. Regarding the linear noise and the bounded random
noise, the IINRI algorithm is of convergence and higher
accuracy compare to the CNRI algorithm. Thus, the IINRI
algorithm is a superior and powerful method to solve the
dynamic Sylvester equation, especially in the noisy work-
ing condition. What’s more, solving the dynamic Sylvester
equation is transformed to a zeroing finding problem in this
paper, which indicates that the proposed IINRI algorithm
is a potential approach for solving other zeroing finding
problems e.g. optimization problem, nonlinear equation and
other matrix equations, which can be the future directions of
the IINRI algorithm.
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