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ABSTRACT The creep-fatigue resistance of turbine rotor seriously affects the reliability performance and
service lifetime of aircraft engine. Creep-fatigue reliability assessment is an effective measure to quantify
the uncertain creep-fatigue damage and evaluate the creep-fatigue reliable life for turbine rotor. To improve
the modeling accuracy and simulation efficiency of creep-fatigue reliability assessment, a multi-surrogate
collaboration approach (MSCA) is proposed by absorbing the strengths of the proposed dynamic neural
network surrogate (DNNS) into distributed collaborative strategy. The creep-fatigue reliability assessment of
a typical turbine rotor is regarded as one case to estimate the presentedMSCAwith respect to the fluctuations
of multi-physical variables and the variabilities of multi-model parameters. The assessment results reveal that
the creep-fatigue reliable life of turbine rotor under reliability degree of 0.998 7 is 629 cycles, and the fatigue
strength coefficient and holding creep time play a leading role on creep-fatigue reliable life since their effect
probabilities of 27% and 19%, respectively. Comparison of variousmethods (directMonte Carlo simulation,
response surface, neural network surrogate, DNNS) shows that the presented MSCA holds high efficiency
and accuracy in creep-fatigue reliability assessment of turbine rotor.

INDEX TERMS Creep-fatigue life, reliability assessment, turbine rotor, surrogate model, neural network.

I. INTRODUCTION
Modern aircraft engine tends to require high thrust-weight-
ratio and superior flight safety performance [1], [2]. As a criti-
cal hot-section component of aircraft engine, the turbine rotor
is often subjected to significant mechanical stresses under
long-term harsh high-temperature, high-pressure and high-
speed conditions [3], [4]. Consequently, the structural failure
and integrity damage of turbine rotor usually pose a severe
threat to reliability performance and flight security of aircraft
engine [5], [6]. Creep-fatigue coupling failure is a primary
failure mode, generated by the nonlinear interaction effects
of low cycle fatigue damage and high-temperature creep
damage, and seriously affects the reliability performance
and restricts the service lifetime of turbine rotor [7], [8].
Therefore, it is crucial to effectively assess turbine rotor
creep-fatigue resistance to cater for the extraordinary design
requirement of aircraft engine.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Extensive efforts have been performed to predict the
creep-fatigue damage and evaluate the creep-fatigue life
by deterministic analyses [9]–[12], which assesses the
structural integrity of turbine rotor with a reserved ser-
vice lifetime. In fact, however, creep-fatigue life shows a
stochastic behavior due to the following uncertain factors:
material variabilities, load fluctuations, dimension varia-
tions and modeling uncertainties [13]–[15]. In this case,
to quantify these multi-uncertainties and evaluate creep-
fatigue reliable life, creep-fatigue reliability assessment were
emerged, including strain-life fatigue modeling and simula-
tion [16], [17], anti-fatigue reliability assessment [18], [19],
creep-fatigue sensitivity analysis [20], failure-based proba-
bilistic fatigue modeling [21], and probabilistic fatigue life
estimation with DARWIN andAFGROW software [22], [23].
Among them, the dispersions or variabilities in fatigue life
assessment were adequately explored, and the effectiveness
of predicting fatigue reliable life were proven as well. How-
ever, it appears that these studies require thousands of nonlin-
ear finite element (FE) calculations in evaluating the fatigue
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reliable life due to the application of the direct Monte Carlo
simulation approach [24], [25]. For complex turbomachinery
structures like turbine rotor, the direct Monte Carlo simu-
lation approach is destinated to be unpractical owing to its
huge computing amount and unacceptable computing effi-
ciency [26]. As a result, to simplify calculation tasks and
improve computing efficiency, it is urgently necessary to
present a high-efficiency and high-accuracy approach for
creep-fatigue reliability assessment of turbine rotor.

Under such circumstances, as valuable alternatives to
direct Monte Carlo simulation, surrogate model methods
were developed to lessen excess simulation tasks and widely
employed into reliability assessment, sensitivity analysis
and probabilistic design [27]–[30]. Typical surrogate models
involve polynomial response surface [31], [32], support vec-
tor regression [33], [34], Kriging surrogate (KS) [35], [36]
and neural network surrogate (NNS) [37]–[39]. By inte-
grating flexible network topology and strong nonlinear
fitting ability, NNS holds the potentials to improve the
computational efficiency in performing complex reliability
assessment issues. Nevertheless, for the time-varying and
nonlinearity traits in the creep-fatigue reliability assessment
of turbine rotor [40], [41], the usual NNSmethod is still insuf-
ficient to obtain satisfactory efficiency and accuracy. To the
best of authors’ knowledge, two key factors contribute to the
defects: (1) NNS model can only approximates the perfor-
mance function at a certain instant other than the whole-time
domain, which consumes unaffordable computational cost in
fitting each time-varying creep-fatigue responses. (2) NNS
model is hard to address the complex multi-level problems
(i.e., creep-fatigue reliability assessment) with high nonlin-
earity, which raises approximation errors and unsatisfactory
accuracy.

To address the above two issues, this paper pro-
poses a multi-surrogate collaboration approach (MSCA) to
enhance efficiency and accuracy of creep-fatigue reliability
assessment. In respect of the dynamic process transfor-
mation ability of time-varying traits for extremum selec-
tion mechanism [42], [43], great generalization ability
of designing training cost function for Bayesian regular-
ization (BR) theory [44], [45] and the global nonlinear
convergence ability of optimal parameters for variable met-
ric (VM) algorithm [46], [47], a dynamic NNS (DNNS)
model with corresponding BR-VM error control technique is
constructed. Meanwhile, the MSCA mathematical modeling
and creep-fatigue reliability assessment theory are developed
by employing the distributed collaborative strategy [48], [49]
to further lessen nonlinearity and complexity of DNNS
model. The presentedMSCA is validated by the creep-fatigue
life reliability assessment of a classic turbine rotor.

The paper is organized as follows: In Section 2, the authors
previously present the DNNS modeling, the MSCA mathe-
matical modeling and corresponding creep-fatigue reliability
assessment theory. In Section 3, with the developed MSCA,
we perform the creep-fatigue life reliability assessment of
turbine rotor in respect of the multi-source uncertainties of

multi-physical and multi-model parameters. Some conclu-
sions are summarized in Section 4.

II. MULTI-SURROGATE COLLABORATION APPROACH
A. DYNAMIC NEURAL NETWORK SURROGATE
In this subsection, dynamic neural network surrogate (DNNS)
model is first proposed to address the time-varying and
nonlinear problems. By integrating of the feedforward neural
network to build the network topology structure, extremum
selection mechanism to simplify the time-varying training &
testing samples, and BR-VM error control technique to train
the optimal network parameters, the DNNS ismathematically
modeled. Note that the DNNS model is named by its model-
ing traits and employment scopes.

For a reliability assessment system with the time-varying
and nonlinear traits, the output responses of the assessment
system are dynamic stochastic processes, which usually give
rise to significant computational errors and expensive sim-
ulation cost in approximating each dynamic response.To
solve the computing dilemma, a dynamic neural network
surrogate (DNNS) method is proposed by transforming the
multi-dimensional dynamic processes into one-dimensional
maximum response with an extremum selection mecha-
nism [42], [43] and fitting the black-box nonlinear rela-
tionships between input variables and maximum response
with a neural network surrogate (NNS) model. Owing to the
extremum selection mechanism only considers a maximum
value rather than all of dynamic responses, the computational
complexity of DNNS method can be effectively reduced.
Moreover, due to the strong nonlinear fitting ability of NNS
model, the computational accuracy of DNNS method are
enhanced. The DNNS modeling is illustrated as follows:

Within a certain time domain [0, T], for the j-th input
random variable xj(t) (xj(t) ∈ Rn) of assessment system,
the corresponding output response is assumed as Yj[xj(t)]
(Yj[xj(t)] ∈ R). On account of extremum selection mecha-
nism in Fig. 1, the maximum response Yj,max[xj(t)] of output
responses series is indicated as

Y j,max
[
xj (t)

]
= Maxj

{
Yj
[
xj (t)

]
: j = 1, 2, · · · , l

}
(1)

Considering the j-th generated samples {xj(t),
Yj,max[xj(t)]}, the output response curve Y (x) of assessment
system can be fitted by a nonlinear fitting function f (x),
which maps a point in the space Rn onto the space R

Y (x) = f (x) =
{
xj (t)

Rn→R
−→

nonlinear fit
Y j,max

(
xj (t)

)}
(2)

Nonlinear fitting function f (x) is a key factor to gain valid
mapping relationships between input random variables and
output maximum response, since a good-performance f (x)
is beneficial to enhance computing efficiency and accuracy.
In this case, for the certain input random variables x(t) and
output maximum response Ymax[x(t)], a dynamic neural net-
work surrogate as shown in Fig. 2 with time-varying process-
ing ability and related error control technique is adopted as

39862 VOLUME 8, 2020



L.-K. Song, G.-C. Bai: MSCA for Creep-Fatigue Reliability Assessment of Turbine Rotor

FIGURE 1. Extremum response mechanism.

FIGURE 2. DNNS modeling.

the nonlinear fitting function, i.e.,

f (x) = f2

 l∑
j=1

ωjk f1

(
n∑
i=1

ωijxi (t)+ aj

)
+ ak

 (3)

where f1(·), f2(·) represents the ‘tansig’ and ‘purelin’ inspirit
functions in hidden layer and output layer, respectively; ωjk
the connection weight between the j-th neuron in input layer
and the k-th neuron in hidden layer;ωij the connection weight
between the i-th neuron in hidden layer and the j-th neuron in
output layer; aj the j-th activation threshold of hidden layer;
ak the k-th activation threshold of the output layer; n, l the
neuron number of input layer and hidden layer, respectively.

The effectiveness of the aforementioned DNNS model
largely depends on the undetermined parameters, i.e., connec-
tion weights ω and activation thresholds a. Once the optimal
undetermined parameters are obtained, the unbiased regres-
sion of output maximum response is acquired, and thereby the
high-fidelity assessment is ensured. Therefore, the problem
of dynamic surrogate modeling is transformed to find the
optimal solution ζ∗

ζ ∗ = argmin
ζ
E (x, ζ ) (4)

where ζ = {ω, a} indicates the vector representation of
undetermined parameters; E(·) the training cost function.

For obtaining the optimal undermined parameters ζ∗ and
enhancing the approximation performance of DNNS model,
we present a BR-VM error control technique, which adopts
Bayesian regularization (BR) theory to design training cost
function for avoiding overfitting problems and variable met-
ric (VM) algorithm to acquire the optimal undetermined
parameters for preventing premature convergence.

To train for the optimal undetermined parameters and
evaluate the generalization accuracy of fitted DNNS model,
it is vital to design suitable training cost function to provide
appropriate direction information in training process. In gen-
eral, the training cost function Ep( ζ ) in surrogate modeling
is indicated as

EP (ζ ) = ‖e (ζ )‖22 (5)

where e(·) is training error function; || · ||2 2-norm function.
Supposing that the undetermined parameters ζ in k-th

iteration is ζ k and it changes little between two iterations,
the training error function e( ζ ) can be approximately eval-
uated at ζ k position by Taylor series expansion, then the
training cost function Ep( ζ ) is converted into

EP (ζ ) ≈
∥∥∥e ((ζ (k))+ J (ζ (k)) (ζ (k+1) − ζ (k)))∥∥∥2

2
(6)

where J (·) denotes the Jacobian matrix; ζ (k+1) the undeter-
mined parameters ζ in (k + 1)-th iteration.
In fact, considering the training data often contain noise

information, the overfitting problems would happen if
directly using the above training cost function. In this case,
it is inevitable to increase modeling complexity and degrade
the generalization performance of the fitted DNNS model.
To address this problem, we redesign the training cost func-
tion by employing BR theory, which can reduce the data-
noise influence by decreasing feature dimension of input
variables [44]. With minor values of undetermined param-
eters, the network structure of DNNS model is converting
much simpler, and the overfitting problems are also pledged
to be avoided. To perform the BR-based training cost function
design, we first introduce the BR function EI (ζ ) as

EI (ζ ) =


EL (ζ ) =

L∑
l=1

(∣∣ζ (k)∣∣) , Lasso scheme

ER (ζ ) =

∥∥∥∥ R∑
r=1

(
ζ (k)

)∥∥∥∥2
2
, Ridge scheme

(7)

where EL(ζ ), ER(ζ ) represent the BR functions obtained by
Lasso and Ridge schemes, respectively.

Compared with Lasso scheme reducing the majority of
variable features to 0, Ridge scheme only decreases the
minority of irrelevant variable features to 0 while the rel-
evant variable features are still included. Considering that
the Ridge scheme can describe more variable features than
Lasso scheme, we adopt the Ridge scheme to creep-fatigue
reliability assessment problem, because the output response
of reliable creep-fatigue life is influencing by various input
variables such as material properties, physical loads, model
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parameters, etc. Therefore, the BR-based training cost func-
tion EBR is introduced as

EBR (ζ ) = αEP (ζ )+ βER (ζ )

s.t. ER (ζ ) =

∥∥∥∥∥
R∑
r=1

(
ζ (k)

)∥∥∥∥∥
2

2

(8)

where α, β indicate the regularization factors, which are used
to balance the training objective of fitting accuracy and the
reduction objective of model complexity.

According to Eq. (6), the BR-based training cost function
EBR is rewritten as

EBR (ζ ) = α
∥∥∥e ((ζ (k))+ J (ζ (k)) (ζ (k+1)−ζ (k)))∥∥∥2

2

+β

∥∥∥∥∥
R∑
r=1

(
ζ (k)

)∥∥∥∥∥
2

2

(9)

To efficiently resolve the nonlinear optimal problem
in Eq. (4) and obtain the precise undetermined param-
eters of DNNS model, an optimal searching algorithm
with high-speed and good-convergence virtues is necessarily
required. As a super-linear convergence algorithm, VM algo-
rithm possesses fast searching rate and high convergent accu-
racy in nonlinear optimization problems [46]. Therefore,
in this study, the VM algorithm is adopted to find the optimal
parameters of DNNS model. The basic thought of VM algo-
rithm is to reduce the operating tasks and executive complex-
ity by approximating positive definite matrix rather than the
complicated Hessian matrix inversion. In this case, we first
introduce the metric matrix of VM algorithm as

∇
2EBR(ζ (k+1)) ≈

ζ (k+1)−ζ (k)

∇EBR
(
ζ (k+1)

)
−∇EBR

(
ζ (k)

) (10)

Supposing that µ(k)
= ζ (k+1) − ζ (k), ν(k) = ∇EBR

(ζ (k+1))− ∇EBR (ζ (k)) and Hessian matrix H(k+1)
= ∇

2EBR
(ζ (k+1)), then the (k+1)-th metricH(k+1) can be obtained by
DFP formula [47], i.e.,

H(k+1)
= H(k)

+
µ(k)µ(k)T

µ(k)T ν(k)
−
µ(k)ν(k)TH(k)

µ(k)T ν(k)

−
H(k)ν

(k)
µ(k)T

µ(k)T ν(k)
(11)

For a given searching direction d(k) and step length δ(k),
the updating formula of VM algorithm can be deduced as

ζ (k+1) = ζ (k) + d(k)δ(k)

s.t. d(k) = −H(k+1)
∇EBR

(
ζ (k)

)
(12)

In VM updating process, optimal step length δ(k) in
each iteration should be acquired to guarantee the contin-
ual decrease of training cost function EBR( η). In this case,
it results from Armijo-Goldstein criteria and strong Wolfe

FIGURE 3. Flow chart of reliability assessment with DNNS modeling.

non-exact line searching [50], we further introduce the iter-
ation formula of optimal step length δ(k) asEBR

(
ζ (k+1)

)
≤ EBR

(
ζ (k)

)
+ ξδ(k)∇EBR

(
ζ (k)

)T d(k)
ς

∣∣∣∇EBR (ζ (k))T d(k)∣∣∣ ≤ ∣∣∣∣∇EBR (ζ (k) C δ(k)d(k))T d(k)∣∣∣∣
(13)

in which control factor ξ ∈ (0, 0.5), ς ∈ (ξ , 1).
By performing the VM algorithm, the undetermined

parameters ζ ∗ can be acquired, and the DNNS model is
established consequently. Noticeably, the presented BR-VM
error control technique is conducive to reduce the comput-
ing complexity and enhance the approximating accuracy of
DNNS model. By fusing the BR-VM error control technique
into DNNS modeling, the flow chart of reliability assessment
is summarized in Fig. 3.

B. MULTI-SURROGATE COLLABORATION APPROACH
In this subsection, multi-surrogate collaboration approach
(MSCA) is developed by absorbing the strength of DNNS
model into distributed collaborative strategy. We will study
the MSCA including basic theory and mathematical model.

Creep-fatigue reliability assessment refers to multi-level
issues (i.e., stress/strain prediction level and creep-fatigue
life assessment level, etc.), which brings in time-wasting
simulation tasks and huge computing complexity in pro-
gram execution. Aim at the multi-level problems, the dis-
tributed collaborative strategy was developed by Song and
Bai to enhance the computing efficiency and accuracy.
In multi-failure probabilistic analysis and low cycle fatigue
life prediction, the strategy had been validated to hold fast
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speed and acceptable precision [48], [49]. Along with the
heuristic strategy, we develop a multi-surrogate collaboration
approach with respect to the DNNS model and distributed
collaborative strategy, to address the strong-nonlinearity and
high-complexity issues and enhance computing efficiency
in creep-fatigue reliability assessment. The basic thought of
MSCA is summarized as:

(1) Distribute the entire complex multi-level model into
several simple single-level models (sub-models) in respect of
the prediction layers and response traits. And each sub-model
is dependent each other.

(2) Realize the deterministic analyses with consideration
of multi-physical parameters and multi-model parameters,
to determine the creep-fatigue position as sampling location.

(3) Draw finite input variable & output response samples
by adopting Latin hypercube sampling technique and FE
simulations. The sample set is regarded as training & testing
data for DNNS modeling.

(4) Build distributed DNNS models by the training & test-
ing data and the BR-VM error control technique. With per-
forming distributed DNNS simulations, the statistical traits
of distributed output responses are obtained.

(5) Regard the distributed output responses and multi-
model parameters as input variables, creep-fatigue life as
output response, the collaborative DNNS model is built.

(6) Retrieve the distribution characteristics of creep-fatigue
life by executing the collaborative DNNS simulations.

Accompanying with the heuristic distributed process and
collaborative process, the presentedMSCA divides the whole
complex multi-level surrogate modeling into the several sim-
ple multi-level sub-modeling, which is conducive to reduce
the nonlinearity of reliability assessment and thus brings
convenience for enhancing efficiency and accuracy.

Supposing that the reliability assessment system involves
h levels, the complicated multi-level problem is converted to
a series of simple single-level problems by employing the
distributed collaborative strategy, the input samples of the
p-th level x(p) and the corresponding output response Y(p) is

Y
(p)
= f

(
x(p)

)
p = 1, 2, · · · , h

x(p) =
[
x(p)1 , x(p)2 , · · · , x(p)n

]T (14)

According to the developedDNNSmodel shown in Eq. (3),
the distributed DNNS model under the p-th level is

Ỹ (p) = f2

 l∑
j=1

ω̃
(p)
jk f1

(
n∑
i=1

ω̃
(p)
ij x

(p)
i (t)+ ã(p)j

)
+ã(p)k

 (15)

where ω̃(p)
jk , ω̃

(p)
ij , ã

(p)
j and ã(p)k are optimal solutions of training

function in the p-th distributed DNNS model.
Because of the distributed output responses

{Ỹ
(p)
}hp = 1 as input variables x̃, the collaborative DNNS

model with multiple levels is deduced as
Ỹ = f2

[
l∑
j=1
ω̃jk f1

(
n∑
i=1
ω̃ijx̃i (t)+ ãj

)
+ ãk

]
x̃ =

{
Ỹ
(p)
}
p = 1, 2, · · · , h

(16)

where ω̃jk , ω̃ij, ãj and ãk are optimal solutions of training
function of the collaborative DNNS model.

From the above analysis, the DNNS (Eq. (3)) model with
many levels is divided into a series of distributed DNNS
sub-models (Eqs. (14)-(15)) and one collaborative DNNS
sub-model (Eq. (16)). We call the DNNS modeling with
distributed collaborative strategy as multi-surrogate collab-
oration approach, which is suitable for complex multi-level
reliability assessment problems.

C. CREEP-FATIGUE RELIABILITY ASSESSMENT THEORY
In this subsection, the creep-fatigue reliability assessment
theory is presented by employing the proposed MSCA.
We will investigate the creep-fatigue reliability assessment
including creep-fatigue reliable life prediction and the related
parameter sensitivity analysis.

Creep-fatigue reliability assessment is to evaluate the over-
all creep-fatigue reliability index of complex structure and
to identify the influencing extent of uncertain parameters on
structural safety. In single-level distributed analysis, assum-
ing that the allowable response on in p-th level is [Y (p)], the
p-th distributed limit state function g(p)(x) based on the p-th
distributed DNNS is

g(p) (x) =
[
Y (p)

]
−f2

 l∑
j=1

ω̃
(p)
jk f1

(
n∑
i=1

ω̃
(p)
ij x

(p)
i (t)+ã(p)j

)
+ã(p)k

 (17)

To screen insignificant information and rank the impor-
tance of uncertain parameters, the distributed sensitivity
analysis by describing the variables influence degree on
the failure probability. For variables with higher sensitivity
degree, changes in their distribution parameters will lead to a
greater change in the failure probability, and vice versa. With
massive input variables and output responses in p-th level,
the distributed sensitivity degrees of input variables on failure
probability are developed by

S(p) = µ

Lf [g(p) (xl)]
(
x(p)ij − µ

(
x(p)i

))
ν
(
x(p)i

)


s.t. Lf
[
g(p) (xl)

]
=

{
1, g(p) (xl) ≤ 0
0, g(p) (xl) > 0

(18)

where x(p)il is the i-th input vector of l-th data set under p-th
level; Lf [g(p)(xl)] the logic function of failure domain under
p-th layer; µ(·) the mean value function; ν(·) the variance
value function. Note that input variables with higher sensi-
tivity will pose larger impacts on failure probability, and vice
versa.
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FIGURE 4. Assessment framework of creep-fatigue reliability.

In the multi-level collaborative analysis, the allowable out-
put structural response is presuming as [Y ], then the collab-
orative limit state function based on the collaborative DNNS
is obtained as

g (x) = [Y ]−f2

 l∑
j=1

ω̃jk f1

(
n∑
i=1

ω̃ijx̃i (t)+ ãj

)
+ãk

 (19)

Similarly, based on overall input variables and output
responses, the collaborative sensitivity degrees of input vari-
ables on failure probability are introduced as

S = µ
(
Lf [g (xl)] (xil − µ (xi))

ν (xi)

)
s.t. Lf [g (xl)] =

{
1, g (xl) ≤ 0
0, g (xl) > 0

(20)

Based on the collaborative DNNS model and the above
simulated samples in sensitivity analysis, the structural
creep-fatigue reliability is calculated as

R =
1
N

N∑
i=1

Lr [g (xl)] =
Nr
N

s.t. Lr [g (xl)] =

{
1, g (xl) ≤ 0
0, g (xl) > 0

(21)

where Lr [g(xl)] is the logic function of whole secure domain,
it either to be 1 when g(xl) ≥ 0, or to be 0 when g(xl) < 0;
Nr , N the number of secure and total points, respectively.
According to creep-fatigue reliability assessment theory,

the complex creep-fatigue reliability assessment is split into
a series of distributed analyses and a collaborative anal-
ysis, the efficiency of creep-fatigue reliability assessment
is promising to be enhanced by alleviating the simulation
burdens in each analysis and conducting automatic parallel
calculations on several devices. The assessment framework
of creep-fatigue reliability with the presentedMSCA is drawn
in Fig. 4.

III. CREEP-FATIGUE RELIABILITY ANALYSIS OF TURBINE
ROTOR
In the extreme service environment of high thermal gradi-
ent, large gas pressure and strong centrifugal force, turbine
rotor endure huge tensile stress and creep-fatigue damage.
Moreover, the material variability, load fluctuation andmodel
uncertainty bring about large discreteness for turbine rotor
creep-fatigue life. In this study, to predict creep-fatigue life
and evaluate reliability performance of turbine rotor and even
whole-body aircraft engine, the creep-fatigue reliability anal-
ysis was discussed by using the presented MSCA. It should
be noted that all computations are performed on an Inter(R)
Core(TM) Desktop Computer (i7-9700K CPU 3.6 GHz and
16 GB RAM).

A. MATERIAL PREPARATIONS
A typical turbine rotor in aircraft engine is displayed in Fig. 5.
Because of the high temperature and high velocity gas from
main chamber combustion and high rotor centrifugal force
from inertia force field, by regarding the upper edge of turbine
disk as inside wall, the inner surface of turbine casing as
outside wall, and the turbine blade surface as multi-physical
interaction (MPI) surface, we establish the multi-physical
FE model with consideration of the nonlinear interaction
effects of fluid field, thermal field and structural field. The
multi-physical FE model [48] of turbine rotor is shown
in Fig. 6. Considering the multi-physical loads of turbine
rotor are constantly changing in flight mission cycle, we con-
sider the body temperature and rotor speed as time-varying
loads in this study. The time-varying loads spectrum [35] of
turbine rotor are displayed in Fig. 7.

To quantify the random uncertainties of material properties
and time-varying loads, the multi-physical parameters (i.e.,
rotor speed ω, body temperature T , gas velocity v, material
density ρ, thermal transfer coefficient h and thermal expan-
sion coefficient κ) are regarded as the multi-physical random
variables. The distribution characteristics of multi-physical
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FIGURE 5. Sketch of turbine rotor.

FIGURE 6. The MPI sketch of turbine rotor.

FIGURE 7. Time-varying loads spectrum of turbine rotor.

parameters are shown in Table 1. Likewise, to measure the
random uncertainties of creep-fatigue life models involve
Masson-Coffin fatigue model [51], Larson-Miller creep
model [52] and Mao’s creep-fatigue model [53], [54],
the multi-model parameters (i.e., fatigue strength exponent
b, fatigue ductility exponent c, fatigue strength coefficient
σ ′f , fatigue ductility coefficient ε′f, the holding creep time
t , and the creep-fatigue parameter θ1 and creep-fatigue

FIGURE 8. Distributions of maximum stress and strain range.

parameter θ2) are considered as the multi-model random vari-
ables. The distribution characteristics of multi-model param-
eters are listed in Table 2. Note that the fatigue ductility
coefficient ε′f obeys lognormal distribution and other random
variables obey normal distribution, all of selected random
variables are reciprocally independent.

B. DETERMINISTIC ANALYSES
With importing the mean values of multi-physical param-
eters from Table 1 into the FE model, the multi-physical
FE simulation analysis is performed with respect to the
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TABLE 1. Distribution characteristics of multi-physical parameters.

TABLE 2. Distribution characteristics of multi-model parameters.

FIGURE 9. Prediction result of distributed DNNS-1 model.

multi-physical coupling effects of fluid loads, thermal loads
and structural loads. According to the large deformation
theory and stress/strain constitutive relationship, the deter-
ministic stress-strain responses (i.e., maximum stress σmax
and strain range 1εt) of turbine rotor are obtained as drawn
in Fig. 8. From the multi-physical FE simulation, we observe

FIGURE 10. Prediction result of distributed DNNS-2 model.

that the creep-fatigue damage appears at the blade root site
in back surface. Hence, the responses in blade root site are
selected as the output responses to perform the subsequent
creep-fatigue assessments. According to the max-stress cycle
0-σmax-0, the mean stress σm and strain range 1εt of blade
root site are obtained as 352.49 MPa and 4.32 × 10−3 m/m,
respectively.
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FIGURE 11. Prediction result of collaborative DNNS model.

Similarly, with inputting the mean values of multi-model
parameters from Table 2 into the creep-fatigue prediction
models (i.e., Masson-Coffin model, Larson-Miller model and
Mao’s creep-fatigue model), the creep-fatigue life analysis
is executed with regard to the interaction effects of fatigue
damage and creep damage, the deterministic creep-fatigue
life of the turbine rotor is obtained as 1386 cycles. Note that
the computing device has took 203 seconds to perform one-
time multi-physical FE simulation, which is also illustrates
that it is unaffordable to repeatedly simulate thousands of
multi-physical FE simulations.

C. MSCA MODELING
To alleviate the computational burdens and enhance com-
puting accuracy of creep-fatigue reliability assessment,
we divide the ‘big’ creep-fatigue reliability assessment mod-
eling with strong-nonlinearity and large-dynamicity into a
‘simple’ distributed stress/strain modeling and a ‘simple’ col-
laborative creep-fatigue modeling, by the presented MSCA
modeling. The detailed modeling procedures are summarized
as follows:

(1) Distributed stress/strain modeling: Based on the statis-
tical characteristics of multi-physical parameters in Table 1,

FIGURE 12. Mean stress curve of turbine rotor.

we extract 100 groups of input multi-physical parameters
into FE simulation, the corresponding output responses of
mean stress σm and strain range 1εt are obtained. To estab-
lish the optimal DNNS model and validate its generaliza-
tion performance, the 100 groups of multi-physical variables
and stress/strain responses are equally divided into training
samples and testing samples. Based on the proposed BR-VM
training algorithm, the optimal distributed DNNS models for
σm and 1εt (termed as distributed DNNS-1 model and dis-
tributed DNNS-2model) are constructed by training samples,
and its generalization abilities are tested by testing samples.
Through comparing the real outputs with these of training
samples and testing samples, the prediction results of dis-
tributed DNNS-1 model and distributed DNNS-2 model are
drawn in Figs. 9-10, respectively.

(2) Collaborative creep-fatigue modeling: based on
the statistical characteristics of multi-model parameters
in Table 2, we consider 180 groups of multi-model param-
eters and the simulated σm and 1εt as input variables, the
related creep-fatigue life Ncf can be retrieved by adopting
creep-fatigue prediction models. Similarly, by dividing the
180 groups of multi-model variables and creep-fatigue life
into twomutually exclusive samples set (i.e., training samples
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FIGURE 13. Strain range curve of turbine rotor.

and testing samples), the optimal collaborative DNNS model
for Ncf is established by training samples and validated by
testing samples. With comparing the real outputs with these
of training samples and testing samples, the prediction results
of collaborative DNNS is drawn in Fig. 11.

As shown in Figs. 9-11, we observe that even if the
stress/strain responses and creep-fatigue life of turbine rotor
possess large dispersion, the built MSCA models (i.e.,
distributed DNNS-1, distributed DNNS-2 and coordinated
DNNS) still can fit each training & testing point with almost
zero approximation or generalization errors. Therefore, based
on the great approximation and generalization performances,
the presented MSCA modeling is suitable to perform the
creep-fatigue reliability analysis of turbine rotor.

D. CREEP-FATIGUE RELIABILITY ANALYSIS WITH MSCA
Based on the statistic traits of multi-physical parameters,
we extract 10 000 groups of input variables by Latin hyper-
cube sampling technique. By importing the input variables
into the distributed DNNS models, the corresponding mean
stress σm and strain range 1εt responses are obtained,
whose distribution histograms are depicted in Figs. 12-13.
According to the stress/strain sensitivity analysis model in

FIGURE 14. Sensitivities and effect probabilities on stress/strain.

Eqs. (17-18) and the 10 000 groups of samples, we acquire
the sensitivities and effect probabilities of input variables
on stress/strain responses, which are illustrated in Fig. 14.
Note that the sensitivities of input variables are signed where
positive values indicate the positive correlation of output
response with input variables, and vice versa.

As depicted in Figs. 12-13, the mean stress and strain range
of turbine rotor nearly obey normal distributions. As revealed
in Fig. 14, rotor speed and body temperature are the main
influential factors on mean stress and strain range, the corre-
sponding effecting probabilities of which are 39 %, 30 % for
mean stress and 39 % and 27 % for strain range. Therefore,
rotor speed and body temperature should be given priority in
turbine rotor stress/strain design.

Based on the multi-model parameters in Table 2 and the
simulated stress/strain responses as input variables, 10 000
collaborative DNNS simulations are executed to obtain the
creep-fatigue life Ncf, whose distributing curve are drawn
in Fig. 15. Based on the creep-fatigue sensitivity analysis
model in Eqs. (19-20), the sensitivities and effect probabili-
ties of all of input variables on creep-fatigue life are revealed
in Fig. 16.

As illustrated in Fig. 15, with the given multi-physical
and multi model parameters, the creep-fatigue life of the
turbine rotor roughly obeys a lognormal distribution. More-
over, based on the creep-fatigue reliability model in Eq. (21),
the creep-fatigue life of the turbine rotor under reliability
99.87 % is 629 cycles. Note that the assessed 629 cycles are
suitable for the specified turbine rotor with material and loads
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FIGURE 15. Creep-fatigue life curve of turbine rotor.

FIGURE 16. Sensitivities and effect probabilities on creep-fatigue life.

in Tables 1-2, and do not apply to all turbine rotors with
different materials and loads. As shown in Fig. 16, for all
of input variables on creep-fatigue life, the fatigue strength
coefficient and the holding creep time plays a leading role on
creep-fatigue life, which requires the highest attentions in the
creep-fatigue design of turbine rotor.

E. METHOD VALIDATIONS
To validate the effectiveness of the proposed MSCA, the
creep-fatigue reliability assessment of turbine rotor is also
studied based on the direct Monte Carlo simulation (MCS),

response surface (RS) method [32], neural network surro-
gate (NNS) method [6], and the presented DNNS method.
Note that the simulation values obtained by the direct MCS
are regarded as theoretical true values on account of the statis-
tics theory and large-number law. To ensure the rationality of
methods comparison, we have set the following ground rules:
based on the same input parameters as shown in Tables 1-2,
the creep-fatigue reliable life should be acquired. Note that
the direct MCS, RS and NNS are directly executed in one
computing device while the MSCA adopts the parallel com-
putation of stress/strain response prediction and creep-fatigue
life assessment. Moreover, before executing the creep-fatigue
reliability assessment, the surrogate model methods (i.e., RS,
NNS, DNNS and MSCA) would first perform the surro-
gate modeling with the required fitting number and fitting
time. The computational efficiency and accuracy of different
methods for creep-fatigue reliability assessment are listed
in Tables 3-4, respectively.

As revealed in Table 3, the fitting number and fitting
time of MSCA are less than RS, NNS and DNNS, and the
simulation time of four surrogate model methods are far
less than the direct MCS method. Moreover, the presented
MSCA offers the highest computing efficiency and the supe-
riorities becomes more obvious with increasing simulation
times. The superior performance of MSCA is induced by a
few vital factors: (i) the DNNS model-based MSCA only
focuses on the extremum values rather than all of the dynamic
responses within a time domain, and the high-efficiency
surrogate modeling of DNNS models are rapidly accom-
plished by the proposed BR-VM error control technique;
(ii) the distributed collaborative strategy-based MSCA
accomplishes the distributed parallel computation by sim-
ulating surrogate models on multiple terminal devices
simultaneously, which is conducive to reduce calculation
complexity and enhance computational speed. Therefore, by
integrating the DNNS proposed and distributed collaborative
strategy, the MSCA can be established and employed in
creep-fatigue reliability assessment with high computational
efficiency.

As illustrated in Table 4, the presented MSCA possesses
the highest computational accuracy than other surrogate
model methods (RS, NNS and DNNS) and are almost con-
sistent with the direct MCS method. The high computational
accuracy and good generalization performance of MSCA
result from the following issues: (i) the BR-VM error control
technique-based MSCA avoids the overfitting problems and
ensures accurate optimum searching, which contributes to
enhance the nonlinear fitting ability and model generaliza-
tion effects; (ii) the distributed collaborative strategy-based
MSCA can dramatically reduce the nonlinearity of surro-
gate modeling, which is promising to guarantee the comput-
ing accuracy of creep-fatigue reliability assessment. Hence,
by absorbing the virtues of BR-VM error control technique
and distributed collaborative strategy, the proposed MSCA
possesses high computational accuracy in creep-fatigue reli-
ability assessment.
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TABLE 3. Computational efficiency for creep-fatigue reliability assessment.

TABLE 4. Computational accuracy for creep-fatigue reliability assessment.

In summary, the proposed MSCA is proven to notably
enhance the computational efficiency while keeping an
acceptable computational accuracy, and hereby is a feasible
and effective way for the creep-fatigue reliability assessment
of turbine rotor.

IV. CONCLUSION
The objective of this study is to present a multi-surrogate col-
laboration approach (MSCA) based on dynamic neural net-
work surrogate (DNNS) and distributed collaborative strat-
egy, for the creep-fatigue reliability assessment of turbine
rotor to legitimately tackle with the large-dynamicity and
high-nonlinearity issues induced by multi-physical uncer-
tainties and multi-model uncertainties. To build an accurate
MSCA model and accomplish precise assessment, Bayesian
regularization - variable metric (BR-VM) error control tech-
nique is applied to find the optimal parameters of DNNS
model, distributed collaborative strategy is employed to fur-
ther reduce the complexity of MSCA modeling. The creep-
fatigue reliability assessment of turbine rotor in aircraft
engine is investigated to check the effectiveness of the devel-
oped MSCA. Some conclusions are summarized as follows:

(1) From the creep-fatigue reliability assessment,
we acquire the simulation histories and distribution traits of
turbine rotor creep-fatigue life, and the creep-fatigue reliable
life 629 cycles is advised for creep-fatigue life design of
turbine rotor, which is conductive to ensure reliability per-
formance and security assurance of turbine rotor during the
service lifetime.

(2) From the creep-fatigue sensitivity analysis, we discover
that the dynamic operating loads (rotor speed and body tem-
perature) are the primary sensitive parameters on mean stress
and strain range, fatigue strength coefficient and holding

creep time are major stochastic factors on creep-fatigue reli-
able life. These variables are worth of being considered with
the highest priority in turbine rotor creep-fatigue design.

(3) The comparison of methods reveals that the pre-
sented MSCA possesses high efficiency and accuracy in
the creep-fatigue reliability assessment of turbine rotor.
Meanwhile, the proposed BR-VM error control technique
is promising to structure an efficient DNNS model, and the
distributed collaborative strategy is also suitable to reduce
the complexity and nonlinearity of turbine rotor creep-fatigue
reliability assessment.
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