
Received January 11, 2020, accepted February 5, 2020, date of publication February 20, 2020, date of current version February 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974489

A Rolling Hash Algorithm and the
Implementation to LZ4 Data Compression
HAO JIANG AND SIAN-JHENG LIN , (Member, IEEE)
CAS Key Laboratory of Electro-magnetic Space Information, School of Information Science and Technology, University of Science and Technology of China,
Hefei 230027, China

Corresponding author: Sian-Jheng Lin (sjlin@ustc.edu.cn)

This work was supported in part by the Hundred Talents Program of Chinese Academy of Sciences, and Natural Science Foundation of
Anhui Province (no. BJ2100330001).

ABSTRACT LZ77 is a dictionary compression algorithm by replacing the repeating sequence with the
addresses of the previous referenced data in the stream. To find out these repetition, the LZ77 encoder
maintains a hashing table, which have to frequently calculate hash values during the encoding process. In this
paper, we present a class of rolling hash functions, that can calculate multiple hash values via a carry-less
multiplication instruction. Then the proposed hash function is implemented in LZ4, which is a derivative of
LZ77. The simulation shows that the encoding throughput of LZ4 has 15.7% improvement in average, and
the compression ratio is ±1% in most cases.

INDEX TERMS Carry-less multiplication, LZ4, LZ77, rolling hash, SIMD.

I. INTRODUCTION
Data compression is a process of reducing data storage
space, which is currently used in various aspects of software
engineering. There are two major categories of compression
algorithms, termed lossy and lossless [1]. The lossy compres-
sion algorithm reduces the size of a multimedia file, such
as video, voice, and image, by removing small details that
require a large amount of space [2]. Thus, it is impossible to
restore the original file due to the removal of essential data.
In contrast, the lossless compression is used in cases when
the information must be completely restored [3]. The lossless
data compression is used in text files, executable files, and
source codes.

LZ77(Lempel-Ziv-1977) [4] is a class of lossless com-
pression algorithms. LZ77 is a very simple adaptive
dictionary-based technique, which does not require prior sta-
tistical characteristics of source [5]. Currently, there are many
variants of LZ77 are proposed, such as LZ-Markov chain
algorithm (LZMA) [6], LZ4 [7], LZB [8], LZP [9], and LZSS
[10]. Although the implementations among them are slightly
different, the objective of these algorithms is to find out
the repeating sequences, which is usually achieved by hash
functions and hash tables.

Hash function is a function mapping a block of data to a
fixed-size code, called hash value. Hash functions can be used

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

to detect repeating records in a large file. Nowadays, the hash-
ing functions are widely used in many applications, such as
secure encryptions, data deduplications, Bloom filters, and
load balancing.

A good hash function satisfies two fundamental properties,
termed simple calculation and uniform distribution. In partic-
ular, the simple calculation means that the computing time of
the hash function should less than the time of other search
and keyword comparison algorithms. The uniform distribu-
tion means that hash values are evenly distributed and the
collisions are few.

When the encoder contains the components of the hash
function, then these two properties of a hash function will
affect compression respectively. The former property will
affect the compression speed. And the latter one will affect
the compression ratio, which we will be discussed in detail
later.

A variety of fast hash functions have been proposed for
requirements and applications. A rolling hash is used to pre-
pare the calculation of piece hashes, It works by sampling the
hash values of all substrings of a fixed length in a normalized
string representation of its input [11]. An obvious application
of rolling hash is used in Rabin-Karp string search algorithm
[12], which is a substring searching algorithm. In data com-
pression, LZ77 family uses the rolling hash to find out the
repeating sequences in the data stream. The Bentley-McIlroy
algorithm [13] uses a rolling hash to detect long repetitions
that may occur far apart in the input text.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 35529

https://orcid.org/0000-0002-8072-3748
https://orcid.org/0000-0002-6309-2876
https://orcid.org/0000-0003-1911-4676


H. Jiang, S.-J. Lin: Rolling Hash Algorithm and the Implementation to LZ4 Data Compression

In this paper, a rolling hash function for LZ4 is presented.
However, the proposed hash function can also be applied
to other variants of LZ77. In the proposed hash function,
the input is treated as a binary polynomial s(x), which is mul-
tiplied by a constant polynomial p(x). Then the hash value is
defined as the product with removing the high and low degree
parts. An important property is that, this hash function can
obtain multiple hash values by reading longer input sequence.
In contrast, with other hash functions, the hash values should
be calculate repeatedly. The contributions of this paper are
enumerated as follows.

1) A hash function for rolling hash is proposed. In par-
ticular, the proposed hash function can calculate mul-
tiple hash values with using a carry-less multiplication
instruction.

2) The proposed hash function is implemented in
LZ4 library. The simulation shows that the encoding
speed has 15.7% improvement in average, while the
compression rate is basically identical.

The rest of this paper is organized as follows. In Section II,
we review the rolling hash algorithms, the compression algo-
rithms of LZ77 family, the hash functions used in LZ4 and the
SIMD instruction set. Section III presents the proposed hash
function. In Section IV, we show the details of implementing
the proposed hash functions to LZ4 library. Section V gives
the simulation of the proposed LZ4 algorithm. Section VI
discusses a number of issues related to the proposed hash
function. Section VII concludes this work.

II. RELATED WORKS
A. ROLLING HASH
The rolling hash is to sequentially calculate the hash values,
which depends only on the substring in the sliding window.
A number of rolling hash functions are proposed, and these
algorithms maintains a state and each byte is added to the
state as it is processed and removed from the state after a set
number of other bytes have been processed [14].

The rolling hash function used in the Rabin-Karp string
search algorithm is defined as

H (c1, c2, . . . , ck ) = c1ak−1 + c2ak−2 + ...+ ck , (1)

where a is a prime number, and the input integers ci, . . . , ck
are the characters in the sliding window. Characters can be
interpreted as integers with the coding system (e.g. ASCII,
Unicode).

The next hash value can be calculated via

H (c2, . . . , ck+1) = c2ak−1 + c3ak−2 + ...+ ck+1
= (Hold − c1ak−1)a+ ck+1, (2)

where Hold = H (c1, c2, . . . , ck ). Thus, the next hash value
can be calculated with O(1) operations by utilizing the previ-
ous hash value. This is the major difference from the conven-
tional hash function, that requiresO(k) operations to calculate
each hash value independently.

B. LZ77 FAMILY
LZ77 algorithms achieve compression by replacing the
repeating sequence with the addresses of the previous refer-
enced data in the stream. The algorithm searches the longest
repetition of the current processing sequence in the sliding
window. When a repetition is detected, it will be encoded as
a pair of integers 〈o, l〉, where o is the offset, and l is the
length of the repetition. If no repetition, the data is encoded
as literals. Based on the specification of LZ77, it has better
compression ratio for sequential data with many repetitions
in context.

The process of finding repetitions requires sequence com-
parisons. The brute force way of comparing sequences
is to compare the letters of two sequences, which has a
time complexity O(min(n1, n2)), where n1 and n2 are the
lengths of the two sequences. To accelerate the performance,
the LZ77 implementation maintains a hash table to find out
the repetitions. Precisely, the index of each sequence is saved
in the hash table, and the sequence comparison requires O(1)
operation to calculate the hash function and query the index
in the table.

In the hash table, different keywords may map to the same
hash address. In this case, the LZ77 implementation is to
replace the old entry with the new entry directly. This causes
that the encoder may cannot find out longest repetitions.
In addition, if the uniformity of a hash function is poor, most
entries are concentrated in few buckets, and the collisions
occur easily. This causes a lot of undetected repetitions, and
the compression ratio tends to be unsatisfactory.

C. HASH FUNCTION IN LZ4
LZ4 is a byte-oriented compression scheme belonging to
the LZ77 family focusing on compression and decompres-
sion speed [15], [16]. The hash function used in LZ4 is the
multiply-shift hash [17], which is defined as

H (x) = b(ax mod 2m)/2m−nc, (3)

where x is the input m-bit integer, a is a uniformly random
odd m-bit integer. As illustrated above, the hash function
(3) converts an m-bit integer to a n-bit integer. The standard
LZ4 implementation chooses (m, n) = (32, 13), and a =
2654435761 is a golden ratio prime.

Figure 1 gives a graphical representation. When the value
ax is encoded as a binary representation, then the hash value
H (x) is a segment of ax between m− n to m− 1. When (3) is
implemented in C with a 32-bit integer variable H , the code
is given by

H = (a ∗ x)� (m− n); (4)

That is, the overflow discard in a 32-bit integer H is the
same with the modulo 232, and the division with 2m−n can
be replaced with a right shift operation.

A standard hash function is the multiply-mod-prime
scheme [18], which is defined as

H (x) = ((ax + b) mod p) mod n. (5)

35530 VOLUME 8, 2020



H. Jiang, S.-J. Lin: Rolling Hash Algorithm and the Implementation to LZ4 Data Compression

FIGURE 1. Multiply-shift hash, extracting bits m − n, . . . , m − 1 from the
product ax as the hash value.

The article [18] reports that the hash function (3) is many
times faster than the standard method (5).

D. ARITHMETIC IN F2[x]
The polynomial ring F2[x] contains a set of binary
single-variate polynomials. For each a(x) ∈ F2[x], a binary
polynomial a(x) =

∑d1
i=0 aix

i, where d1 is a non-negative
integer and each ai ∈ {0, 1}. The ring F2[x] also defines two
arithmetic operations, termed addition and multiplication,
shown as follows.

Given two polynomials a(x) =
∑d1

i=0 aix
i
∈ F2[x] and

b(x) =
∑d2

i=0 bix
i
∈ F2[x], the addition is defined as

a(x)+ b(x) =
max{d1,d2}∑

i=0

(ai ⊕ bi)x i,

where ⊕ is the exclusive OR (XOR) operation. In addition,
the multiplication is defined as a(x) · b(x) =

∑d1+d2
i=0 cix i.

Each symbol is given by

ci =
min{i,d1}∑

j=max{0,i−d2}

aj � bi−j, (6)

where � is the AND operation, and
∑

is the summation
modulo 2.

In implementations, we usually prefer to use binary rep-
resentations to identify the polynomials in F2[x]. That is,
the a(x) =

∑d1
i=0 aix

i
∈ F2[x] can be represented as an

integer a = (ad1ad1−1 . . . a0)2 =
∑d1

i=0 ai2
i. In this case,

the addition is written as a⊕ b, where ⊕ is the bitwise XOR
operation. The multiplication is written as a⊗ b, where ⊗ is
the carry-less multiplication.

III. PROPOSED HASH FUNCTION
A. DEFINITION
The proposed hash function can be seen as the binary poly-
nomial version of (3) in F2[x]. Precisely, given an input
polynomial s(x) =

∑d2
i=0 six

i with d2 < m, we first calculate
the product r(x) = a(x) · s(x) =

∑d1+d2
i=0 rix i, where a(x) =∑d1

i=0 aix
i, d1 = m − n, is a constant polynomial. From (6),

each coefficient of r(x) is given by

ri =
min{i,d1}∑

j=max{0,i−d2}

ajsi−j, (7)

for 0 ≤ i ≤ d1 + d2.
The hash value is a subset of the coefficients of r(x).

A good hash function has an important property that when
even a bit of the input is altered, the hash value will change
accordingly. Thus, we prefer that the chosen coefficients are
related to all coefficients of s(x). From (7), we have

ri =
d1∑
j=0

ajsi−j, (8)

for d1 ≤ i ≤ d2. Thus, the hash value is defined as

rd1 + rd1+1x + · · · + rd2x
d2−d1 .

From above, the proposed hash function is defined as
follows.
Definition 1: Given an input polynomial s(x) ∈ F2[x] with

degree deg(s(x)) < m, the proposed hash function is defined
as

H (s(x)) = b(a(x) · s(x) mod xm)/xm−nc, (9)

where a(x) ∈ F2[x] is a constant polynomial of degreem−n.
In (9), the operation modxm is to remove the terms rix i, for
i ≥ m. In addition, the operation /xm−n is to remove the terms
rix i, for i < m− n. That is, the hash value is the coefficients
between xm−n and xm−1.

Equivalently, if the input and output are treated as integers,
the hash function (9) converts an m-bit integer to a n-bit
integer. That is, (9) can be written as

H (s) = b(a⊗ s mod 2m)/2m−nc, (10)

where the integer s < 2m is the binary representation of s(x),
and the integer a < 2m−n is the binary representation of a(x).
For example, when (m, n) = (5, 2), s(x) = x4 + x3 + 1
and a(x) = x3 + 1, we have r(x) = s(x) · a(x) = x7 +
x6 + x4 + 1, and H (s(x)) = (r(x) mod x5)/x3 = x. If the
example is expressed as integers, then s = (11001)2 = 25,
a = (1001)2 = 9, and r = a⊗ s = (11010001)2 = 321. The
hash value is H (s) = (10)2 = 2.

B. MULTIPLE-HASH COMPUTATION
This subsection gives the scheme to calculate multiple hashes
in a sliding window, when the hash function is Definition 1.
Upon presenting the approach, we give a simple example as
follows.
We consider (m, n) = (3, 2), and a(x) = x + 1. The input

sequence is denoted as (s3, s2, s1, s0). The size of the sliding
window is three. To begin with, we take three symbols in
the sliding window, and these symbols form a polynomial
s0(x) = s3x2 + s2x + s1. The hash value is given by

H (s0(x)) = (s3 ⊕ s2)x + (s2 ⊕ s1). (11)

Next, we move the sliding window a step, and obtain the
polynomial s1(x) = s2x2 + s1x + s0. The hash value is given
by

H (s1(x)) = (s2 ⊕ s1)x + (s1 ⊕ s0). (12)

On the other hand, we construct a polynomial s(x) =
s3x3 + s2x2 + s1x + s0 by using all four symbols. Then we
calculate

r(x) = a(x)s(x)

= s3x4 + (s3 ⊕ s2)x3 + (s2 ⊕ s1)x2 + (s1 ⊕ s0)x + s0.

(13)

From (11), (12) and (13), we have the following observations.
First, there is a overlapping s2 ⊕ s1 between H (s0(x)) and

VOLUME 8, 2020 35531



H. Jiang, S.-J. Lin: Rolling Hash Algorithm and the Implementation to LZ4 Data Compression

H (s1(x)). Second, the degrees 2 and 3 of r(x) are the coef-
ficients of H (s0(x)), and the degrees 1 and 2 of r(x) are the
coefficients of H (s1(x)).

Therefore, instead of calculating H (s0(x)) and H (s1(x))
individually, we can calculate r(x), and take a portion of
r(x) to obtain H (s0(x)) (and H (s1(x)), respectively). The
following gives a formal theorem.
Theorem 1: Given a input polynomial

s(x) = s`−1x`−1
+ s`−2x`−2

+ . . .+ s1x + s0 ∈ F2[x]

with degree deg(s(x)) < `, a hash function is defined as

Lk (s(x)) = b(a(x) · s(x) mod x`−k )/x`−k−n
c, (14)

where 0 ≤ k ≤ `− m. Let

sk (x) = s`−1−kxm−1 + s`−2−kxm−2 + . . .+ s`−m−k .

Then Lk (s(x)) = H (sk (x)).
Proof: Let r(x) = a(x) · s(x) =

∑`+m−n−1
i=0 rix i. From

(14), we have Lk (s(x)) =
∑n

i=1 r`−i−kx
n−i, where

r`−i−k =
m−n∑
j=0

ajs`−k−i−j.

Thus, we can get

Lk (s(x)) =
n∑
i=1

(
m−n∑
j=0

ajs`−k−i−j)xn−i.

Let rk (x) = a(x) · sk (x) =
∑2m−n−1

i=0 ri,kx i. From (9),
we have

H (sk (x)) =
n∑
i=1

rm−i,kxn−i =
n∑
i=1

(
m−n∑
j=0

ajs`−k−i−j)xn−i.

Thus, Lk (s(x)) = H (sk (x)).
Assume that the sliding windowmoves a byte forward after

calculating a hash value. The new product will contain k hash
values according to previous rules. Algorithm 1 gives the
detail steps, where k = (`− m)/8+ 1 and MASK = 2n − 1.
Figure 2 gives an example for (m, n) = (32, 13) and ` = 64.
It shows there is a overlap between any two adjacent hash
values.

Algorithm 1 Multiple-hash computations
Input: A l-bit integer s
Output: k n-bit hash values
1: ret ← a⊗ s
2: for i = 1, 2, . . . , k do
3: hi← (ret � (l − n− 8i+ 8)) & MASK
4: end for
5: return (h1, h2, · · · , hk)

IV. IMPLEMENTATION TO LZ4
This section gives the details of implementing the proposed
hash function to LZ4. First, the naive implementation is
proposed. Then the algorithm is given to calculate multiple
hash values in batch.

FIGURE 2. The implementation to calculate five hashes in LZ4,
every 8 bits moved forward is the next hash value.

A. NAIVE IMPLEMENTATION
In this subsection, we present the naive implementation of
the hash function in Definition 1. From the specification of
LZ4, we use (m, n) = (32, 13). That is, the input is an integer
of m = 32 bits, and the constant a is chosen as an integer of
m−n+1 = 20 bits. In this way, the product a⊗s has 2m−n =
51 bits, and the middle n = 13 bits form the hash value.When
the produce a⊗ s is stored in a 32-bit integer variable, we do
not need to perform the operation modxm in (9), because the
coefficients higher than degree 32 are overflow. The operation
/xm−n can be implemented by the right shift operation �.
Algorithm 2 gives the detail steps.

Algorithm 2 needs to perform the carry-less multiplication.
Fortunately, the carry-less multiplication is implemented in
certain SIMD instruction sets. For example, the instruction
in ARMv8 is vmull_p64(), and the instruction in x86_64
is _mm_clmulepi64_si128(). In addition, when a = 2m−n+1,
the carry-less product a ⊗ s can be implemented with a left
shift operation and a bitwise XOR operation. That is, Line 2
of Algorithm 2 can be replaced with

ret ← sx ⊕ (sx � 19), (15)

which is usually faster than a carry-less multiplication on
modern processors. Though the chosen a = 2m−n + 1 may
increase the probability of hash collisions, the simulation
shows that the reduction of the compression ratio is limited.

Algorithm 2 Naive implementation to LZ4 on 32-bit CPU
Input: A 32-bit integer x
Output: A 13-bit hash value
1: ret ← a⊗ x
2: ret ← ret � 19
3: return ret

B. BATCH PROCESSING
Based on the approach in Section III-B, this subsection
presents the implementation to calculate five hashes in
LZ4. The implementation uses (m, n) = (32, 13). That
is, the encoder reads an integer of ` = 64 bits, that is
then multiplied with the constant a of m − n + 1 =
20 bits. Therefore, the product a ⊗ s has ` + m − n =
83 bits, and we sequentially take five hash values from
the product a ⊗ s. The locations of these hash values
are in [63, 51], [55, 43], [47, 35], [39, 27], [31, 19]. Clearly,
we can also use the constant a = 2m−n + 1 to improve the

35532 VOLUME 8, 2020



H. Jiang, S.-J. Lin: Rolling Hash Algorithm and the Implementation to LZ4 Data Compression

Algorithm 3 Calculating five hash values in LZ4 on 64-bit
CPU
Input: A 64-bit integer s
Output: Five 13-bit hash values
1: ret ← a⊗ s
2: h1← (ret � 51) & MASK
3: h2← (ret � 43) & MASK
4: h3← (ret � 35) & MASK
5: h4← (ret � 27) & MASK
6: h5← (ret � 19) & MASK
7: return (h1, h2, h3, h4, h5)

TABLE 1. Configurations of simulation platforms.

coding performance. Algorithm 3 gives the detail steps, and
Figure 2 gives the graphical representation.

V. EXPERIMENTS
As the proposed hash function can only be applied to
encoders, we only test the performance of the encoding in the
experiment. The LZ4 v1.9.1 in its default mode (level 1) is
chosen as the test program. We implement Algorithm 2 and
Algorithm 3 in C, and the hash functions used in LZ4 are
replaced with the proposed functions. All programs are com-
piled by GCC v7.4.0 with the optimization level -O3. All
experiments are performed by a single thread on the platforms
with ARMv8 architecture processors and x86_64 architecture
processors, respectively. Table 1 tabulates the configurations
of the platforms.

The data sets used in the experiments are chosen from the
Calgary corpus [19] and the Canterbury corpus [20]. The
first experiment shows the compression ratios of LZ4 with
various hash functions, where the column Con. is the com-
pression ratio of the conventional LZ4. Two constants are
tested, namely a0 = 219 + 26 + 22 + 21 + 1 and a1 =
219 + 1. Table 2 lists the compression ratios for 13 input
files. As shown in Table 2, the compression ratios of the
proposed hash functions are similar to that of the conventional
LZ4. For the hash function with a0, the compression ratio
of the proposed approach is about 0.0023% worse than the
conventional hash function in average. For the hash function
with a1, the compression ratio of the proposed approach is
about 0.554% worse than the conventional hash function in
average. This shows that the uniformity of the proposed hash
function is close to that of the hash function in LZ4.

In the second experiment, we consider the throughput of
the encoders. The throughput is defined as the amount of
data read per second (MB/sec). Table 3 lists the throughput
of the programs on the platforms with ARMv8 processors
and x86_64 processors, respectively. In addition, we list the
ratio between batch method and conventional LZ4, and that

TABLE 2. Compression ratios of LZ4 with various hashing functions.

is defined as

Ratio =
Ours_Batch - Conventional

Conventional
.

Though the carry-less multiplication is supported by
the SIMD instruction set, the throughput of our naive
implementation is around 77.65% (and 76.36%) of that of the
conventional LZ4 on x86_64 processors (and onARMv8 pro-
cessors). This is because the number of cycles for the
carry-less multiplication instruction is greater than the num-
ber of cycles for the integer multiplication on modern CPUs.

For our batch implementations, the proposed algorithm
usually has higher throughput than the conventional LZ4 on
x86_64 processors. It shows that the propose algorithm
has about Ratioavgx86_64 = 12.44% improvements on
x86_64 processors in average. Further, the proposed algo-
rithm always has higher throughput than the conventional
LZ4 on ARMv8 processors. It shows that the propose algo-
rithm has about RatioavgARMv8 = 18.89% improvements on
ARMv8 processors in average.

VI. DISCUSSIONS
A. PERFORMANCE OF THE PROPOSED HASH FUNCTION
Table 3 shows that the proposed batch implementation
can improve the encoding throughput. In Algorithm 3,
the encoder calculates five hash values via (15), that requires
a left shift operation and a bitwise XOR operation. Then in
the next four hashing rounds, the encoder does not need to
call the hash function again, and the hash value is in the set
of prior obtained values. In contrast, the conventional hash
function (4) in LZ4 requires an integer multiplication, that
takes more cycles than the bitwise operations used in the
proposed implementation. Thus, the proposed hash function
is faster than the the conventional hash function (4) in LZ4.

As shown in Table 3, the improvement Ratio is variant.
A reason is if the LZ4 encoder finds out a repetition in the
sequence, the encoder will almost skip the hash computations
for the repeating sequence. Thus, when the input sequence
has many repeating sequences, most hash values calculated
by Algorithm 3 may be discarded (except for the first one).
This causes that the throughput of the proposed implementa-
tion is close to that of the conventional LZ4.

VOLUME 8, 2020 35533



H. Jiang, S.-J. Lin: Rolling Hash Algorithm and the Implementation to LZ4 Data Compression

TABLE 3. Encoding throughput (MB/sec) of the LZ4 and the modified LZ4 on two platforms.

B. DRAWBACKS OF THE CONVENTIONAL ROLLING HASH
In this paper, we do not adopt the conventional rolling hash
method (see Section II-A). The major reason is that, cal-
culating (2) requires two multiplications and two additions.
In contrast, the hash function (4) used in LZ4 only requires a
multiplication and a right shift operation. Thus, we conclude
that calculating (2) is slower than calculating (4) on modern
processors.

VII. CONCLUSION
In this paper, we present a new hash function, that is suitable
for the application that need to calculate hash values in a
sliding window. In particular, the proposed hash function can
calculate multiple hash values with a carry-less multiplication
instruction. The proposed hash function is implemented on
the LZ4 compression algorithm. The experiments show that
the proposed hash function has similar compression ratio
to the conventional hash function in LZ4. Thus, it meets
the requirements in actual applications. Moreover, the pro-
posed algorithm generally improves the encoding throughput
on x86_64 and ARMv8 processors.

REFERENCES
[1] K. Sayood, Introduction to Data Compression. San Mateo, CA, USA:

Morgan Kaufmann, 2017.
[2] G. K. Wallace, ‘‘The JPEG still picture compression standard,’’ IEEE

Trans. Consum. Electron., vol. 38, no. 1, pp. 18–34, 1992.
[3] K. Kim, C. Lee, and H.-J. Lee, ‘‘A sub-pixel gradient compression algo-

rithm for text image display on a smart device,’’ IEEE Trans. Consum.
Electron., vol. 64, no. 2, pp. 231–239, May 2018.

[4] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres-
sion,’’ IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977.

[5] W. Liu, F. Mei, C. Wang, M. O’Neill, and E. E. Swartzlander, ‘‘Data com-
pression device based on modified LZ4 algorithm,’’ IEEE Trans. Consum.
Electron., vol. 64, no. 1, pp. 110–117, Feb. 2018.

[6] B. Li, L. Zhang, Z. Shang, and Q. Dong, ‘‘Implementation of LZMA
compression algorithm on FPGA,’’ Electron. Lett., vol. 50, no. 21,
pp. 1522–1524, Oct. 2014.

[7] Y. Collet. LZ4—Extremely Fast Compression. Accessed Dec. 13, 2019.
[Online]. Available: https://lz4.github.io/lz4/

[8] T. Bell, ‘‘A unifying theory and improvements for existing approaches to
text compression,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Canter-
bury, Christchurch, New Zealand, 1986.

[9] C. Bloom, ‘‘LZP: A new data compression algorithm,’’ in Proc. Data
Compress. Conf. (DCC), Dec. 2002, p. 425.

[10] J. A. Storer and T. G. Szymanski, ‘‘Data compression via textual substitu-
tion,’’ J. ACM, vol. 29, no. 4, pp. 928–951, Oct. 1982.

[11] M. J. Thomsen and F. Henglein, ‘‘Clone detection using rolling hashing,
suffix trees and dagification: A case study,’’ in Proc. 6th Int. Workshop
Softw. Clones (IWSC), Jun. 2012, pp. 22–28.

[12] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, Mar. 1987.

[13] J. Bentley and D. McIlroy, ‘‘Data compression using long common
strings,’’ in Proc. DCC Data Compress. Conf. , 1999, pp. 287–295.

[14] J. Kornblum, ‘‘Identifying almost identical files using context triggered
piecewise hashing,’’ Digit. Invest., vol. 3, pp. 91–97, Sep. 2006.

[15] D. Harnik, E. Khaitzin, D. Sotnikov, and S. Taharlev, ‘‘A fast implementa-
tion of deflate,’’ in Proc. Data Compress. Conf., Mar. 2014, pp. 223–232.

[16] M. Bartik, S. Ubik, and P. Kubalik, ‘‘LZ4 compression algorithm on
FPGA,’’ in Proc. IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
Dec. 2015, pp. 179–182.

[17] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen, ‘‘A reli-
able randomized algorithm for the closest-pair problem,’’ J. Algorithms,
vol. 25, no. 1, pp. 19–51, Oct. 1997.

[18] M. Thorup, ‘‘High speed hashing for integers and strings,’’ 2015,
arXiv:1504.06804. [Online]. Available: http://arxiv.org/abs/1504.06804

[19] Calgary Corpus. Accessed: Dec. 13, 2019. [Online]. Available:
http://www.data-compression.info/Corpora/CalgaryCorpus/

[20] Canterbury Corpus. Accessed: Dec. 13, 2019. [Online]. Available:
http://www.data-compression.info/Corpora/CanterburyCorpus/

HAO JIANG received the B.E. degree in radio
and television engineering from the Communi-
cation University of Zhejiang (CUZ), Hangzhou,
China, in 2018, where he is currently pursuing the
M.Sc. degree. His research focuses on the data
compression.

SIAN-JHENG LIN (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in computer
science from National Chiao Tung University,
Hsinchu, Taiwan, in 2004, 2006, and 2010, respec-
tively. From 2010 to 2014, he was a Postdoc-
toral Researcher with the Research Center for
Information Technology Innovation, Academia
Sinica. From 2014 to 2016, he was a Postdoctoral
Researcher with the Electrial Engineering Depart-
ment, King Abdullah University of Science and

Technology (KAUST), Thuwal, Saudi Arabia. He was a part-time Lecturer
with Yuanpei University, from 2007 to 2008, and Hsuan Chuang University,
from 2008 to 2010. He is currently a Project Researcher with the School of
Information Science and Technology, University of Science and Technology
of China (USTC), Hefei, China. In recent years, his research focuses on the
algorithms for MDS codes and its applications to storage systems.

35534 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORKS
	ROLLING HASH
	LZ77 FAMILY
	HASH FUNCTION IN LZ4
	ARITHMETIC IN F2[x]

	PROPOSED HASH FUNCTION
	DEFINITION
	MULTIPLE-HASH COMPUTATION

	IMPLEMENTATION TO LZ4
	NAIVE IMPLEMENTATION
	BATCH PROCESSING

	EXPERIMENTS
	DISCUSSIONS
	PERFORMANCE OF THE PROPOSED HASH FUNCTION
	DRAWBACKS OF THE CONVENTIONAL ROLLING HASH

	CONCLUSION
	REFERENCES
	Biographies
	HAO JIANG
	SIAN-JHENG LIN


