IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 31, 2020, accepted February 13, 2020, date of publication February 20, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975272

LSRN: A Recurrent Residual Learning Framework
for Continuous Wireless Channel Estimation
Using Super-Resolution Concept

SHUNQING ZHANG , (Senior Member, IEEE), YANGYU LIU™, QI SHI™,
SHUGONG XU, (Fellow, IEEE), AND SHAN CAO

Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China

Corresponding author: Shugong Xu (shugong @shu.edu.cn)

ABSTRACT As only a few parts of wireless resources can be utilized for pilot transmission, channel estima-
tion, especially the interpolation process, has often been recognized as a challenging ill-posed reconstruction
problem. To deal with this task, we formulate it as a typical image super resolution problem, and propose a
recurrent residual learning framework named LSRN. Our proposed scheme jointly utilizes the advantages
of recurrent and residual structure in the machine learning area to approximate the non-linear interpolation
relations between the reference signal and surrounding resource elements. In addition, we propose a low
complexity implementation scheme called LSRN-L to address the stringent processing delay requirement in
the channel estimation tasks. Through numerical examples as well as prototype verification, the proposed
LSRN/LSRN-L can easily outperform the convolutional GI plus DFT based interpolation scheme by 10dB in
terms of normalized mean square error. Meanwhile, the low complexity LSRN-L can maintain the processing
delay within one millisecond.

INDEX TERMS Channel estimation, channel state information, super resolution, residual learning and

recurrent learning.

I. INTRODUCTION

Evolved mobile broadband (eMBB) transmission has been
identified as one of the most important scenarios in the
fifth generation (5G) communication systems [1]. To guaran-
tee ultra-high throughput in the eMBB scenario, orthogonal
frequency division multiplexing (OFDM) transmission with
coherent detection is often regarded as the main approach in
the frequency selective and time varying wireless environ-
ment, and the high-order modulation, such as 64 quadrature
amplitude modulation (QAM), is widely adopted to boost the
throughput [2]. In order to accurately detect the high-order
modulated symbols, an efficient yet fast channel estimation
is often regarded as the most important stage and has been
investigated for more than twenty years [3].

As afew part of resources can be utilized for pilot transmis-
sion in modern wireless communications, channel estimation
has been recognized as a challenging ill-posed reconstruction
problem with only a small amount of observations (pilots) [4].
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In order to solve this type of complicated problem within the
channel coherence time, a standard channel estimation pro-
cess usually contains a channel state recovery stage and a low
complexity interpolation stage as illustrated in [5]. Given the
additive white Gaussian noise (AWGN) assumption, the con-
ventional channel state information (CSI) recovery schemes
at the pilot locations usually apply the least square (LS)
or the minimum mean squared error (MMSE) algorithm,
which has been proved to be efficient in practice [6].
However, the low complexity interpolation mechanisms are
under-investigated, where traditional schemes, such as linear
interpolation (LI) [5], guassian interpolation (GI) [7], or dis-
crete fourier transform interpolation (DFTI) [8], are still used
in recent communication systems.

Since the interpolation process to recover the whole chan-
nel frequency responses from some pilot observations can be
regraded as a typical image super-resolution (SR) task [9],
it is of great importance to review the history of classical SR
methods and the potential applications in the channel estima-
tion procedure. For example, by assuming the deterministic
linear/non-linear relations between the low resolution (LR)
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and the high resolution (HR) images, bilinear or bicubic inter-
polation schemes have been utilized to improve the quality
of SR process in [10], and the reconstruction-based schemes,
such as [11] and [12], have been proposed to further com-
pensate the remaining high-frequency components. Instead
of predicting the possible linear/non-linear relations between
LR and HR image pairs through mathematical formulas,
another approach is to directly learn the relations via some
pre-known data-sets. Typical learning frameworks include
dictionary learning [13], local linear regression [14], and ran-
dom forest algorithm [15]. Although the above schemes have
been applied to practical systems in [16]-[18], the resultant
performance gain in terms of the estimation accuracy and the
complexity reduction is not satisfactory.

Recently, with the development of the computing technol-
ogy and the numerical calculating technology, deep neural
networks [19] have been widely applied in the learning field,
and achieve significant progresses in the general SR tasks.
As summarized in [20], they can be fulfilled by several kinds
of advanced network architectures, including recursive [21]
and progressive reconstruction [22]. However, the above net-
work designs often suffer from high computational complex-
ity and are rarely deployed on low-cost computing devices,
such as mobile terminals. Instead, linear [23]-[25] and resid-
ual networks [26] are more popular due to their simple net-
work structures. For example, super-resolution convolutional
neural network (SRCNN) and very deep super-resolution
network (VDSR) have been proposed in [23] and [24] respec-
tively, which up-sample the LR figures before the feature
extraction process, while fast SRCNN [25] performs the
up-sampling afterwards to reduce the processing delay of
the entire SR task. All of them are based on linear neural
network topology and able to achieve peak signal-to-noise
ratio (PSNR) for more than 30 dB in the DIV2K public data
set. In [26], enhanced deep super-resolution (EDSR) scheme
has been proposed to apply the residual learning block and
achieves 2-4 dB PSNR gain in the same data set. In addition
to the above single image SR tasks, multi-frame SR tasks have
been widely studied as well, including detail-revealing deep
video SR [27] and temporally coherent generative adversarial
networks video SR [28]. Since the interpolation process in the
wireless channel estimation is quite similar to the image SR
task, there are some initial research efforts on the SR based
channel estimation, which provides superior performance
gain in terms of the normalized mean square error (NMSE)
according to [9] and [29]. Nevertheless, to propose a suitable
SR based learning framework is never straight forward due to
the following reasons.

o Stringent Processing Delay Different from the conven-
tional image SR, the wireless channel estimation usually
has stringent requirements on the processing delay. For
example, in the commercial long term evolution (LTE)
networks, the channel estimation needs to be performed
on a sub-frame (10 milliseconds duration) basis and the
corresponding delay budget is less than one millisecond
in general. Hence, how to strike a balance between
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the processing delay and the channel estimation perfor-
mance using the SR learning framework, needs to be
carefully investigated.

e Domain Knowledge Exploration The specific prior
knowledge has been proved to be very effective for some
tailored SR applications. For example, the spectral spar-
sity and the correlation information among consecutive
frames have been explored for the hyper-spectral image
SR and the video streaming SR tasks in [30] and [27],
respectively, which shows significant performance gain
in terms of PSNR. Since the wireless channel matrix
has some slow-varying properties in the time domain
as we shown later, how to explore this type of domain
knowledge to further improve the estimation accuracy
and reduce the processing delay based on the SR learn-
ing framework is still open.

o High Generalization Ability In the practical communi-
cation system, to adjust the learning framework based
on different channel fading environments is quite chal-
lenging, and a more reasonable solution is to design a
more robust network which only needs offline training.
Therefore, the desired SR based learning framework
should provide high generalization ability as well.

In our previous work [9], to address the above challenges,
we have proposed a novel channel estimation scheme using
the super resolution image recovery concept, which achieves
significant performance improvement based on the numerical
evaluations. However, one drawback of this scheme is the
associated significant processing delay. Our current work is
proposed to directly address this issue and the novelty of the
current scheme can be summarized as follows. First, we pro-
pose to use the recurrent architecture together with the tradi-
tional residual learning task to balance the achieved NMSE
performance and the processing delay, which is a novel con-
cept based on our literature survey. The proposed recurrent
residual learning framework, named LSRN (Long-Short term
memory based Residual Network), which jointly exploits
the advantages of recurrent and residual architectures on top
of the traditional image SR tasks. Specifically, we apply
the residual network model to approximate the non-linear
interpolation relations of real-time CSI between the reference
signals (RSs) and the neighboring resource elements (REs)
to improve the estimation accuracy, and utilize the recur-
rent structure to learning the slow-varying time domain
correlation among consecutive OFDM symbols. In order
to control the processing delay, we simplify the original
structures of residual blocks (ResBs), and reduce the number
of cascaded blocks and convolutional filters simultaneously.
We denote the corresponding low complexity implementation
as LSRN-L. Second, we jointly use the classical channel
model and the prototype measurement results to elaborate
the effectiveness of the proposed scheme, which is much
more valuable for practical implementations. We offline
train the LSRN-L using the standard COST 2100 channel
model [31] and deploy it online in the commercial WiFi sys-
tem using OFDM transmissions. Based on some numerical
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simulations and prototype verification, we show that the pro-
posed LSRN-L can provide 10 dB to 11 dB NMSE improve-
ment if compared with the conventional GI plus DFTI based
interpolation schemes and preserve a processing delay within
one millisecond.

The rest of this article is organized as follows. In Section II,
we provide some preliminary information on the channel
estimation and the machine learning empowered SR schemes.
The proposed LSRN framework is discussed in Section III
and the corresponding low-complexity implementation strat-
egy LSRN-L is proposed in Section IV. The corresponding
numerical and empirical examples are provided in Section V,
and in Section VI, we conclude the whole paper.

Il. PRELIMINARIES

In this section, we briefly introduce the basic concept of inter-
polation in the channel estimation process and the existing SR
schemes.

A. INTERPOLATION FOR CHANNEL ESTIMATION

Consider an OFDM transmission system with a single
transmit and N, receive antennas in the wireless fading
environment.! With the AWGN assumption, the received
symbols at the (fzs, trs)™ RE of the k" resource block (RB),
yk(fRS, trs) € CNrx1 can be modeled through, yk(fRS, trs) =
h* (frs. trs)x* (frs. trs) + 0¥ (frs, trs), where x* (fgs, tgs) and
h¥(frs, trs) € CV*1 are the predefined RS and the equiv-
alent channel responses, respectively, and nk(fRs, trs) €
CN-*1 denotes the additive complex Gaussian noise with
mean Oy, and variance o2Iy,. Based on the famous MMSE
criteria, the estimated channel state, ﬁ’j,IMSE (frs, trs), is given
by

2 —1
B, }
X (frs, trRs)I? "

k%
X*(frs, trRS) &
= 5Y (ks rs),
IXK (frs, trs)I?

where Ry, = E ghk (frs. trs)WH (fis, tgs)] is the channel
correlation matrix

In the practical system, to minimize the channel estimation
overhead, an interpolation process is usually performed on a
RB basis (in accordance with the coherence time and coher-
ence bandwidth) with N; time slots and Ny sub-carriers as
shown in Figure 1, which maps the estimated channel state of
RSs into the entire RB. Denote h* to be the aggregated CSI
of the k" RB and the interpolation process can be described
as,

X, (frs, trs) = Rp |:Rh +

n=F ({ﬁ’j,,MSE(fRs, trs)}, V(frs, Irs) € QRS) (M

For illustration purpose, we denote the boldface upper-case and
lower-case to be a matrix and a vector. ()7, ()*, (-, and (-)_1 denote
the matrix/vector transpose, conjugate, Hermitian, and inversion operations,
respectively. The identity matrix with dimension N is denoted by Iy, and we
apply O and 1y to denote all zero and all one vectors with dimension N.

2In this paper, we assume the channel correlation matrix and the noise
covariances are pre-known based on the previous long-term observations.
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FIGURE 1. One RB contains Ny sub-carriers in frequency domain and N;
time slots in time domain. The black grid position indicates the pilot
position, and the channel condition of the other grid is traditionally
estimated by the interpolation mechanism.

where Qgg represents the collection of all the possible RS
positions in each RB, F(-) denotes the general interpolation
function mapping from? |Qgs| RSs to N; x Nr REs.

In the existing literature, the interpolation processes rely
on some heuristic algorithms, and a standard approach is
to jointly utilize the DFTT process in the frequency domain
and Gaussian approximation in the time domain as defined
in [7], [8]. Based on (1), the above interpolation process can
be rewritten as,

ﬁI&I+DFT1 = FGI+DFTI ({ﬁ]i[MSE(fRS, rs)},
Y(frs. trs) € QRS)
= gDFTI <fGl ({flfuMSE (frs trs)}

Y(frs, trs) € QRS)>, )

where f7(-) and gpFrrr(-) denote the Gaussian approximation
and DFTI processes as illustrated in [32], respectively.

As shown before, the traditional method approximates
the original function F(-) by cascading several deterministic
linear functions together, e.g., gprrr(-) and fgr(-), while the
inherent relations between {ﬁ]j,IMSE(fRS, frs)} and h¥ are in
general nonlinear due to the additive random noises and the
non-deterministic relations of CSIs from different REs.

B. EXISTING SR SCHEMES

In order to solve the above ill-conditioned problem as defined
in (1), a well known approach as mentioned before is to apply
the single image SR as shown in Figure 2. Based on the
existing literature, three types of CNN-based SR schemes are
commonly adopted, which are summarized as below.

o SRCNN [23]: In the first stage, the original LR images
are expanded to the target size, and then using three-
layers neural networks to approximate the non-linear
relation between LR images and HR images.

34 represents the cardinality of the inner set.
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FIGURE 2. The network architecture of three typical SR neural networks,
where subfigure (a), (b) and (c) demonstrates the abstracted network
configuration of SRCNN [23], VDSR [24] and EDSR [26], respectively.
Different from the traditional interpolation scheme, they approximate the
non-linear interpolation via neural networks.

e VDSR [24]: The first stage of VDSR is similar as
SRCNN. In feature extraction stage, VDSR apply the
global residual learning network to progressively predict
the SR images.

e EDSR [26]: Different from SRCNN and VDSR, EDSR
directly input the LR image, and then apply the global
and local residual learning network [33] to progressively
predict the SR images from LR images.

Since the existing SR schemes are directly designed
for image processing, there are still many challenges and
opportunities to explore when applied to the channel esti-
mation tasks. Despite the stringent processing delay and
the generalization requirement as aforementioned, the time
and frequency domain correlations among neighboring
REs might be able to exploited as well. If we define

_ (0 (fre . 1rE)) DX (frE  tRE+NAT) :I _
pn) = ]E[\(hk(fREJRE))*Hh(fREJRE-FnAI)\ and pr(m) =

E[ (0 (frp 1gE )V B +mAf 1gE)
|0k (fre 1rE))* | ID(fRE +mAS 1RE)|
domain correlations,” we can plot the relation between

the correlation coefficients and the number of intervals
in Figure 3. The red dots in the figure represent the average
values, the maximum and minimum values are indicated by
a dash line. As can be seen from Figure 3, the correlation of
the channel in time domain is stronger than the correlation
in frequency domain and the channel changes are subtle and
gradual over a period of time. Using this type of domain
knowledge, we can further improve the estimation accuracy
and reduce the processing delay by improving the exist-
ing network modules and adding related modules. From
SectionlI-B of the paper, we conclude that the change of
channel is subtle and gradual over a period of time, and the
time-domain correlation of channel is much stronger than

to be the time and frequency

4We choose the time interval and frequency intervals according to the
IEEE 802.11n standard, which is 10ms and 312.5KHz, respectively.
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FIGURE 3. Schematic diagram of channel time/frequency correlation,
subfigure(a) represents the temporal correlation in the time domain and
subfigure(b) represents the frequency correlation in the frequency
domain.

its frequency-domain correlation. Using this kind of domain
knowledge, we think it is necessary to introduce recurrent
learning for channel estimation.

IlIl. LSRN FRAMEWORK

With the strong ability to model the non-linear function F(-),
the interpolation for channel estimation can be recognized as
a single image SR reconstruction problem. In this section,
we provide an overview of the proposed LSRN framework
and then introduce block by block to demonstrate the effec-
tiveness of the proposed scheme.

A. OVERVIEW

The primary target of using SR technology is to find a suitable
interpolation function Fgg by minimizing the potential MSE
between the estimated CSI, lA1§R, and the aggregated CSI, h*.
Mathematically, the optimal SR reconstruction for CSI inter-
polation, 3z, can be modeled via the following problem.

Nrp

. . 1 h
Fir() = argmin lim — Z Ih* — th“%’
Fsu() New=ooNgg (=

subject to flgR :fSR({ﬁIE/[MSE(fRSa trs)},
Y(frs. trs) € Qrs),  (3)

38101



IEEE Access

S. Zhang et al.: LSRN: Recurrent Residual Learning Framework for Continuous Wireless Channel Estimation

‘Analog Channel Data
Generation

Training Data

Training Process

PixelShuffle
CNTXNI *NpxNpe

Teaturc Mapping

VN XNy

Result

Testing Process Testing Data

CNPI1QrsI *Nye

Channel Estimation
DL-based Model

CSlI Data Collection
Amplitude&Phase

FIGURE 4. Our system architecture. The whole process can be divided into training phase and testing

phase.

where ||A||r = +/Tr(A - AH) denotes the Frobenius norm and
Ngp denotes the total number of RBs. In the practical system,
the true value of channel responses, h* , 1s difficult to observe
in general due to the noisy environment, and a more feasible
solution is to approximate the original Fg, by solving the
following problem.

Ngrp
- - N S 2
Fgp(-) ~ argmin_lim N Z Ihynsse — DR ll7.
Fr(:) Nez—00NRB 1 —

subject to ﬁ’gR = ISR({BIX/IMSE(ICRS, 1rs)},
Y(frs. trs) € Qgs). (4

Note that in the above formulation, the aggregated CSI, h,
is replaced by the estimated CSI using the conventional
MMSE scheme, e.g., hﬁ,IMSE, which is much easier to be
implemented in practice. Since Fgg is an ill-conditioned map-
ping from |Qgg| RSs to N; x Ny REs, the above optimization
problem is in general difficult to solve.

Inspired by the EDSR scheme as illustrated before,
we divide the entire process into two steps, where the first
step focuses on the feature extraction and fusion processes
to obtain several Nr.-dimension features, and the second step
scales up the Ny.-dimension features into N; x Ny REs by
up-sampling and maps the high dimensional features back
into the complex valued channel responses. As illustrated in
Section II-B, the time domain correlations are much stronger
than the frequency domain, which can be regarded as the
domain knowledge for SR based wireless channel estimation
tasks. To exploit this effect, we propose the LSRN framework
as shown in Figure 4, where a recurrent learning block is
applied to extract the time domain correlations. Mathemat-
ically, the proposed LSRN framework can be expressed as

38102

follows.
NrB ”ﬁk _ l"lk ”2
Ofgry ~ argmin lim k=1 ""MMSE LSRN I F
OLSRN Ngp—> 00 NRB
. Ak Ak .
subject to hj gvg = FLSRN ({hMMsE(fRs, trs)):
OLSRN ) 5)

where Frspn (+; Orsry) and ﬁf sng denote the proposed LSRN
with parameters O sgy and the corresponding estimated
CSI, respectively.5 Denote Fgy(-; 0r), Frr(-;0rr), and
Fcr(+; 0gL) to be the recurrent learning, the local residual
learning, and the global residual learning blocks respec-
tively, the extracted and fused Ny.-dimensional feature ten-
SOrS, {ﬁII‘;E (frs, trs)}, can be obtained via following formula,

{ﬁ];‘E(fR& trs)} = FrL <{ﬁ§4MSE(fRs, rs)}: QRL)
+ FL <{f1§4MSE(fRS, 1Rs)}; 9LL)

+ FoL <{f1§/]MSE(fR57 rs)}; 90L> . (6)

Following the pixelShuffle network as proposed in [34],
Fps(+; Ops), and the feature mapping operation, Frps(-; Orar),
the estimated CSI by the proposed LSRN is finally given by
(]:PS ({fl]fvE(fRs, trs}; Ops); 9FM) .

A

k _
hLSRN = Frm

B. RECURRENT LEARNING AIDED FEATURE EXTRACTION

Feature extraction has been proved as a key procedure in
the image analysis tasks, including SR, de-blurring [35], and
image semantic segmentation [36]. With the modern machine
learning technology, the intrinsic features are automatically

SFor illustration purpose, we omit Y(fgs, tgrs) € Qgs in the rest of this
paper if no confusion is caused.
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learned by feeding the ‘““labelled” data-sets, and the resid-
ual learning approach, such as residual network (ResNet),
is reported to achieve the state-of-the-art performance for
feature extraction in the image recognition tasks [37]. The
similar phenomenon has been observed in the image SR
task as well, where the residual learning based EDSR net-
works achieves the state-of-the-art PSNR result. However,
as a general-purpose SR network, the design of EDSR does
not rely on any specific correlation models between LR
and HR images, and the imbalanced correlation nature in
the channel estimation tasks, as shown in Figure 1, is NOT
considered. In order to take the advantage of this domain
knowledge, we propose to use the recurrent learning on top
of the original EDSR framework. Typical recurrent learning
algorithms include long short term memory (LSTM) [38],
gated recurrent unit (GRU) [39], and convolution LSTM
(ConvLSTM) [40]. Since LSTM and GRU architectures are
dedicated designed for one-dimensional fixed-length vec-
tor sequences, the two-dimensional correlation property of
channel responses as shown in SectionlI-B can not be fully
represented. To overcome this obstacle, we propose to use
ConvLSTM structure, and the corresponding mathematical

model to calculate Fgy, <{ﬁ1/i/lMSE(fRS’ trs)}; BRL) is shown

below, where each extracted feature hf,‘?L (frs, trs) is given by

¥, (fs., trs)
_ 3 2 Tk
=0l [‘71 (GRL + O hipy (Frs, trs — 1)
+ GR}Lh]]:lMSE(fRSa tRS)) * 07 (Géth{WMSE(fRS’ tRS)
+91§Lh]1(i’L(fRSv tgs — 1) + QI?L) + sl i "2(913L
+ O ey (s trs — 1) + O s (s trs))] * o2
(OR8 Whparsie Fis » tks) + Opt B (s trs — 1) + 04z

(N

Zi;i: is hyperbolic tangent activation

function and o(x) = H—% is logistic sigmoid activa-
tion function, respectively. (fgs — 1) represents the previous
time slot before #gs. The parameters of convolution gy =
[GléL, cees 91%,%] are optimized during the training process.
The cell state C'®5~! is iteratively updated by the following
formula,

C™® 1 = 01 (03, + O Bhynse (frs trs — 1) + Oy

by (s trs —2)) * 02 (0, By (s trs — 2)+6f,

+ O Wygpgs (frs s trs — D) + C™ 72 x 02 (6,
+ 08 0 (frs, trs — 2)+07, Weprer (frs, trs — D).
(®)
To demonstrate the effectiveness of the proposed recur-
rent learning architecture, we perform the channel estima-
tion tasks using the traditional EDSR network with three
recurrent learning architectures, e.g. EDSR with LSTM,
GRU, and ConvLSTM schemes, respectively. To make a

fair comparison, the above schemes are trained and tested
under the famous COST2100 channel models [31]. As shown

where oj(x) =
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FIGURE 5. NMSE comparison of different residual learning structure and
parameters used in EDSR, subfigure(a) shows the different effects of
LSTM [38], GRU [39] and ConvLSTM [40], subfigure(b) shows the different
effects of different network parameters under COST 2100 model.

in Figure 5(a), the EDSR with ConvLSTM scheme out-
performs the other three schemes under different received
signal noise ratio (SNR) regions. In addition, to obtain a
better understanding of the proposed scheme, we compare
the channel estimation results with the traditional EDSR net-
work under different number of residual blocks. As verified
in Figure 5(b), the proposed scheme shows consistent NMSE
improvement over all the tested network configurations.

C. FEATURE RECONSTRUCTION

According to (6), the extracted and fused Nf.-dimensional
feature tensors, {ﬁII‘,E (frs, trs)}, can be expressed in detail as
follows,

¥ (fks, trs) = b, (frs, trs) + 0y er (frs  1RS)
+FLL (fl@MSE (frs, trs); 9LL) ,
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where ﬁfeL(fRS, trs) represents the features extracted by
recurrent learning branch as defined in (7), and the
global residual learning is sim{dy a direct connection to

the initial features, e.g. Fgr ﬁﬁx[MSE (frs, trS); GGL) =
{ﬁﬁ,IMSE(fRS, tgs)}. For local residual learning, we use
a 16-layer stacked residual block structure to model
FiLL <ﬁ§/IMSE(fRS’ RrS); QLL) which has been proved to be
effective in SR cases [26]. After the feature extraction pro-
cess, the pixelShuffle procedure up-scales the feature tensors
{h’;E (frs, trs)} to the entire time-frequency resources. Typi-
cal reconstruction methods, as shown in Figure 6, gradually
up-scale the feature tensors via the pixel re-arrangement or
the deconvolution approach. Inspired by a direct up-scaling
operation with the factor of 4, we extend this operation to
more general cases with the factor of s2. Specifically, we rear-
range the feature tensor to the size of Ny x N;. If we denote

rk
hyp (frs. trs) = [al(fRs, IRS) any (frs, tRS):|,

the upscaled feature map {ﬁl;S(fRS, tgs)} can be obtained
through,

ai(fgs, trs), f=Frs — 1) xs+1,
t=(rs — 1) xs+1
as(frs, trs), f =/rs x5,

t=(rs — 1) xs+1
t=(ps — 1) xs+2

as+1(frs, 1rs),

ars(frs, trs),  f =Jrs X s,

t=(gs — 1) xs+2
f=0rs — D xs+1,
t=(rs—1) xs+3

azs+1(frs, trs),

5
ap (frs, IRS),

f =1rs x s,

t =1grs X S

where s> = Ny x N;/|€2]| is the period shuffle factor and
the corresponding feature channel per pixel after up-scaling
is Nie/ 5.

We compared the experimental effects and time delay
under these three reconstruction models as shown in Figure 6,
the effects of the three reconstruction methods are relatively
close. Due to the simpler structure, we choose pixelShuf-
fle (4) which can effectively reduce the time delay.

The last step is a simple feature mapping process which
maps the Nfc/s2 feature tensored into the final channel
responses, and the corresponding realization Frps(-; Oppm)
is performed by a two-layer convolutional neural network.
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PixelS(2)
PixelS(2)

(a) PixelShuffle (2)x2

l
DeConv
RelLU
DeConv
RelLU

(b) Deconvolution

PixelS(4)

(c) PixelShuffle (4)

FIGURE 6. Comparison of some common image reconstruction
structure (x4).

The detailed network configuration of the proposed LSRN
structure is summarized in Table 1. ©

IV. LOW COMPLEXITY IMPLEMENTATION

In the previous section, we designed a recurrent learning
based LSRN scheme to recover the channel states. However,
as the channel estimation is typically a delay critical task,
the process delay of the proposed scheme needs to be care-
fully studied as well. As shown in Figure 7, more than 60%
of the processing time is occupied by the residual learning
process. Therefore, in this section, we focus on proposing a
low complexity implementing strategy to satisfy the potential
delay requirement.

A. SIMPLIFIED RESB STRUCTURE

As shown in Figure 4, the three parallel learning paths deter-
mine the processing delay of the feature extraction stage, and
according to the existing literature [26], the local residual
learning has the largest critical path, which dominates the
entire delay chain. To solve this issue, a straight forward
approach is to simplify the basic building block in the original
ResNet architecture. Inspired from [41] and [26], we pro-
posed to remove one activation layer and one convolutional
layer as shown in Figure 9 and summarize the theoretical
explanation in the following lemma.

Lemma I: For a common residual learning network
architecture with N cascaded residual blocks, two different
residual block realization schemes, e.g. with M| and M con-
volutional layers, respectively, can be trained to provide the
similar reconstruction results, if the residual learning network
is deep enough, e.g. N — +o0.

Proof: Please refer to Appendix for the proof. [ ]

6The inputs of the neural network are the amplitude and phase of the
estimated channel responses at the pilot locations. Hence, the inputs to the
two channels of the network are real values and dealt with in one network.
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TABLE 1. Detailed configuration information about the LSRN structure.

Input size = 14 X 14, input channel =2

Function Layer Name  Output Size = Output Channel Kernel Size, Stride
For(50cL) Convolution 14 x 14 64 3 X 3 conv, stride 1
Convolution 14 x 14 64 3 X 3 conv, stride 1
ResB(1) 14 x 14 64 3 x3 conv
Frr(0LL) . ReLU
: . : 3 X3 conv
ResB(n) 14 x 14 64
Convolution 14 x 14 64 3 X 3 conv, stride 1
Frr(;0rL) ConvLSTM 14 x 14 64 3 X 3 conv, stride = 1
Frs(:0ps) Convolution 14 x 14 64 x 4 x 4 3 x 3 conv, stride = 1
PS\HYPS PixelShuffle 56 x 56 64 -
Frym(50pn)  Convolution 56 x 56 2 3 X 3 conv, stride = 1
- (-
i ® Residual Learning ® Residual Learning

= Reconstruction
u Recurrent learning

After L

0 10 20 30 40

Pilot Configuration
(14, 14)

i Reconstruction
u Recurrent learning

.
B

FIGURE 7. Processing delay of LSRN before and after network simplification.

Based on Lemma 1, we can simplify the number of con-
volutional layers in each ResB when the residual learning
network architecture is deep enough. However, in the prac-
tical systems, we need to balance the processing delay and
the implementation complexity with the achievable perfor-
mance. In our cases, the number of ResB, N, is chosen to be
16 and we reduce the number of convolutional layers on top
of ResB_Lim structure. As shown in Figure 8, although the
number of ResB, N, is equal to 16, we can still simplify the
number of convolutional layers of each ResB with marginal
NMSE losses (e.g. 7.14%) and the overall processing delay
is reduced average from 27ms to 20ms, which corresponds to
25.9%.

B. REDUCED NUMBER OF RESB AND

CONVOLUTIONAL KERNELS

Another scheme to reduce the complexity of the local residual
learning path is to reduce the number of ResBs and convolu-
tional kernels. In the conventional EDSR scheme, to reduce
the number of ResBs and kernels may greatly affect the image
SR performance. However, in the specific task, to reduce
the number of ResBs and convolutional kernels, the cor-
responding performance degradation is controllable due to
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0.001 0
-10
SNR (dB)

FIGURE 8. NMSE and processing delay comparison of three different
ResBs, the blue, green, and yellow histogram and scatter chart represent
ResB_Ledig [42], ResB_Lim [26], and ours, respectively.

the following reasons. First, since the correlations between
different REs is much stronger than the pixels in the convo-
lutional image SR task, the differences of extracted feature
maps among different ResBs are much smaller, which makes
the possibility to reduce the number of ResBs with marginal
performance. Second, with the proposed LSRN architecture,
part of the feature losses due to the smaller number of ResBs
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(b) Experiment 2

FIGURE 9. Two experimental architectures that generate feature maps of
different ResB layers, subfigure(a) shows the feature map of each layer in
the residual learning chain with 16 ResBs, and subfigure(b) shows the
feature map of different combinted network of residual learning and the
recurrent learning.

and convolutional kernels can be compensated by the recur-
rent learning branch.

To demonstrate the above two effects, we perform the
following two experience, where in the first experiment,
we extracted the feature map of each layer in the residual
learning chain with 16 ResBs as shown in Figure 9(a), and
in the second experiment, we combine the recurrent learning
and the global learning chains to obtain the overall feature
map variations as shown in Figure 9(b).

The extracted feature map of the residual learning chain
is depicted in Figure 10(a), where the entire feature values
begin to converge after the fourth ResB. Based on this obser-
vation, we collect 10000 samples from the COST 2100 chan-
nel model and pass them into the residual learning chain.

10000 g i hi
The average NMSE, define as, NMSE = %‘S]T?g]z
is around 0.0104, which provides another pols:slibililt%/ to
reduce the processing complexity bu inducing the number
of ResBs from 16 to 4. As mentioned before, we combine

38106

the residual learning and the recurrent learning together as
the second approach to reduce the processing delay and the
corresponding simulation results are shown in Figure 10(b).
In this experiment, we directly use 4 ResB rather than the
entire 16 ResBs to see the combined effects. By averaging
over 10000 examples, we compare the difference in terms of
NMSE between the proposed LSRN architecture with four
ResBs and with the other three possibilities. Since the NMSE
values are quite close for three different cases, we choose
the proposed LSRN architecture with one ResB only to
reduce the potential complexity. 7 As shown in Figure 11,
the overall processing delay for 14 x 14 pilot configuration
can be reduced average from 20ms to about 0.9ms, which
corresponds to 95.5%.

As discussed in [43], for both classification and generation
tasks, even-sized kernels will result in severe performance
degradation in general. For odd-sized kernels, increasing
the size of kernels cannot provide a monotonic improve-
ment in terms of Top-1 accuracy for ImageNet dataset [44].
Therefore, in the following numerical evaluations, we choose
different kernel sizes (with odd numbers) and compare the
NMSE result for LSRN-L schemes. As shown in the follow-
ing Figure 12, we can observe the similar behavior for NMSE
performance and the neural networks with kernel size 5 x 5
achieve the best NMSE performance. However, to balance
the achieved NMSE and the processing delay, we choose
the kernel size to be 3 x 3, since it achieves the similar
NMSE performance in the high SNR regime, and reduces the
processing delay by more than 20%, if compared with the
kernel size 5 x 5 case.

In short, we propose two different approaches to simplify
the network architecture, e.g. to simplify the structure of
ResB and to reduced the number of ResBs by measuring the
feature variations. Through the priliminary simulation results
as shown in Figure 7, the overall processing delay for 14 x 14
pilot configuration can be reduced from 27ms to about 0.9ms,
which corresponds to 25.9% and 95.5%, respectively.

V. EXPERIMENTS & RESULTS

In this section, we introduce the generation of data sets
and simulation environments, for both model generated case
and prototype sampled case. In what follows, we present the
corresponding evaluation results for the proposed recurrent
learning framework.

A. DATA SETS AND IMPLEMENTATION DETAILS

In the following evaluation, we apply two different
approaches to generate the real-time channel state, namely
directly “Model Generated” and “‘Prototype Sampled”’. The
“Model Generated” data set is directly collected from the
famous channel model, COST2100 [31], while the ‘“Pro-
totype Sampled” data set is estimated from the practical

TWe reduce the number of kernels accordingly, e.g. from 64 to 4, to accom-
modate the changes of ResBs.
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5-th ResB

10-th ResB

13-th ResB 14-th ResB 15-th ResB

(a) Feature map of each layer in the residual learning chain with 16 ResBs

0.0291
0.0258
0.0175

00104 0.0046

LSRN with one ResB

0.0094
0.0082
0.0067

0.0059 0.0044

0.0046
0.0037
0.0031

0.0026 0.0043

0.0026
0.0022
0.0015

16-th ResB LSRN with four ResB

(b) Overall feature map variations

FIGURE 10. Visualization results of of different experimental architectures, subfigure(a) shows the feature map extracted from each layer in the
residual learning chain with 16 ResBs and subfigure(b) shows the feature map extracted from the overall LSRN network with different number of

ResBs.
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FIGURE 11. NMSE and processing delay comparison of different network
structure with different number of ResBs and convolutional kernels.

WiFi prototype system as shown in Figure 4. The detailed
configuration of the prototype system is listed in Table 2.
After we generate the original high resolution CSI
h* (fre, trE), We can follow the conventional MMSE chan-
nel estimation method to generate the low resolution CSI
at the RS positions hIi/[MSE(fRS’ trs). Based on different
configurations of RSs and the LOS/NLOS, we can construct
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FIGURE 12. NMSE comparison of different kernel sizes of the proposed
scheme in analog channel environment under different pilot
configurations with SNR ranges from —10 dB to 20 dB.

different data sets for training and testing as shown in the
following Table 3. The sizes of training and testing data sets
are chosen to be 5.6 x 10° and 1.12 x 10, respectively, and
the other related learning parameters are listed in Table 2 as
well.
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TABLE 2. Configuration of the WiFi Prototype system and the learning
parameters.

WiFi Prototype Learning Configuration
Parameters Value Parameters Value
No.of Tx Antennas 3 Optimizer Adam
No.of Rx Antennas 1 Learning Rate 0.0001
Carrier Frequency 5.3GHz Loss Function 12 Norm
Bandwidth 20MHz
Protocol IEEE 802.11n

B. COMPARISON WITH STATE-OF-THE-ART

In the following experiments, we compare the proposed
LSRN scheme and the corresponding low complexity imple-
mentation (denoted as LSRN-L) with the following baseline
systems. Baseline 1 is the conventional GI plus DFTT scheme
as elaborated in Section II-A. Baseline 2 and Baseline 3 apply
the image SR technique for the interpolation process using
SRCNN and EDSR networks as explained in Section II-B,
respectively.

In the first experiment, we compare the channel estimation
performance in terms of NMSE as well as the processing
delay versus SNR results under different pilot configuration,
where we rely on COST 2100 model to generate the training
and testing data sets. All the neural network based solutions
are pre-trained using the data sets A and tested under the
data sets A. The corresponding numerical results are depicted
in Figure 13. As we can see from this figure, in the con-
dition of 14 x 14 pilot configuration, the proposed LSRN
and LSRN-L schemes outperforms the baseline schemes in
terms of NMSE among 14 dB to 15 dB and 10 dB to 11
dB, respectively. Meanwhile, in terms of the processing delay,
LSRN-L performs much better than LSRN scheme and even-
tually achieves less than 1 ms delay budget.

In the second experiment, we compare the channel estima-
tion performance between the tradition GI plus DFTI scheme
and our low complexity LSRN-L scheme. As for LSRN
network, we respectively use model generated training data
set .4, sampled training data set B and C for training, and
test under the sampled testing data sets BandC, respectively.
As the corresponding numerical results shown in Figure 14,

TABLE 3. Related training and testing data sets in our experiments.

Time Delay of GI+DFTI
Time Delay of SRCNN

158 X
£ Time Delay of EDSR-L
o 4 Time Delay of LSRN
§ 2 Time Delay of LSRN-L
g e Bascline I: GI+DFTI
0E e Baseline 2: SRCNN

----- Baseline 3: EDSR-L
<o+ Proposed 1: LSRN
----- Proposed 2: LSRN-L

0.001 0

SNR (dB)
(a) Pilot Configuration: 14 x 14
1 40
35

01 el 30

Time Delay of GI+DFTI
Time Delay of SRCNN
Time Delay of EDSR-L
Time Delay of LSRN
Time Delay of LSRN-L
-®-Baseline 1: GI+DFTI
seline 2: SRONN
seline 3: EDSR-L
roposed 1: LSRN
10 o Proposed 2: LSRN-L

25

(ms)

20

Time Delay

0.001

0.0001 0
-10 -5 0 5 10 15 20

SNR (dB)
(b) Pilot Configuration: 28 x 28

FIGURE 13. NMSE comparison between deep-learning based and
traditional channel estimation schemes in analog channel environment
under different pilot configurations with SNR ranges from —10 dB to
20 dB.

we can see that our LSRN-L scheme outperforms the baseline
scheme GI plus DFTI in terms of NMSE in all circum-
stances. By comparing the test results of different data set
training models, we can conclude that the network trained by
model generated data can also be applicable to the channel
estimation scenarios under the WiFi environment LOS and
NLOS, which represents our network is robust to the actual
application scenarios. Last but not least, this experiment

Generation Method Dlme:smn of HR CSI l?l;nensmn of LR CSI Training Testing
(h (fRE7tRE)) (h]\/[]\/[SE(fRS7tRS))

14 x 14 Alax14 414x 14

Model Generated 56 x 56 28 x 28 Azgxzs  Azsxas

(COST 2100 LOS) 7 x 28 A7x28 A7xas

28 x 7 Aagx7 Aagx7

Sampled Data Set 56 % 56 14 x 14 Biax14 8:14><14

(WiFi LOS) 28 x 28 Bagx2s  Basxas

Sampled Data Set 56 x 56 14 x 14 Ciax14 6:14><14

(WiFi NLOS) 28 x 28 Cosx2s Cosx2s
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FIGURE 14. NMSE comparison between traditional and LSRN based
channel estimation schemes in LOS and NLOS environments with SNR
range from —10 dB to 20 dB.

1

01 - LSRN_L ( A7x2s ,Arx2s )

@ LSRN_L (Azexz0 -Azgxzs)
@ LSRN_L (Azgx7 . Azgx7)
-& LSRN_L (A14x14 ,Crax1a )
@+ LSRN_L (80%Ay 4x14+20%Cax14 ,Craxaa )
——LSRN_L (Crax14  Crax1a)
—& LSRN_L (Ay4x14 - Biaxaa)

oo <@+ LSRN_L ( 80%A14x14*+20%B1ax1a . Braxs )

——LSRN_L ( Byax1a » Braxas)

0.0001

SNR (dB)

FIGURE 15. NMSE comparison between channel estimation schemes
under three different sample training situations and different pilots
arrangements with SNR range from —10 dB to 20 dB.

shows that the complex correlation characteristics between
pilots can be learned through network training, so that the
network trained by model generate data training can adapt to
different channel fading environments in actual communica-
tion systems.

C. EXTENSIVE STUDY

From the results of the previous experiment, we can see that
the theoretical model can already deal with the channel esti-
mation problem of the real communication system. In order
to observe whether a small amount of real sampled data is
helpful to the channel estimation of the real communication
system, we improve the training data set by mixing data sets
B or C to data sets A in order to simulate the real communi-
cation system. According to the experimental results shown
in Figure 15, by using the mixed training data sets include
20% sampled data, we can obtain the majority gain of the
result, which is around 70%. In the other experiment, with a
fixed number of pilots, we discuss the influence of different
pilot designs on the experimental results. Two another dif-
ferent pilot design modes are considered, they are training
data sets A7x28, Argx7 and testing data sets A7yo8, Asgx7.
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The design idea of pilot arrangements comes from the differ-
ent correlation of pilots in time and frequency domain. Data
set A7428 and fl7xgg are generated by concentrates more
pilots on different time slots than on different sub-carriers.
Data set Ajgx7 and ./2{28><7 are generated by concentrates
more pilots on different sub-carriers than on different time
slots. The experimental results are shown in figure 15, we can
see that the estimation results of the 7 x 28 pilot configuration
are quite different under different SNRs, and the overall
estimation effect is not as good as that of the 28 x 7 pilot
configuration. What’s more, the 28 x 7 pilot configuration
with fewer pilots obtains the close estimation effect with the
28 x 28 pilot configuration, in term of NMSE is among 1 dB to
2 dB. The above experimental results provide us a possibility
to explore more pilot design methods to improve our network
in the future.

VI. CONCLUSION

In this paper, we propose a LSRN architecture to jointly
utilize the recurrent and residual learning capabilities for
the channel estimation tasks in the wireless transmission.
By exploiting the slow-varying time domain correlation and
the non-linear interpolation relations among different RSs
and REs, the proposed low complexity LSRN can provide
among 10db to 11dB NMSE improvement if compared with
the conventional GI plus DFTI based scheme, and eventually
consumes less than one millisecond processing delay.

APPENDIX

PROOF OF LEMMA 1

Given function ]-""LM(hk n @ 1) is the n-th local resid-

ual learning function of the network with N ResBs, each
of which includes M convolutional layers. And the pro-
cess of [-th ResB can be expressed as hk ! h*! 4
Fir LM kil ©M), where h*! and h%!+! are the 1nput and
output vectors of the I-th ResB layers considered. ©) =
{GLIL e GzL MmO M} represents the weight sets of the

I-th ResB. Spemﬁcally, (hk i ®ML) can be expressed in
detail by the following formula,

oo oy [ n
Fit @b o) = 161400, 0", M=2

O o Frit [N oMy M > 2.
where o denotes ReLLU [45] and the biases are omitted for
simplifying notations. And for any N-layer residual network,

the output of the residual network h can be represented as
follow,

N
h =0+ > M@k, o))
n=l

hk n OLL)

S
N

= 1_[ I+ 9LL Mo - GLZiITM 1L, M)hk : ®
n=1
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Considering two architectures composed of two different
ResBs, one of which includes M5 convolution layers and the
other of which includes M convolution layers. The output
of them is hy, = [T)_,(1 + 6,7y, ...06;;", h"! and
hy, = ]_[val(l—i—GLAﬁ}"fll .. GHLI’L'fMl yh*! respectively. When
both networks are trained to convergence, the training error
of the two networks will decrease gradually as N increases
gradually. When N — 400, they can fit into the same
function, parameters of the two networks meet the following
equation,

N—+o0
[T (a+er, . o)
n=1
—(+6 --~09L1’L",M1)) —0. (10)
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