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ABSTRACT Three-dimensional (3D) integration technology provides a great opportunity for reconfigurable
devices to increase device performance. Nevertheless, there is no efficient data structure and task placement
algorithm to manage 3D dynamic partial reconfigurable (DPR) resources in literature. Inefficient algorithms
limit the performance of 3D DPR devices. This study addresses the issue of the 3D task placement problem
via a novel data structure named Maximal Empty Cuboid (MEC) list, which is proposed to manage the
unoccupied space on the 3D DPR device. No matter if a task is assigned or removed on the device, the
MEC list is updated in real-time to record 3D unoccupied resources so that the online task placement can
be executed in a shorter time. Experiments are carried out to evaluate the performance of the proposed task
placement algorithm, and results demonstrate that the proposed algorithm can make a reduction of at least
39% in terms of the task rejection ratio verifying the algorithm’s efficiency.

INDEX TERMS Online task placement algorithm, three-dimensional, dynamic partial reconfigurable
devices, maximal empty cuboid.

I. INTRODUCTION
Since Integrated Circuits (ICs) were born in the 1960s, they
have been widely used in all aspects of our modern lives.
In the field of electronic information technology, General
Purpose Processors (GPPs), such as Central Processing Units
(CPUs), have become a necessary component of various
computing devices.

GPPs with high flexibility can achieve any complicated
operations. However, GPPs are not designed for meeting
the requirement of fast real-time applications or large-scale
data processing, such as large matrix operations, sophis-
ticated image processing, and Artificial Intelligence (AI),
etc. To fully accelerate such specialized computation to
achieve higher performance, special-purpose ICs, includ-
ing ASICs, Graphics Processing Units (GPUs), and Digital
Signal Processors (DSPs), etc., were designed. Such ICs
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lose a significant portion of flexibility granted by GPPs
in exchange for performance gains. Once a special-purpose
processor is manufactured, its functionality can no longer
be changed. In a word, GPPs or special-purpose ICs cannot
adapt to both the growing flexibility and higher performance
requirements.

Reconfigurable devices such as Field-programmable Gate
Arrays (FPGAs), provide a good method to balance the
computing performance and flexibility. Generally, it is com-
posed of three major components: Programmable Logic
Blocks (PLBs), Input-Output Blocks (IOBs), and Intercon-
nections. These programmable hardware resources provide
the unique ability of reconfiguration, which means the cir-
cuits of the device can be reconfigured to achieve differ-
ent functions to meet requirements through reconfiguring
programmable resources. The reconfigurability enables the
device to keep high efficiency of hardware and obtain the
programmability of software to fill the gap betweenGPPs and
special-purpose ICs [1].
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There are two leading reconfigurable technologies: static
and dynamic reconfiguration. In static reconfiguration, the
reconfigurable device needs to be powered off to load new
configuration data to reconfigure the necessary circuits.
Then, the device is restarted to execute a new function.
In contrast, dynamic reconfiguration allows for loading of
new configurations at run-time without taking the device
offline. According to the reconfiguration area, global and par-
tial reconfiguration are discussed in dynamic reconfiguration.
In global reconfiguration, configuration bitstreams provide
all information regarding the complete chip and configure
the entire device. However, in partial reconfiguration, only
a portion of the device is reconfigured, while the other parts
continue to operate without interrupting so that multiple func-
tions can be simultaneously implemented on a single device.
In this work, a dynamic partial reconfiguration scheme is
explored since its high flexibility and performance provide
great potential in the future.

On the other hand, with the growing requirements of device
performance and integration, 3D ICs gradually became the
future development trend due to its higher integration density,
shorter wire-length, and lower energy consumption compared
with 2D architecture [2]. In the reconfigurable computing
field, the application of a 3D dynamic partial reconfig-
urable (DPR) device also became a research focus [3], [4].

To achieve higher performance on 3D DPR devices, a lot
of problems have to be solved, such as power consumption,
heat dissipation, and inter-tasks communication, etc. One of
the most important problems is the task placement problem,
which means deciding where to place an arriving task on
the device for efficient execution. For an application that
will be executed on a reconfigurable device, a host processor
first divides the application into amounts of small hardware
modules (tasks), as execution targets on the reconfigurable
device. Each task consists of a series of information, such as
the number of required hardware resources, lifetime and exe-
cution deadline, etc. During application execution, the task
is assigned to proper elements on the device, then executed
and finally removed when it finishes. However, due to the
limitation of programmable hardware resources, it is usually
impossible to have enough resources to assign all arriving
tasks to the device simultaneously. Therefore, an appropri-
ate task placement position has to be determined at run-
time to obtain maximum utilization ratio of limited hardware
resources. This task placement problem is accompanied by
the entire application execution phase and directly affects the
3D DPR device performance. Studies for the task placement
algorithm to address this problem concentrate on the follow-
ing two aspects:
• Resource management: record and update pro-
grammable resource usage of the device in real-time;

• Placement strategy: decide the task position assignment.
Nevertheless, existing algorithms on this problem for 3D
DPR devices are inefficient [5] (time-consuming and low
placement quality), and there are no efficient methods for 3D
resource management as far as we know.

In this work, we propose a fast online task placement algo-
rithm based on a novel data structure called Maximal Empty
Cuboid (MEC) list for 3D DPR devices, which possesses
the advantages of fast execution time and high placement
quality. The main contributions of this paper are summarized
as follows:

• We propose a new data structure called Maximal Empty
Cuboid (MEC) list to describe 3D unoccupied reconfig-
urable resources and prove the upper limit of the number
of MECs in theory.

• We develop an MEC enumeration algorithm to quickly
update the MEC list to record the resource utilization in
real-time once a task is assigned or removed on the 3D
DPR device.

• We outline two placement strategies and discuss their
impact on placement quality.

• We demonstrate better overall performance in terms
of placement quality and execution speed compared to
other state of the art approaches [5], [6] through theoret-
ical and simulation studies.

The rest of this paper is organized as follows. Section II
gives a brief overview of related studies addressed the task
placement problem. In section III, we give the problem for-
mulation, including some basic models and details of our
proposed task placement algorithm. In Section IV and V,
we evaluate and analyze the proposed algorithm through the-
ories and experiments. Finally, in Section VI, we summarize
the paper.

II. RELATED WORKS
The 4D compaction algorithm proposed by Marconi and
Mitra [5] focused on the task placement problem on 3D DPR
devices. A 3D matrix is used to represent the status and the
earliest available time of the 3D programmable resources.
The algorithm traverses the 3Dmatrix and selects the position
that makes the arriving task have the earliest start execution
time and largest contact area with other ones, which can be
considered as four-dimensional compaction, i.e., both in 3D
spatial coordinates and time coordinate. The 4D compaction
algorithmmakes full use of the 3D device resources; however,
it has low efficiency due to the significant time consumption
for traversing multiple 3Dmatrices to find the best placement
position.

As far as we know, in addition to the 4D compaction algo-
rithm, there are few other effective algorithms, and data struc-
tures proposed which target 3D DPR devices in literature.
However, the task placement problem for a 2D DPR device
has been explored somuch, where a lot of strategies and novel
data structures were proposed to make more efficient use of
limited hardware resources.

Marcroni et al. [6] proposed a novel Quad-corner (QC)
algorithm, which tries to assign tasks to the four corners
of the 2D DPR device according to task size and main-
tains a free area in the center as much as possible, so as to
keep ample and consecutive space for future arriving tasks.
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Tabero et al. [7] presented a Vertex List Set (VLS) as a
geometrical description on the whole reconfigurable device
of the available area perimeter. Each vertex list describes the
contour of each unoccupied area fragment on the device and
some of the vertexes (bottom-left BL and top-right TR) in it
are marked as candidates for task placement. During the task
placement process, the placement algorithm traverses each
vertex list in VLS and tries to perform feasible task insertions
at each candidate vertex.

FIGURE 1. An example of QC and VLS representation on a 2D DPR device.

Nevertheless, one of the major drawbacks to using QC and
VLS is the fact that the limited searching candidates may
cause an executable position to not be found for a target task
in some cases. For example, in Fig.1, task t1-t5 (black regions)
are running on a 2D DPR device and the system searches
for an available position for a new arriving task t6. In Fig.1,
the candidate locations generated by the QC are marked as
grey nodes, and the VLS of available regions is marked by
red lines. No matter whether searching for candidates in
QC or VLS, t6 cannot be assigned on the device due to the
limitation of searching candidates, although there is enough
space (blue frame) to accommodate it. Consequently, the
placement quality of these algorithms cannot be guaranteed
although the speed of them is fast. In [8]–[11], a Maximal
Empty Rectangle (MER) list is proposed to manage 2D unoc-
cupied hardware resources, which is defined as the list of
empty rectangles that are not fully covered by other ones.
TheMER list records all maximal empty rectangles on the 2D
DPR device, which guarantees the task can find the available
position for it once the position exists to avoid the placement
quality problem that appeared in QC and VLS. However, the
frequent assignment and removal of tasks lead to theMER list
being updated all the time, thus a fast method to enumerate
all MERs is required.

Although several efficient placement algorithms for the 2D
DPR device have been proposed, there are few 3D task place-
ment algorithms, and they are inefficient, that is, they do not
efficiently manage the unoccupied 3D DPR resources. In this
paper, an efficient data structure inspired by the concept of
MER on the 2D DPR device and the algorithm is presented to
solve the 3D task placement problem so that the performance
of the 3D DPR device is improved.

III. PROPOSED APPROACH
A. PROBLEM FORMULATION
This section describes the 3D DPR device model, 3D task
model, system model, and the proposed data structure. These
models are in accordance with related works in [5]–[7].

1) 3D DPR DEVICE AND TASK MODELS
Since the emergence of the concept of the 3D DPR
device, various 3D architectures are proposed [12]–[14].
Leeser et al. [15] proposed a representative multi-layer archi-
tecture, which can be considered as a stack of FPGA circuits
with connections between different layers. In particular,
the first heterogeneous 3D FPGA was produced by Xilinx
in 2012, which is comprised of four FPGA dies, each of
which is attached to one silicon interposer and connected
using Through-Silicon Via (TSV) technology [16]. There-
fore, a reconfigurable device (RD) of the proposed multi-
layer 3D DPR device is modeled as RD (W ,H ,TH ), where
W × H × TH reconfigurable units (RUs) are arranged in
a 3D array and interconnections. The position of an RU
is represented by the left-most front corner coordinate RU
(ux, uy, uz), where 0 ≤ ux < W , 0 ≤ uy < H and
0 ≤ uz < TH . As shown in Fig.2, the bottom left-most front
corner of the 3D DPR device is defined as (0, 0, 0).

FIGURE 2. A 3D dynamic partial reconfigurable device model.

Tasks are generated by partitioning a given application and
considered as basic execution units. A 3D task ti is defined
as ti(wi, hi, thi, lfi, dli), where wi × hi × thi resources are
necessary for execution, wi, hi and thi are task width, height
and thickness respectively, and lfi means the lifetime of the
task ti, which is the sum of configuration time and execution
time and dli means the deadline, which is maximal waiting
time of the task ti before placement. If the waiting time is
over dli, the task ti is discarded. A task can be assigned
at an arbitrary position on the 3D DPR device if there are
enough empty areas to be assigned to the task. Empty area
means the RUs on the device are not being occupied by any
tasks currently. Similar to the previous models in [5]–[7],
we assume that tasks are independent, with no priority con-
straints with each other since these factors are related to the
scheduling order of the execution of the tasks.

2) MAXIMAL EMPTY CUBOID LIST
Tomanage 3D available programmable resources, a Maximal
Empty Cuboid (MEC) list is proposed for a description of
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empty areas on the 3D DPR device. The MEC list is defined
as follows:
Definition 1: An MEC ci(cxi, cyi, czi, cwi, chi, cthi) is an

empty cuboid that can not be fully covered by other ones and
in which a 3D taskmay be assigned, where (cxi, cyi, czi) is the
bottom left-most front corner coordinate, cwi, chi and cthi are
the width, height and thickness of the MEC ci, respectively.

FIGURE 3. An example of an MEC list.

Fig.3 shows an example of an RD (10, 10, 10), where gray-
colored region represents a currently running task. In accor-
dance with the device status, threeMECs c0(0, 0, 5, 10, 10, 5),
c1(0, 4, 0, 10, 6, 10) and c2(6, 0, 0, 4, 10, 10) are generated,
which are marked with blue frames.

An important property of an MEC is given in the following
theorem.
Theorem 1: Each surface of an MEC must touch another

task or the surface of the 3D DPR device.
Proof 1: Assume that there exists an MEC, one surface

of which is not in contact with any task or the surface of
the 3D DPR device. Thus, the MEC can be extended in the
corresponding direction until it touches one task or device
surface. However, any new extended cuboid can fully cover
the MEC, which contradicts the definition of an MEC and
Theorem 1 is proved.

A critical problem comes with the application of the MEC
list since tasks are constantly assigned and removed on the
device. Once the status of the hardware resources on the
device changes, it will result in additional time to update
the MEC list. Therefore, it is necessary to explore fast and
accurate algorithms to enumerate all MECs in the current
resource status, which is the main work that we do.

3) ONLINE TASK PLACEMENT MODEL
Fig.4 shows the online task processing model for a 3D DPR
device, which is composed of a scheduling stage and a place-
ment stage with three main components: a scheduler, a placer,
and an area manager. The scheduler determines which tasks
are executed at the current time, the placer is responsible for
searching a suitable execution position for the scheduled task
and the area manager is used to record and update unoccupied
3D resources [17].

FIGURE 4. Online task processing model.

When a new task arrives at the system based on a given
arriving time interval, a task with a closer deadline between
the new arriving task and waiting tasks is selected by the
scheduler. Then, the placer traverses an MEC list, which
describes the empty areas on the 3D DPR device. If there are
some MECs that can accommodate the arriving task, choose
one of them according to the assignment strategy (described
in section III-C) and add the task to a running task list (RL).
Tasks in RL are sorted by descending order of rest time to
execute, where rest time is defined as the remaining execution
time of the task. After these operations, the MEC list is
updated by the area manager (described in section III-B).
If there are no MECs that can accommodate the sched-
uled task, add the task to a waiting task list (WL) where
tasks are sorted by descending order of tasks’ deadlines dl.
Once the scheduler checks that a task execution is finished,
remove it from RL and update the MEC list by the area
manager. If the current time exceeds the deadline of a task
in WL, the task is rejected and removed from WL by the
scheduler.

In the whole task processing, our research centers on the
placement stage and includes two main aspects:
• Propose a fast MEC enumeration algorithm to update
the MEC list at run-time for purpose of managing 3D
hardware resources;

• Explore the placement quality based on different assign-
ment strategies.

B. MEC ENUMERATION ALGORITHM
In the placement stage, the proposed MEC list is used to
record the unoccupied 3D DPR resources. Once a task is
assigned or removed on the device, the MEC list has to
be updated. Therefore, the updating speed directly affects
the performance of the device. In this section, an efficient
MEC enumeration algorithm with four steps: 1) connected
MECs selection, 2) stratification, 3) stratified MECs update,
and 4) extending, is described to enumerate all new MECs
to update the MEC list. Parameters used to describe the
proposed MEC enumeration algorithm are summarized in
Table 1.
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TABLE 1. Variable definitions.

Algorithm 1MEC Enumeration Algorithm
Require:

The MEC list: C .
The Connected MEC list: Cc.
The assigned or removed target task: t (w, h, th, lf , dl).
The 3D DPR device: RD(W ,H ,TH )
The position of target task t: p (x, y, z).
The layer list: LA = {l0, l1, . . . , lth+1}.

Ensure:
Update the MEC list C .

1: C ← ∅;
2: for each li ∈ LA do
3: li← ∅;
4: end for
5: SelectConMEC(C ,Cc,x,y,z,w,h,th); /*Section III-B.1*/
6: StratifyMEC(Cc,LA, x, y, z, th,TH ); /*Section III-B.2*/

7: UpdateStraMEC(LA, x, y, z,w, h, th); /*Section III-
B.3*/

8: ExtendLayer(LA, z, th); /*Section III-B.4*/
9: for each si in LA do

10: add si to C ;
11: end for

The overview of the MEC enumeration algorithm is shown
in Algorithm 1. It is applied to obtain the updated MEC
list after the target task t(w, h, th, lf , dl) being assigned or
removed at position p(x, y, z). Firstly, connected MECs of
the target task t are selected from MEC list C and moved in
connected MEC list Cc (line 5). After that, these connected
MECs in Cc are stratified and stored in a layer list LA (line 6).
Stratified MECs in candidate layers are updated according
to the task assignment or removal position p (line 7). Then,
by extending the updated stratified MECs bottom-up, all
updated MECs can be obtained (line 8). Finally, the MEC
enumeration algorithm updates the MEC list C by adding the

updated MECs into C (line 9-11). Each step is explained in
detail below.

1) CONNECTED MECS SELECTION (SELECTCONMEC)
When a task is assigned or removed, the MEC that is
connected to the task needs to be updated in the MEC list.
The definition of ’connected’ is given as follows:
Definition 2: If there exists an overlap or contact between

an MEC and a task, the MEC is called a connected MEC of
the task, otherwise it is unconnected.

FIGURE 5. Tasks on a 3D DPR device RD (10, 10, 10).

TABLE 2. MEC list in Fig.5.

FIGURE 6. Connected and unconnected MECs in Fig.5.

Fig. 5 shows an example of an RD(10, 10, 10), where
black-colored regions are the area occupied by running tasks
(t1, t2, and t3) and gray-colored cuboid t is a target task
that has finished executing to be removed. According to the
task information shown in Fig. 5, there are five MECs and
detailed information of them are listed in Table 2, where the
c0, c1 and c3 are marked by colored frames in Fig.6(a), which
represent theMECs connected to the gray-colored task t since
c0, c1, and c3 are directly touched by the target task t . Fig.6(b)
shows the unconnected ones, c2 and c4.
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Since the task assignment and removal merely affect
the MECs connected to them (proved in Theorem 2 below),
the others in the MEC list have no need to be operated in the
subsequent steps of the MEC enumeration algorithm. Thus,
the subsequent operations can be significantly reduced by
specifically selecting the connectedMECs from theMEC list.
Theorem 2: When a target task is assigned or removed on

a 3D DPR device, unconnected MECs of the task are not
affected by this operation.

Proof 2: For a task t , assume that there exists an uncon-
nected MEC c′, which is affected when the task t is removed
from the 3DDPR device. The task removal operation releases
resources occupied by the task t , so that the affected MEC
c′ can be extended to a larger one. Since each surface of an
MEC must touch at least one task or surface of the device
(proved in Theorem 1), the extension of the c′ means that at
least one task that c′ in contact with is removed. Since only
task t is removed from the device at this time, there is only
one possible fact that the task t is the task that contact with
theMEC c′. This contradicts the definition of an unconnected
MEC in Definition 2. Similarly, the theorem is proved.

2) STRATIFICATION (STRATIFYMEC)
To reduce the complexity of updating connected MECs at
the three-dimensional level, we layer the 3D DPR device for
subsequent processing in this stratification step.

The stratification step includes two primary operations:
1) build a layer list LA and select candidate layers, 2) cut
connected MECs and store stratified MECs information into
corresponding candidate layers.

Firstly, a layer list LA based on the placement position and
thickness of the target task is generated. The ’layer’ is defined
as follows:
Definition 3: A layer li (lxi, lyi, lzi, lwi, lhi, lthi) ∈ LA

is a space that is generated by horizontally slicing the 3D
DPR device according to the top and bottom surface of the
assigned or removed task, where (lxi, lyi, lzi) is the bottom
left-most front corner coordinate, lwi, lhi and lthi are the
width, height, and thickness of the layer li, respectively. Due
to the horizontal stratification, the basic information of the
layer li can be represented as li (0, 0, lzi,W ,H , lthi), where
W and H are the width and height of the device, respectively.
Therefore, the above definition of a layer li can be simplified
to li (lzi, lthi).
In Fig.7(a), given a target task t (w, h, th, lf , dl), it will be

assigned or removed at position p(x, y, z). Fig.7(b) shows the
front view of the task t , where the space of the 3DDPR device
RD(W ,H ,TH ) is cut into LA = {l0, . . . , li, . . . , lth+1} in the
z-axis, where 0 ≤ i ≤ th+1. The z-axis value and information
of each layer is described in Fig.7(b).

As the layer list LA is constructed, connected MECs for
the target task are horizontally stratified and stored in cor-
responding layers according to their z-axis value, where
’stratified MEC’ is defined as follows:
Definition 4: A stratifiedMEC si(sxi, syi, szi, swi, shi, sthi)

is an empty cuboid that is generated from horizontally

FIGURE 7. Principle to generate a layer list LA.

slicing connected MECs based on layer information, where
(sxi, syi, szi) is the bottom left-most front corner coordinate,
swi, shi and sthi are the width, height, and thickness of the
stratified MEC si, respectively.

FIGURE 8. An example of stratification.

TABLE 3. Layers and stratified MECs in Fig.7.

Fig.8 shows the front view of the 3D DPR device in
Fig.6(a) and the device is stratified into layer l0−l4 according
to the principle shown in Fig. 7. In Table 3, the first column
shows the layer list information, the second column shows
the stratified MECs information in each layer and cj in the
third column means the stratified MEC si comes from the
stratification of the connected MEC cj.

For example, the stratified MECs s0 and s1 in the layer l4
are generated from the stratification of connected MECs c0
and c3, respectively. Besides, a redundant MEC may exist,
which can be completely covered by other stratified MECs in
the same layer. The redundant MEC is marked by * in Table 3
and needs to be removed.

Note that, the layers l0, l1, l2, and l4 in Table 3, are marked
as candidate layers for the next processing step, to the oppo-
site l3 is a non-candidate layer.

The principle for selecting a candidate layer is given as
follows:
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Definition 5: For two adjacent layers li and li+1, li+1 is
a non-candidate layer if the information of stratified MECs
in the two layers are completely the same except for their
z-axis value and thickness. Conversely, if not completely
overlapping, li+1 is a candidate layer.
For the bottom layer l0 and the top layer lth+1, as long as

there exists stratified MECs stored in which, it is marked as
a candidate layer. Furthermore, l1 is always considered as a
candidate layer since the bottom of the target task t is at l1.
Algorithm 2 shows the pseudo-code of the stratification

step. We traverse the connected MEC list and compare the
task thickness with the bottom and top of its connectedMECs
since the layer at the bottom or top of a connected MEC
must be a candidate layer (line 1-20). In each candidate
layer, the information of stratified MECs is stored. Further-
more, to avoid the lack of the stratified MECs information
stored in the candidate layer, the connected MEC list and
candidate layer information are compared again (line 22-30).
It should be noted that the redundancy check is necessary
(line 31-36) before each stratified MEC is stored in its cor-
responding layer.

3) STRATIFIED MECS UPDATE (UPDATESTRAMEC)
Stratified MECs in candidate layers except for l0 and lth+1,
need to be updated when assigning or removing the target
task. From layer l1 to lth, the stratifiedMECs in the same layer
have the same thickness; thus, the ones in the same layer can
be considered as MERs in the x-y plane. A method proposed
in [11] is used to enumerate new MERs in a 2D plane after
the device status changes.

FIGURE 9. An example of stratified MEC update in l2.

Fig. 9 shows an example of a stratified MECs update
process in layer l2 mentioned in Fig.8.When the gray-colored
task t with size 5 × 10 × 3 located at position (0, 0, 4) is
removed, the stratified MEC in l2 is updated from Fig.9(a) to
Fig.9(b). Similarly, the process of task assignment is reverse
to the removal process. Table 4 shows the stratified MECs
update results from the example in Fig.8, where the stratified
MECs marked with red are the updated ones.

4) EXTENDING (EXTENDLAYER)
In the previous steps, connectedMECs on the 3DDPR device
have been updated in each layer for management. Contrary to
the stratification, in the final step, we need to extend updated

Algorithm 2 StratifyMEC(Cc,LA, x, y, z, th,TH )
Require:

Task’s position and thickness: x, y, z, th.
3D DPR device’s thickness: TH .
Connected MEC list: Cc.
The layer list: LA = {l0, l1, . . . , lth+1}.
Integers: i, j.

Ensure:
Stratify connectedMECs into candidate layers.Function
Stratify (Cc,LA, x, y, z, th)

1: for each c(cx, cy, cz, cw, ch, cth) ∈ Cc do
2: if cz < z then
3: generate s(cx, cy, cz, cw, ch, z− cz);
4: RedundancyCheck(l0, s);
5: mark l0(0, z) as a candidate layer;
6: end if
7: if cz+ cth > z+ th then
8: generate s(cx, cy, z+ th, cw, ch, cz +cth− (z+ th));

9: RedundancyCheck(lth+1, s);
10: mark lth+1(z+ th,TH − z− th) as a candidate layer;
11: end if
12: if (cz ≥ z) and (cz < z+ th) then
13: generate s(cx, cy, cz, cw, ch, 1);
14: RedundancyCheck(lcz−z+1, s);
15: mark lcz−z+1(cz, 1) as a candidate layer;
16: end if
17: if (cz+ cth > z) and (cz+ cth < z+ th) then
18: mark lcz+cth−z+1(cz+ cth, 1) as a candidate layer;
19: end if
20: end for
21: mark l1(z, 1) as a candidate layer;
22: for each candidate layer li(lzi, lthi) do
23: lzi← i+ z− 1
24: for each c(cx, cy, cz, cw, ch, cth) ∈ Cc do
25: if (cz ≤ lzi) and cz+ cth > lzi then
26: generate s(cx, cy, lzi, cw, ch, 1);
27: RedundancyCheck(li, s);
28: end if
29: end for
30: end for

End Function
Function RedundancyCheck (l, s)

31: if there is a s′ in l that is included in s then
32: replace s′ with s;
33: end if
34: if there is no s′ in l includes s then
35: add s into l;
36: end if

End Function

stratified MECs bottom-up to generate ultimate MECs and
obtain the final updated MEC list. The overview of the
extending step is described in Fig. 10, where the th is the
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TABLE 4. Candidate layers and updated stratified MECs in Fig.8.

FIGURE 10. Flowchart of extending step.

thickness of the target task. From the bottom to the top layer,
the candidate layers are searched and extended one by one.

Based on the position of the two candidate layers, there
are two main operations: Move (Algorithm 3) and Combine
(Algorithm 4) in the extending step. There are three cases
marked in Fig. 10 as follows:
• case 1 : Layer lprev is the last candidate layer and prev <

th: move(lprev, lth), as shown in Fig.11(a).
• case 2 : Layer lprev and lnext are candidate layers and
adjacent: combine(lprev, lnext ), as shown in Fig.11(b).

• case 3 : Layer lprev and lnext are candidate lay-
ers, while non-adjacent: move(lprev, lnext−1), then,
combine(lnext−1, lnext ), as shown in Fig.11(c).

The pseudo-code of the move operation is shown in
Algorithm 3, where the thickness of the moved stratified
MECs should be updated (line 2 in Algorithm 3).

The pseudo-code of the combine operation is shown
in Algorithm 4, where stratified MECs from two candi-
date layers are compared. When two compared stratified
MECs [si(sxi,syi,szi, swi,shi,sthi) in the layer lnext−1 and
sj(sxj,syj,szj,swj, shj, sthj in the layer lnext ] are mapped in

FIGURE 11. Extending step based on the position of candidate layers.

Algorithm 3Move (la, lb)
Require:

Two layers: la, lb.
Ensure:

Move all stratified MECs in la to lb.
1: for each stratified MEC si(sxi, syi, szi, swi, shi, sthi) in la

do
2: sthi← sthi + (b− a);
3: move si to lb;
4: end for

the same x-y plane, there are five kinds of relative positions
between them, which are given as follows:

• si ⊃ sj means that si includes sj.
• si ⊂ sj means that si is included in sj.
• si = sj means that si is equal to sj, where sxi = sxj,
syi = syj, swi = swj and shi = shj.

• si ∩ sj means that a part of si overlaps with sj.
• si × sj means that there is no overlap between si and sj.

In the last case, the combine operation cannot be done since
no overlap means there are no MECs that exist on which their
bottom belongs to the si and top belongs to the sj.
Fig.12 shows four scenarios where the combine operation

is possible. In case (a), the thickness of sj is updated (line 3-7
in Algorithm 4). In case (b), the thickness of si is extended
(line 8-12 in Algorithm 4) and si is marked to move to lnext
(line 27-29 inAlgorithm 4). In case (c), si and sj aremerged to
sj (line 13-17 in Algorithm 4). In case (d), a newMEC snew is
generated and stored in lnext (line 18-24), where snew becomes
snew(max(sxi, sxj), max(syi, syj), min(szi, szj), min(sxi +
swi, sxj + swj) − max(sxi, sxj), min(syi + shi, syj + shj) −
max(syi, syj), max(szi + sthj, szj + sthj)− min(szi, szj)).

Fig. 13 shows an example of the extending step in Table 4,
where l0, l1, l2 and l4 are candidate layers. From l0 to l1, the
combine operation is done directly. The s0 in l0 is included
by the s0 in l1, therefore, the thickness of s0 in l0 is updated
and moved to l1, which is represented as s1 in l1. From l1
to l2, s0 and s1 in l1 need to be compared with the s0 in l2,
respectively. The combine operation is the same as before and
extending results are shown in Fig. 13(b). From l2 to l4, they
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Algorithm 4 Combine (lnext−1, lnext )
Require:

Two layers: lnext−1, lnext .
Ensure:

Combine stratified MECs in lnext−1 and lnext .
1: for each si in lnext−1 do
2: for each sj in lnext do
3: if si ⊃ sj then
4: if szi ≤ szj then
5: sthj← szj + sthj − szi;
6: end if
7: end if
8: if si ⊂ sj then
9: if szi + sthi ≤ szj + sthj and szi < szj then
10: sthi← szj + sthj − szi and mark si;
11: end if
12: end if
13: if si = sj then
14: if szi ≤ szj then
15: merge si and sj in lnext ;
16: end if
17: end if
18: if si ∩ sj then
19: if no s′ in lnext−1 that snew ⊆ s′ and sz′ < szi then
20: if no s′′ in lnext that snew ⊆ s′′ and sz′′+ sth′′ >

szj + sthj then
21: add snew to lnext ;
22: end if
23: end if
24: end if
25: end for
26: end for
27: for each marked si do
28: move si to lnext ;
29: end for

FIGURE 12. Relationships between si in lnext−1 and sj in lnext .

are non-adjacent layers, thus a move operation is performed
to update the stratified MECs in l2 and move them to l3. Then
in the combine operation, s0, s1, and s2 in l3 are compared
with s0 in l4, respectively. It should be noted that, s0 in l3 is

FIGURE 13. Extending step of stratified MECs in Table 4.

equal to s0 in l4, thus we merge them into an entire MEC and
store it in l4, which is marked as s0 in l4 in Fig.13(c). After
processing all the candidate layers, all the stratified MECs
have been extended from the bottom to the top layer to get
the final extended MECs.

Finally, the layer list LA needs to be traversed and all the
extended MECs are moved to the MEC list (line 9-11 in
Algorithm 1). As a result, the connectedMECs c0, c1 and c3 in
Fig. 6 are updated into: c′0(0, 0, 5, 10, 5), c

′

1(0, 0, 4, 5, 10, 6)
and c′3(2, 0, 0, 3, 10, 10).

C. ASSIGNMENT STRATEGIES
The MEC list stores all of the MECs of the 3D DPR device
in the current status, thus a scheduled task can find the
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FIGURE 14. Tasks and timeline of a 3D DPR device RD(10, 10, 10).

executable position by searching the MEC list. If several
MECs can accommodate the target task, it is necessary to
use a proper approach as an assignment strategy to choose
the best one. In this section, several assignment strategies are
introduced and combined with the proposed MEC enumera-
tion algorithm.

1) BEST-FIT STRATEGY (BF)
If several MECs can accommodate the scheduled task, the
Best-Fit strategy [18] selects oneMECwhich has the smallest
volume difference dif , which is calculated as follows: given
a task t(w, h, th, lf , dl) and an MEC ci(cxi, cyi, czi, cwi,
chi, cthi),

dif (ci, t) = cwi × chi × cthi − w× h× th (1)

If there are several MECs with the same dif , we calculate
the body diagonal dia(ci), defined as follows:

dia(ci) =
√
cw2

i + ch
2
i + cth

2
i (2)

then the MEC with the smallest body diagonal is assigned to
the task.

2) ADJACENCY HEURISTIC STRATEGY (ADJ)
The adjacency heuristic was proposed in [19]. When a placed
task touches other tasks or the surface of the 3D DPR device,
they are defined to be adjacent. Adjacent value is the sum of
surface area where a task and its adjacent ones are touching,
taking into account the time of contact. The main idea of
this strategy is selecting the position which has the largest
adjacent value with other tasks and device surfaces, so as to
make the remaining space on the device more complete and
continuous.

Given a task t(w, h, th, lf , dl) and the task set T which is
adjacent to task t assigned at position (x, y, z), the adjacent
value A can be calculated as follows:

A(x, y, z, t) =
∑
ti∈T

AT (ti, t)× min(lf , ei)+ AR(t)× lf (3)

where AT means the adjacent area between t and ti, ei is the
rest of the execution time of task ti and AR represents the
adjacent area between the task and the 3D DPR device.

As shown in Fig. 14, at time 6, three tasks t1, t2, t3 are
executed on a 10 × 10 × 10 device, whose information is
shown in the table in Fig.14. At this time, if a new task t
with dimensions 5 × 3 × 3 arrives at the system and begins
to execute at the position (2, 0, 0), the adjacent area AR(t)
between task t and the 3D DPR device can be calculated
as 5 × 3 + 5 × 3 = 30. According to the relative position
of the task t with t1, t2 and t3, the adjacent area AT (t1, t),
AT (t2, t), and AT (t3, t) are 9, 3 and 3, respectively. Based
on the execution timeline of tasks, the remaining execution
time of t1, t2 and t3 can be calculated easily. Therefore, the
adjacent value A(2, 0, 0, t) is equal to AT (t1, t)×min(4, 2)+
AT (t2, t)×min(4, 3)+AT (t3, t)×min(4, 6)+AR(t)×4 = 159.
Finally, according to Eq.3, the system can get all adjacent

values when a new task is placed in different possible posi-
tions and select the position with the largest A(x, y, z, t).

IV. THEORETICAL ANALYSIS
In this section, theoretical analysis is discussed to evaluate
the performance of the proposed task placement algorithm.
Definitions of additional variables are shown in Table 5,
where a task t(w, h, th, lf , dl) will be assigned or removed
at position (x, y, z), n is the number of tasks that are currently
running on the 3D DPR device RD(W ,H ,TH ), andM is the
number of MECs which contains m MECs connected to the
task t .

TABLE 5. Variable definitions.

TABLE 6. Time complexity of MEC enumeration algorithm.

A. TIME COMPLEXITY
The time complexity of each step in the proposed MEC
enumeration algorithm is shown in Table 6. Firstly, the MEC
list is traversed to select connected MECs. Thus the time
complexity of this step is O(M ). Then, the size and position
information of each connected MEC is compared with the
target task t to select candidate layers and stratify connected
MECs into corresponding candidate layers.

Thus the time complexity of stratification isO(m× th). For
each layer, the time complexity of stratified connected MEC
update is O(n+ (w+m)3), as proved in [11]. The maximum
number of candidate layers that needs to be updated is th,
which means all the layers from l0 to tth are candidate layers.
Therefore, the time complexity for stratified MECs update
is O((n + (min(w, h) + m)3)×th). In the final extending
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step, from the bottom layer to the top layer, each candidate
layer is compared one by one. Thus, the time complexity is
O(m2

×th).
To ensure the efficiency of processing the MEC list, the

total number of MECs M when n tasks are executing on
the 3D DPR device should be explored. In Appendix, the
upper limit of the number of MECs is proved to not be larger
than 12n + 9. Furthermore, Fig.15 shows the experimental
results about the relationship between the number of tasks,
MECs, and connected MECs, where the x-axis represents the
number of tasks that are currently running on the 3D DPR
device RD(100, 100, 100). The blue line provides confirma-
tory evidence that with the running task number increases,
the number of MEC increases in a linear manner. Besides,
from the red line, we can find that the number of connected
MECs is far less than that of MECs, which proves that the
connected MECs selection step effectively reduces the scope
of exploration for subsequent steps.

FIGURE 15. Relationship between the number of tasks, MECs, and
connected MECs.

Thus the total time complexity of the above MEC enumer-
ation algorithm is O(n+ (n+ (min(w, h)+ m)3)× th).
About the assignment strategies, the time complexity of the

Best-Fit strategy is O(n) since the MEC list is traversed to
select the best one to assign the scheduled task. Additionally,
the adjacency heuristic strategy needs to traverse the running
task list, MEC list, and surfaces of the 3D DPR device to
calculate the adjacent value A(x, y, z, t), thus the time com-
plexity is O(n2).

B. SPACE COMPLEXITY
Space complexity of the proposed algorithm consists of the
following parts: 1) an MEC list C , 2) a layer list LA. Thus,
the total space complexity is O(M + m× th).

V. EXPERIMENTAL RESULTS AND EVALUATION
A. EXPERIMENTAL SETUP
To evaluate the performance of the proposed task placement
algorithm, we compare it with existing algorithms that focus

on the 3D task placement problem. Based on the literature
survey, we implement two algorithms for comparison. The
first one is the 4D compaction algorithm [5], which has higher
placement quality compared to other existing 3D task place-
ment algorithms. Another one named 3D QC is an extension
of the Quad-corner algorithm proposed in [6]. The Quad-
corner algorithm has high efficiency when targeting on a 2D
DPR device. Thus we extend it from 2D to 3D.

We construct an experimental framework in C language to
implement our proposed and baseline algorithms. The exper-
imental environment is macOS 10.15.1, GCC 4.8 on 1.4 GHz
Quad-Core Intel Core i5 Processor with 8 GB Memory.

Experiments are performed on a 3D DPR device with
50 × 50 × 50 reconfigurable units. There are five task sets,
each containing 500 tasks. Moreover, each task is randomly
generated according to the information given in Table 7,
where wr , hr , thr and lfr are ranges of task’s width, height,
thickness and lifetime in each task set, respectively.

TABLE 7. Task sets for simulation.

Note that the size of tasks in TS1[1-5] are so small that
the 3D DPR device RD(50, 50, 50) can accommodate all
500 tasks of TS1 simultaneously.

B. EVALUATION INDICATORS
Runtime overhead and placement quality of a task placement
algorithm have a significant influence on the performance of
the 3D DPR device. Thus, the average runtime and rejection
ratio introduced below, are chosen as two evaluation indica-
tors.
Average runtime is the sum of searching time and updating

time, which is an indication of the speed of the task placement
algorithm. Searching time is the average time to find an
available position when a task is assigned. Updating time
is the average time to manage free space after removing or
assigning a target task.
Rejection ratio is used to evaluate the placement qual-

ity of the task placement algorithm. When a task can not
find an available position until its given deadline, it will
be rejected.The equation to calculate the rejection ratio is
defined as follows:

Rejection ratio =

∑
∀ti∈REJECT

wi × hi × thi × lfi∑
∀tj∈TOTAL

wj × hj × thj × lfj
(4)

where REJECT means the set of tasks that are rejected from
the total task set TOTAL, where w, h, th, and lf represent the
width, height, thickness, and lifetime of the corresponding
task, respectively.
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TABLE 8. Evaluation of average runtime.

C. EVALUATION OF TASK PLACEMENT ALGORITHM
1) EVALUATION OF RUNTIME OVERHEAD
For each task set shown in Table 7, we generate 500 tasks
and repeat 100 times to do experiments to get the average
runtime. To evaluate the runtime overhead fairly, the deadline
of each task is set to a value large enough to guarantee there is
no task rejected on the 3D DPR device. Experimental results
of total average runtime, which is the sum of searching time
and updating time for each algorithm, are shown in Table 8,
where the proposed task placement algorithm is the combi-
nation of the MEC enumeration algorithm and the Best-Fit
strategy (MEC/BF).

As shown in Table 8, the total average runtime of proposed
MEC/BF algorithm is 46 µs, 95 µs, 148 µs, 128 µs and
56 µs for the task sets TS1 to TS5, respectively. For all
task sets, the speed of the MEC/BF algorithm is much faster
than the 4D compaction algorithm, especially when the task
size is small enough, the searching time of 4D compaction
algorithm is greatly increased. The reason is that the 4D
compaction algorithm has to traverse all scheduled tasks,
running tasks and each RU on the 3D DPR device, to find the
best position to assign arriving tasks. The time complexity of
4D compaction algorithm is O(W ×H ×TH ×max(ns×n)),
where W , H , TH , ns and n are the width, height, thickness
of the 3D DPR device, the number of scheduled tasks, and
running tasks, respectively. In addition, the 3D QC needs
to traverse the running tasks on the 3D DPR device with
time complexity O(w × h × th × n), where w, h, th is the
width, height, and thickness of the assigned task, respectively.
Therefore, when the task size is small enough, such as TS1
in Table 8, the 3D QC has the shortest total average runtime
compared with 4D compaction and the proposed MEC/BF.
Nevertheless, the speed of 3D QC is significantly affected by
the task size so that when the task size becomes larger from
TS2, the proposed MEC/BF algorithm performs better.

In order to better analyze the runtime overhead of the algo-
rithms, Table 8 also shows the time spent by each algorithm
on searching and updating.

The searching time of the MEC/BF algorithm is shorter
than 4D compaction and 3DQC because the Best-Fit strategy
finds the available position by searching an MEC list with a
time complexity of O(n).

From TS1 to TS5, with the task size becoming larger,
the number of running tasks or scheduled tasks on the 3D
DPR device is decreased. Thus, the searching time of the 4D
compaction algorithm is significantly reduced. For the 3D
QC algorithm, the searching time is related to not only the
number of running tasks but also the task size. Therefore,
from TS4[5,20] to TS5[10,20], the searching time of 3D QC
is decreased significantly since the number of running tasks
on the 3D DPR device is reduced even though the task size
becomes larger. For the proposedMEC/BF algorithm, Fig. 16
shows the number of MECs corresponding to the number of
tasks currently running on the 3D DPR device for the task
sets TS1 to TS5, where the number of MECs for TS2 is
considerably more than TS1, so that the searching time is
increased from 1 µs to 5 µs. By contrast, from TS2 to TS5,
the searching time is decreased with the decreasing number
of MECs on the device.

FIGURE 16. Number of MECs when task set TS1 to TS5 executed on the
RD(50, 50, 50).

In terms of updating time, the proposed MEC/BF algo-
rithm has the longest updating time. The reason is that the
MEC enumeration process needs to search all connected
MECs and update the information of them, while the 3D
QC only needs to update the 3D matrix occupied by the
assigned or removed task with time complexityO(w×h×th).
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FIGURE 17. Rejection ratio with different deadline ranges.

The updating time of the 4D compaction algorithm is shorter
than 3D QC and MEC/BF due to the updating operation
completed by removing or adding a task into a scheduled task
list or a running task list.

With the task size becoming larger, the updating time of
3D QC is longer than before since a larger task size means
that a larger 3D matrix requires updating. From TS1 to TS3,
the updating time of MEC/BF becomes longer, although the
number of running tasks on the 3D DPR device gradually
decreases. This is because the thickness of a task also has a
significant influence on the runtime of the MEC enumeration
algorithm. From TS4 to TS5, relative to the size of the 3D
DPR device 50× 50× 50, the size of the task is so large that
only a small number of tasks can be executed on the device
simultaneously, thus the updating time is gradually decreased
compared with TS3.

In general, the runtime efficiency of proposed MEC/BF
algorithm is much improved in comparison with 4D com-
paction and 3D QC algorithms.

2) EVALUATION OF PLACEMENT QUALITY
To explore the relationship between task deadline and rejec-
tion ratio, tasks with different deadline ranges [1, 2], [2, 3],
[3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9] and [9, 10] (×100 ms)
are given based on the task’s width, height and thickness
ranges of [5-15]. Task arrival time interval (AT) is set to
300 µs, which means a new task arrives at the 3D DPR
device every 300 µs. As shown in Fig.17, with the increase
in task deadline, the rejection ratio of each method decreases
gradually. For the reason that, if the deadline for each task is
shorter, it is more difficult for the task placement algorithm
to meet the deadline.

To explore the relationship between the task arrival time
interval (AT) and rejection ratio, tasks with different ATs 100
µs, 200 µs, . . . , 1900 µs and 2000 µs are given. All the task’s
width, height, and thickness are randomly generated between
[5-15], and the deadline is set between [1-10] (×100) ms.
As shown in Fig.18, the rejection ratio for each algorithm
decreases with the increase of AT since a longer task arrival

FIGURE 18. Rejection ratio with different task arrival time intervals (AT).

time interval allows more possibilities for running tasks to be
finished, so the rejection ratio is lower.

The data gathered in Fig. 17 and Fig. 18 suggests that
proposed MEC/BF algorithm has the lowest rejection ratio.
Comparedwith the previousworks, the total average rejection
ratio is reduced at least 39%. Moreover, the 4D compaction
algorithm has the highest average rejection ratio. Although
the 4D compaction algorithm places the arrival tasks more
compactly on the 3D DPR device by considering the rela-
tive position between scheduled tasks and running tasks [5],
it takes amuch longer time to search for a feasible position for
the current task than 3D QC and the proposed MEC/BF and
MEC/Adj algorithms. The longer runtime means other new
arriving tasks have to take more time to wait for calling so
that it is much easier to be rejected. The rejection ratio of 3D
QC is higher than MEC/BF and MEC/Adj algorithm because
the limitation of searching candidates in 3D QC prevents the
arriving task be placed although there is enough space on the
3D DPR device to accommodate it. In contrast, the proposed
MEC/BF and MEC/Adj algorithms can assign an arriving
task as long as there is enough space. The rejection ratio
of the MEC/Adj algorithm is higher than MEC/BF, as the
time complexity of adjacency heuristic O(n2) is higher than
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Best-FitO(n), although the adjacency heuristic places the task
more compactly than Best-Fit.

Fig. 18 demonstrates that the rejection ratio of the 4D com-
paction algorithm decreases faster than 3D QC. Moreover,
from point A the rejection ratio of 4D compaction starts to
be lower than 3D QC. The reason is that the 4D compaction
algorithm has a runtime close to 3D QC due to the reduced
number of running tasks on the device, and the algorithm
places tasks more compactly than 3D QC. When the runtime
advantages of 3D QC are not obvious, the gap in the rejection
ratio is gradually decreased.

VI. CONCLUSION AND FUTURE WORK
In this paper, to solve the problem of online task placement
on 3D dynamic partial reconfigurable devices, we propose a
novel data structure named MEC and an efficient algorithm.
When a task is assigned or removed, the connected MECs
of the target task are selected, and processed by stratifying,
updating, and extending. We ensure the efficiency of search-
ing the MEC list by proving the upper limit of the number
of MECs theoretically and experimentally. Furthermore, the
experimental results demonstrate that the runtime overhead of
the proposed task placement algorithm is greatly decreased,
and the rejection ratio is at least reduced by 39% compared
to 4D compaction [5] and 3D QC [6]. Therefore, the perfor-
mance of the 3D DPR device can be greatly improved.

Since the task placement is only one step in the overall
process of online task processing for dynamic partial recon-
figurable devices, as part of our future work, a scheduling
order based on task priority will be taken into consideration.
Furthermore, in reality, tasks require frequent data transmis-
sion in most applications, therefore the development of a new
placement strategy to further minimize task communication
overhead is necessary.

APPENDIX
THE UPPER LIMIT OF THE NUMBER OF MECS
For a 2D planer placement problem, a bar-visibility graph
mentioned in [20], [21] is redefined as a graph that the ver-
tices of the graph correspond to the rectangle or the boundary
of the 2D DPR device and two vertices of the graph are
visible whenever there exists a vertical sightline between
two rectangles corresponding to the vertices [11]. An edge
between two vertices represents the visible relationship.

For a layout of tasks on a 3D DPR device, we consider the
six boundaries of the device as six surfaces L, R, B, F , U
and D (shown in Fig. 19(a)). According to the definition of
the bar-visibility graph, the visible relationship can be repre-
sented as a left-right bar-visibility graph in the x-axis direc-
tion, a front-back bar-visibility graph in the y-axis direction
and an up-down bar-visibility graph in the z-axis direction.
We consider tasks and the six surfaces as vertices. Thus the
3D layout can be transformed into a cuboid-visibility graph,
which is defined as follows:
Definition 6: A cuboid-visibility graphG(V ,E) is a union

of the left-right bar-visibility graphGx(V ,Ex), the front-back

FIGURE 19. An example of transforming a layout into a cuboid-visibility
graph.

bar-visibility graph Gy(V ,Ey) and the up-down visibility
graph Gz(V ,Ez), where its vertex set V is the same as Gx ,
Gy, or Gz and its edge set E = Ex ∪ Ey ∪ Ez.
Theorem 1 proved that each surface of an MECmust touch

another task or the surface of the 3D DPR device. Thus,
the edge between two vertices in a cuboid-visibility graph
represents there exists at least one MEC that touch with the
task or device’s surface represented by the vertices.
Theorem 3: Given a 3D DPR device and n non-

overlapping tasks placed on the device, where n ≥ 1, the
total number of MECsM is not larger than 12n+ 9.

Proof 3: According to Definition 6, we consider trans-
forming the 3D DPR device into a cuboid-visibility graph
G(V ,E), which is the union of a left-right bar-visibility graph
Gx(V ,Ex), a front-back bar-visibility graph Gy(V , Ey) and a
up-down visibility graph Gz(V ,Ez), where Ex , Ey and Ez is
the edge set of exi, eyj and ezk , respectively. Thus, the set of
all MECsM on the 3D DPR device can be demonstrated by:

M=
( ⋃
∀exi∈Ex

Mexi

)⋃( ⋃
∀eyj∈Ey

Meyj

)⋃( ⋃
∀ezk∈Ez

Mezk

)
(5)

whereMexi,Meyj andMezk represent the MEC set that touch
two surfaces connected by exi, eyj and ezk in the left-right bar-
visibility graph, front-back bar-visibility graph and up-down
bar-visibility graph, respectively.

According to Eq. 5, the number of MECs |M | in set M
satisfies the following Eq. 6.

|M | ≤
∑
∀exi∈Ex

∣∣Mexi

∣∣+ ∑
∀eyj∈Ey

∣∣Meyj

∣∣+ ∑
∀ezk∈Ez

∣∣Mezk

∣∣
= |Ex | +

∑
∀exi∈Ex

(
∣∣Mexi

∣∣− 1)

+
∣∣Ey∣∣+ ∑

∀eyj∈Ey

(
∣∣Meyj

∣∣− 1)

+ |Ez| +
∑
∀ezk∈Ez

(
∣∣Mezk

∣∣− 1)

36916 VOLUME 8, 2020



T. Zhou et al.: Fast Online Task Placement Algorithm for 3D DPR Devices

=
1
2
× (|Ex | +

∣∣Ey∣∣+ ∣∣Ey∣∣+ |Ez| + |Ex | + |Ez|)
+

∑
∀exi∈Ex

(
∣∣Mexi

∣∣− 1)+
∑
∀eyj∈Ey

(
∣∣Meyj

∣∣− 1)

+

∑
∀ezk∈Ez

(
∣∣Mezk

∣∣− 1) (6)

A rectangle-visibility graph mentioned in [22] is the union
of two bar-visibility graphs and the total edge number of the
rectangle-visibility graph is not larger than 6n+ 4, which has
been proved in [11]. For the 3D DPR device, any two of its
three bar-visibility graphs can be considered as a rectangle-
visibility graph. Thus, the number of edges |Ex |,

∣∣Ey∣∣ and |Ez|
in three bar-visibility graph satisfies the following equation:

|Ex | +
∣∣Ey∣∣ ≤ 6n+ 4∣∣Ey∣∣+ |Ez| ≤ 6n+ 4

|Ex | + |Ez| ≤ 6n+ 4

(7)

The value of (
∣∣Mexi

∣∣− 1) depends on the the number of tasks
between two vertices that are connected by the edge exi in
Gx , the same with the value of (

∣∣Meyj

∣∣− 1) and (
∣∣Meki

∣∣− 1).
When n tasks are placed on the 3D DPR device, the Eq. 8 is
satisfied, which was already proved in [11].∑

∀exi∈Ex

(
∣∣Mexi

∣∣− 1) =
∑
∀eyj∈Ey

(
∣∣Meyj

∣∣− 1)

=

∑
∀ezk∈Ez

(
∣∣Mezk

∣∣− 1)

≤ n+ 1 (8)

Therefore, when there are n tasks placed on the 3D DPR
device, where n ≥ 1, the total number of MECs |M |, is not
larger than 1

2 × (6n+ 4)× 3+ 3(n+ 1) = 12n+ 9.
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