
Received November 22, 2019, accepted February 18, 2020, date of publication February 20, 2020, date of current version March 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975351

Personal Stress-Level Clustering and Decision-
Level Smoothing to Enhance the Performance
of Ambulatory Stress Detection
With Smartwatches
YEKTA SAID CAN 1, NIAZ CHALABIANLOO 1, DENIZ EKIZ 1,
JAVIER FERNANDEZ-ALVAREZ 2, GIUSEPPE RIVA 2, AND
CEM ERSOY 1, (Senior Member, IEEE)
1Department of Computer Engineering, Boğaziçi University, 34342 Istanbul, Turkey
2Psychology Department, Universita Cattolica del Sacre Cuore, 20123 Milan, Italy

Corresponding author: Yekta Said Can (yekta.can@boun.edu.tr)

This work was supported in part by the AffecTech: Personal Technologies for Affective Health, Innovative Training Network funded by the
H2020 People Programme under Marie Sklodowska-Curie under Grant 722022, and in part by the Turkish Directorate of Strategy and
Budget through the TAM Project under Grant DPT2007K120610.

ABSTRACT Researchers strive hard to develop effective ways to detect and cope with enduring high-level
daily stress as early as possible to prevent serious health consequences. Although research has tradition-
ally been conducted in laboratory settings, a set of new studies have recently begun to be conducted
in ecological environments with unobtrusive wearable devices. Since patterns of stress are ideographic,
person-independent models have generally lower accuracies. On the contrary, person-specific models have
higher accuracies but they require a long-term data collection period. In this study, we developed a hybrid
approach of personal level stress clustering by using baseline stress self-reports to increase the success
of person-independent models without requiring a substantial amount of personal data. We further added
decision level smoothing to our unobtrusive smartwatch based stress level differentiation system to increase
the performance by correcting false labels assigned by the machine learning algorithm. In order to test
and evaluate our system, we collected physiological data from 32 participants of a summer school with
wrist-worn unobtrusive wearable devices. This event is comprised of baseline, lecture, exam and recovery
sessions. In the recovery session, a stress management method was applied to alleviate the stress of the
participants. The perceived stress in the form of NASA-TLX questionnaires collected from the users
as self-reports and physiological stress levels extracted using wearable sensors are examined separately.
By using our system, we were able to differentiate the 3-levels of stress successfully. We further substantially
increase our performance by personal stress level clustering and by applying high-level accuracy calculation
and decision level smoothing methods. We also demonstrated the success of the stress reduction methods by
analyzing physiological signals and self-reports.

INDEX TERMS Stress recognition, machine learning, wearable sensors, smart-phone, smartwatch,
photoplethysmography, daily life physiological data.

I. INTRODUCTION
Smart-sensing, pervasive and ubiquitous technologies have
become more accessible during the last decade. A vari-
ety of smart sensing devices are emerging in the market,
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with new sensing technologies offering more personal health
monitoring options. Sophisticated sensor systems can be
found in most modern smartphones and smartwatches.
An individual’s daily routines, fitness and physical activities
can be deduced using the data coming from these sensing
units. This information may help individuals to better under-
stand and adapt their behaviors to their benefit. The new
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FIGURE 1. A case study of real-life application of our stress detection system. When a subject experiences
stress, our automatic stress detection system will warn the user and offer a mobile breathing relaxation
method. After the application of this technique, user will return to the baseline state.

generation of unobtrusive smart devices may be used for
monitoring and improvingwell-being and potentially psycho-
logical health.

Stress is an important problem in the modern world. It has
significant effects on human health, society and economy [1].
We encounter stressful situations in working environments,
traffic, social interactions since it is impossible to avoid them.
Scientists noticed that high-level and enduring stress should
be managed when the first symptoms emerged in order to
refrain from long-term outcomes [2]. By detecting and han-
dling stress in the early stages, researchers and clinicians can
foster the development of novel ways to tackle the problem-
atic consequences of a sustained stress response. Until the
last decade, we used to try to alleviate enduring stress by
seeing experts. After the technology has taken place in our
daily lives, researchers come up with ways to use it for per-
vasive health. The first candidates for these widespread and
unobtrusive technologies are smartphones, smartwatches and
smart bands which could be used comfortably in daily lives.
Especially wrist-worn smart devices can collect physiological
signals such as HRV (Heart Rate Variability), EDA (Electro-
dermal Activity), ST (Skin Temperature) which enable us for
automatic stress level detection. However, they are not with-
out their challenges which are relatively short battery lives,
unable to collect data in intensive physical activity and when
they are worn loosely, artifacts caused by these movements
and loosely worn devices [5]. In order to overcome these
problems, advanced modality specific filtering techniques
should be applied.

Stress detection studies have started in the laboratory
environments and then the direction of this research shifted
towards real-life ambulatory environments. However, most
of these studies only distinguish between stress and relax
states, which is not representative of the vast array of possible
nuances that define the continuum from relaxation to the
highest stress levels [6]–[9]. Furthermore, cognitive load state

also frequently occurs especially in work environments and
it should be added as a different class from stress to increase
the stress detection resolution for more realistic results. How-
ever, when this state is added, the accuracies of stress level
detection systems decrease drastically especially in real-life
conditions. An important research issue is that since every-
one has specific stress responses, person-independent models
generally have low accuracies for finding stress levels. If the
data of individuals are used for creating models, it might be
insufficient or requires long-term data collection. A hybrid
approach for clustering people by using their stress responses
might solve the low accuracy problem without requiring long
term data collection from individuals. Furthermore, after the
machine learning algorithms assign labels to frames, a deci-
sion level smoothing technique could increase the perfor-
mance of stress detection systems. Since the accuracies of
the ambulatory systems are relatively low when compared
to the systems tested in laboratory environments, they could
take advantage of an extra layer of logic to fix the erroneous
labels. As an example, for 1-minute frames, it is not logical
for a person to have a stressed frame followed by a relaxed
state and another stressed frame after that. The middle frame,
in this case, could be regarded as an error and smoothed.

After detecting high levels of enduring stress, stress detec-
tion systems should also decrease the stress of individuals
to acceptable levels. Stress management mechanisms should
be applied to achieve this recovery (see Figure 1 for a case
study of a stress detection system with relaxation method).
Traditional yoga and meditation are ancient methods for
stress alleviation. However, they either require outdoor envi-
ronments or could not be employed in office environments
during daily work routines. As a consequence, mobile apps
or indoor techniques should be applied to manage stress in
the daily life without interrupting daily routines. The benefit
of these indoor techniques are not examined comprehensively
but a limited number of studies have commenced [3]. A close
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examination of the literature permits to identify that most of
the stress recognition studies do not offer relaxation methods
after detecting stress which is needed to recover the subjects
to their baseline states.

In this work, we improved our multi-level stress detec-
tion system which uses unobtrusive smart wearable devices.
To the best of our knowledge, this study is the first one to
propose personal stress level clustering and decision-level
smoothing to enhance person-independent stress detection
models by using smartwatches. The advantage of our system
when compared to systems usingmedical-grade devices is the
applicability in the daily lives of users. Wearing devices with
cables, electrodes makes people uncomfortable. However,
unobtrusive devices such as smartwatches, smart bands could
be worn in everyday life. The disadvantage of these devices
is low data quality when compared to medical grade devices.
With the application of modality-specific artifact detection
and removal methods, personal stress level clustering and
decision-level smoothing, our system has comparable per-
formance with the systems developed with medical-grade
devices. The other differences of our study,when compared
to most of the research in the literature, are the addition
of a cognitive load state besides stress and baseline states
and application of a stress management method. The for-
mer improved the precision of our system with a frequently
experienced real-life state and the latter increased the appli-
cability of our system. Only detecting stress and notifying
the users might increase the stress level of individuals even
more. However, if the system detects the high level of stress
and suggests easy to apply relaxation methods, then it could
be beneficial for people for coping with stress. We tested
the effectiveness of a relaxation method and its separability
from the stress state with our system by using physiological
signals. Our method starts with preprocessing the signals to
clear the artifacts caused by unconstrained real-life motions.
We further extracted discriminative features from the selected
physiological signals. Lastly, machine learning algorithms
are applied to classify different stress levels. To test our
algorithms, we induced stress on teachers from the ILKYAR
summer school seminars took place at Bogazici University.
We induced stress on primary school teachers following a
cognitive load session in this event and then apply a stress
management technique to recover them to their baseline
states. Baseline signals and self-reports from these teachers
are also collected at the beginning of this event. Our deci-
sion level smoothing and stress level clustering methods are
applied after the classification algorithms are applied. Guided
mindfulness was further used to alleviate the stress levels.
Mindfulness is a mental state achieved by focusing one’s
awareness on the present moment, while calmly acknowledg-
ing and accepting one’s feelings, thoughts, and bodily sensa-
tions, used as a therapeutic technique in stress management.
Our research addresses four original research issues:
• The effect of applying decision level smooth-
ing and decision-making mechanisms on system
performance.

• The performance evaluation of person specific, clus-
tered according to the baseline stress levels (hybrid) and
person-independent models.

• The effect of different ground truth surveys
(NASA-TLX and a more suitable, less time consuming,
version of it for everyday stress detection) on classifica-
tion accuracies,

• Application of a guidedmindfulness technique andmea-
suring its success with smartwatch based physiological
signals for reducing stress levels.

The organization of the rest of the paper is as follows.
In Section 2, we present the related work in stress detec-
tion and alleviation. Our smartwatch based system for stress
level monitoring is described in Section 3. ILKYAR Sum-
mer School Event and data collection are mentioned in
Section 4. Experimental results and discussion are pre-
sented in Section 5. We present the conclusion of the study
in Section 6.

II. RELATED WORK
Automatic stress detection research has started in laboratory
environments. The stress and relax states are discriminated
with high success. After researchers realized that laboratory
stress is not comparable with real life stress [4], they have
started working for stress level detection in real life envi-
ronments. Moreover, the ultimate aim of laboratory studies
is to help individuals manage their stress levels in their
daily life routines. These experiments gave researchers clues
about how to build such systems. However, there are more
issues to deal with when the research took a step out-
side the laboratory e.g unrestricted movement of subjects,
unknown context, reliability issue of self-reports, battery
life.

The research then directed towards detecting stress levels
in restricted environments such as offices, automobiles and
classrooms. Traffic jams in crowded cities, offices and work-
places and exams and courses in campus environments are
among the primary causes for increased stress levels. These
environments could be categorized into restricted environ-
ments because the movements are limited and they can be
controlled and monitored with sensors and cameras. Impact-
ful studies in the field of office environment stress detec-
tion can be counted as [30] and [31] respectively. These
studies used as EDA (Electrodermal Activity), ECG (Elec-
trocardiography) and Accelerometer sensors respectively.
For automobile environments, most of the works applied
different processing and machine learning methods on
DriveDB database [32] collected on Boston from 24 drivers.
The database is composed of ECG, EDA, EMG (Elec-
tromyography) and respiratory sensor data. Student stress
is also measured in campus environments. However, since
outside classroom environments are not controlled as the
mentioned restricted environments, campus stress detection
studies could be regarded as a bridge from restricted envi-
ronments to unlimited daily life environments [33]–[35].
There are a number of studies in unlimited daily life stress
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TABLE 1. Recent stress detection experiments in different types of environments.

level detection with smartphones and smart wearables [6],
[14], [19]. Due to the above-mentioned reasons, their accu-
racies are lower than restricted environments. Classification

accuracies for 2-class is around 70% in daily life environ-
ments [13] (2016), [15] (2015), [19] (2017) and [6] (2018)
(see Table 1). One reason for these low accuracies might be
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the uniqueness of the stress responses of individuals. To over-
come this problem, researchers developed person-specific
models by only using the data from the individuals. How-
ever, this approach requires a long data collection period.
We need a hybrid approach which has higher accuracies
than person-independent models. If people with similar stress
responses could be clustered in a hybrid approach, ML mod-
els for these clusters could be created to increase the per-
formance of person-independent models without requiring
a substantial amount of data. Furthermore, a decision level
smoothing logic might be needed to improve the perfor-
mances of these systems. If we can examine the labels
assigned by machine learning algorithms from a high-level
perspective, some errors could be noticed and corrected. For
example, in one-minute frames, if the labels of consecutive
frames are assigned as SRS (S: Stressed, R: Relaxed) respec-
tively, we could determine that the middle relaxed label is a
mistake because a person cannot relax and stressed in one
minute. By applying decision level smoothing techniques,
we can increase the classification accuracies of real-life stress
detection systems.

After detecting high levels of enduring stress, these sys-
tems should also decrease the stress of individuals to the
acceptable levels. When we examine the literature, there are
very few number of studies dealing with managing stress in
the daily life. Chen et al. [36] recognized mental stress by
using heart activity collected from Zephyr wearable sensor.
After they detected stress levels, they found breathing pat-
terns for each user to help them relax. This is a YOGA respi-
ratory pattern which has the most resemblance to individuals
respiratory pattern. Akmandor et al. [26] designed a stress
detection and reduction scheme. They collected ECG, EDA,
blood pressure, respiration and blood oximeter data in the lab-
oratory. For the reduction of the stress levels, classical music,
warm stone, good newswere applied. They showed that stress
management schemes help people returning to the baseline
state faster. Researchers developed a stress detection method
and tested in the laboratory with nine participants [12]. They
used both wrist-worn and chest-based heart activity sen-
sors and finger-based electrodermal activity sensors. They
divided the tasks into stressor (ice bucket, singing, scary
game, SCWT (The Stroop Color and Word Test) and arith-
metic) and non-stressor (conversation, eating email reading
and homework) classes. They demonstrated that non-stressor
tasks especially eating help participants relax. There are also
ancient methods for alleviating stress. However, they gen-
erally require outdoor environments. An ideal stress man-
agement method should be applicable indoor, not require
extra hardware or equipment and scientifically validated.
Several mobile apps have closer properties to an ideal system
such as Pause, HeartMath and Calm. However, the effect of
these indoor applicable apps are not examined comprehen-
sively but preliminary research has commenced [3]. There
is also a need to apply indoor applicable relaxation methods
and observe their effectiveness by examining physiological
signals.

III. SYSTEM METHODOLOGY
In this section, we will investigate the performance of
our stress detection scheme in two different manners. The
first one is using the known context as the ground truth.
We enumerated the different states as 1: baseline, 2: lecture
(cognitive load), 3: exam (stress) and 4: recovery (stress man-
agement) states. We further provide these labels as classes
to the machine learning algorithm. The second way is to use
the perceived stress levels collected from self-reports as the
ground truth. In order to measure the perceived stress levels,
we collected NASA-TLX questionnaires from the partici-
pants. It includes mental demand, physical demand, temporal
demand, performance, frustration and effort of participants
from a session. We restructured NASA-TLX more appropri-
ate for stress level detection studies by modifying the weights
of the survey parts. The perceived level part is examined in
the psychological approach whereas the physiological part is
examined in the physiological approach subsections.

A. PHYSIOLOGICAL APPROACH
In this research, a stress detection system which uses heart
activity, skin conductance, accelerometer and skin tempera-
ture for recognizing multiple stress levels. In order to elimi-
nate the artifacts caused by unlimited movements in real-life
scenarios, preprocessing tools specific for each modality
were developed and used. The most distinctive features
used in the literature for each signal were also selected and
extracted. After the feature extraction phase, the best per-
forming classifier algorithms were applied to the feature set.
Our system works with the data collected from both Samsung
Gear S smartwatches and Empatica E4 smart bands even
though they have different software platforms and sensor
types. As mentioned previously, for each modality we devel-
oped and used specific preprocessing and feature extraction
tools. Each of them is described in detail.

1) EDA PREPROCESSING ARTIFACT DETECTION AND
REMOVAL METHODS
Intense physical activity and temperature changes contam-
inate the EDA signal. Therefore, affected segments should
be filtered out from the original signal. In order to detect
the artifacts in the EDA signal, we used the EDA Explorer
software [37] which is developed specifically for this signal.
While developing this tool, experts labeled the artifacts man-
ually. They trained an SVM model by using the labeled data.
Accelerometer and skin temperature signals are also used
for artifact detection. EDA Explorer achieved 95% accuracy
for detecting artifacts. We removed the parts that this tool
detects as artifacts from our signals. We further added batch
processing and segmentation to this tool as new properties
(see Figure 2).

2) EDA FEATURE EXTRACTION METHODS
After the artifact removal phase, features are extracted from
the EDA signal. This signal has two components phasic and
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FIGURE 2. The detailed Skin Conductance processing module for artifact removal and feature extraction. EDAExplorer
tool finds both peaks and artifacts separately. We selected the peaks that are not artifact by using this tool. After the
removal of them, tonic and phasic components are decomposed and features from these components are extracted.

tonic namely. Features from both components are extracted.
We used the cvxEDA tool [38] for decomposing the signal
into these components. This tool uses convex optimization
to estimate the Autonomic Nervous System (ANS) activ-
ity which is based on Bayesian statistics. After this tool is
applied, our algorithm extracted features of both components.
We selected the most discriminative features used in the
literature [19], [39] and [40].

a: TONIC COMPONENT FEATURES
The tonic component in the EDA signal represents the long
term slow changes. This component can be also called as
the skin conductance level (SCL). It could be regarded as
the indicator of general psychophysiological activation [41]
and can depend highly on individuals [41]. The values gen-
erally can rise up to 15ms and above 20ms values are
regarded as highly unlikely [41]. The tonic component is
used since long term changes should not be overestimated
with event-related fast changes. For this purpose, the phasic
part is subtracted from the EDA signal. After the decom-
position of EDA signal, we extracted mean, standard devi-
ation, 20 percentile, 80 percentile and quartile deviation
(75 percentile - 25 percentile) which are the most distinctive
features in the literature [19], [39] from the tonic component
(see Table 2).

b: PHASIC COMPONENT FEATURES
The phasic component represents faster (event-related ) dif-
ferences in the EDA signal. Peaks of EDA that happens as
a reaction to a stimulus is also called Skin Conductance
Response (SCR) [41]. It happens with a delay after the stimu-
lus [42]. After we decompose the phasic component from the
EDA signal peak related features e.g. peak per 100 seconds,
a strong peak per 100 seconds are calculated. The peaks with
more than 1 microSiemens response are identified as strong
peaks. We chose this value by adapting the 1.5 microSiemens
threshold in [19] to our data, since our peak range is lower
than theirs.

3) HEART ACTIVITY PREPROCESSING ARTIFACT DETECTION
AND REMOVAL METHODS
Unlimited movement of subjects and improperly worn
devices also contaminates the heart activity signal collected
from smartwatches and smart bands. In order to address this
issue, we developed an artifact handling tool in MATLAB
which has the batch processing capability. First, the data is
divided into 50% overlapping segments [31] as recommended
in the related literature. Artifact detection percentage rule
(also employed in Kubios [43]) is applied after the segmen-
tation phase. In this rule, each data point is compared with
the local average around it. If the difference is more than a
predetermined threshold percentage, the data point is labeled
as an artifact. The threshold is defined as 20% difference
which is commonly selected in the literature [31]. In our tool,
we further developed two options after an artifact is detected:
interpolation or further filtering. We described these methods
in detail (see Figure 3).

a: ARTIFACT DETECTION PERCENTAGE THRESHOLD -
REMOVAL
The first option is removing the artifact data point from the
signal. However, after the data is removed, this creates holes
in segments which makes it difficult to evaluate them as a
whole. In order to overcome this issue, we implemented two
filters: minimum consecutive time and minimum consecutive
number of samples. The minimum consecutive time con-
straint dictates a minimum non-interrupted (with deleted arti-
fact holes) time series with determined length on a segment to
be evaluated and to extract features. Similarly, the minimum
consecutive number of samples filter dictates a determined
number of consecutive samples. By applying these filters,
we ensure that segments that have too many artifacts dis-
tributed among the clear data are not evaluated and affect the
performance of our system.

b: ARTIFACT DETECTION PERCENTAGE THRESHOLD -
INTERPOLATION
After detecting the artifacts, another option would be
to replace them with interpolation. The choice of the
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TABLE 2. Heart rate variability, Electrodermal activity (EDA) and Acceleration features and their definitions.

FIGURE 3. The detailed Heart Activity processing module for artifact removal and feature extraction. First,
the artifacts are detected and removed. After the removal, the algorithm provides two different options. The first
one is the interpolation of the removed points. The second option is to apply minimum consecutive time and
sample constraints on the remaining data to be regarded as meaningful. After preprocessing, HR features are
extracted.

interpolation technique is a critical decision. The interpola-
tion function should be similar to the heart signal. To this end,
we selected shape preserving cubic spline interpolation and
applied the built-in MATLAB function. The tool has further
batch processing feature. Parameters such as length of local
mean, the percentage of artifact detection rule, minimum
consecutive time and data sample constraints are parameters
that could be changed in our tool.

4) HEART ACTIVITY FEATURE EXTRACTION METHODS
In order to extract features from the heart activity sig-
nal, MATLAB built-in tools and Marcus Vollmer’s HRV
toolbox [44] are used. The features could be examined
in time and frequency domain categories. These particu-
lar time and frequency domain features are chosen because
they are widely used as the most discriminative ones
in [19], [39] and [40].
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a: TIME DOMAIN FEATURES
We searched the literature and selected the most distinc-
tive features in the time domain. Mean value of the heart
rate (Mean HR), standard deviation of the inter-beat inter-
val (STD RR), mean value of the inter-beat (RR) intervals
(Mean RR), root mean square of successive difference of
the RR intervals (RMSSD), the percentage of the number of
successive RR intervals varying more than 50ms from the
previous interval (pNN50), the total number of RR intervals
divided by the height of the histogram of all RR intervalsmea-
sured on a scale with bins of 1/128 s (HRV triangular index),
and triangular interpolation of RR interval histogram (TINN)
are selected and extracted from the heart activity signal.

b: FREQUENCY DOMAIN FEATURES
Features from the frequency domain are also extracted. How-
ever, since the heart peaks are not equidistant from each
other, FFT could not be applied directly. We first preprocess
the signal for equal distant samples (resample) and then
applied FFT. We further applied Lomb-Scargle peri-
odogram [45] which is developed for this type of signal to
convert to the frequency domain. We extracted features from
both methods. Low frequency power (LF), high frequency
power (HF), very low frequency power (VLF), prevalent low
frequency (pLF), prevalent high frequency (pHF), the ratio
of LF to HF (LF/HF) (Preprocessing+ FFT), LF, HF, LF/HF
(Lomb-Scargle) features are selected and extracted from
frequency domain representation of the heart activity signal.

5) ACCELEROMETER FEATURE EXTRACTION METHODS
The accelerometer sensor data is used for two different
purposes. Firstly, we extracted features from this sensor.
As mentioned above, this sensor was also employed to clean
the EDA data along with the skin temperature sensor as
a second use. The mean value of 4-axis and the frequency
domain energy of magnitude were the extracted features.

6) DATA FUSION
After we divided our data into segments (between 60-480 sec-
onds) different modalities should be merged. We chose these
segment sizes because the duration of stress stimulation and
recovery processes is around a few minutes [46]. Therefore,
by using these values we expect to capture a stress event in a
segment. Especially, heart activity signal starts with a delay
(to calculate the heartbeat per minute at the start) and all
signals should be synchronized. We included start and end
timestamps for each segment and each modality is merged
with a script if their time intervals are overlapping.

7) PREPROCESSING OF DATA AND HANDLING OF
IMBALANCE BEFORE CLASSIFICATION
Our data set is not balanced when the number of instances
belongs to each class is considered. About 40% of frames
belong to cognitive load, 20% of frames belong to stress
and 20% of frames belong to recovery and 20 % of frames

belong to baseline classes. We balanced the set by removing
extra samples from the majority classes. Therefore, we pre-
vented classifiers from biasing towards the class with more
instances. We have a total of 1800 frames which gave us
the option to remove extra frames of the cognitive load
class. We also examined the effect of Synthetic Minority
Over-sampling Technique (SMOTE) [47] in Table 14. The
Weka toolkit [48] has several preprocessing features before
classification. Numeric to nominal transformation among
themwas used to convert the stress level column into nominal
class attribute. We further normalized the features to prevent
overfitting.

8) MACHINE LEARNING CLASSIFIER ALGORITHMS
The classification algorithms in Weka toolkit [48] are used
for discrimination of stress from the cognitive load. It is the
most commonly used and comprehensive machine learning
platform in the literature.

In this study, we employed five different machine learning
classification algorithms to recognize different stress levels:
a) Principal component analysis (PCA) and support vector
machine (SVM) with a linear kernel
b) Random Forest (with 100 trees)
c) K-nearest neighbours (n = 1)
d) PCA and Linear discriminant analysis (LDA)
e) MultiLayer Perceptron (A Shallow Neural Network)
(MLP)

These classifiers are chosen because they are the most
prominent traditional ML algorithms. MLP (Shallow Neu-
ral Network), Random Forest, kNN (One of the Simplest),
SVM and LDA are the most commonly used and successful
classification algorithms for stress detection [19], [31]. The
data is divided into 90% training and 10% test parts. 10-fold
cross-validation was applied. Our system is capable of detect-
ing stressed, cognitively loaded and baseline states by using
the mentioned algorithms.

B. PSYCHOLOGICAL APPROACH
1) NASA-TLX
The NASA Task Load Index (NASA-TLX) is an assessment
tool that aims to evaluate the perceived workload. Usually,
this tool is utilized for the assessment of performance tasks in
specific operational environments [49]. Originally developed
for use in aviation, it has been later implemented in differ-
ent contexts, particularly in human factors research. It is a
six-dimensional scale from one or more subject while they
are performing a task. These scales are mental demand,
physical demand, temporal demand, performance, effort and
frustration. The NASA-TLX has two parts. In the first part,
the subject is directed to give a score between 0 and 100 to
each of these scales. This part has six questions. In the second
part, the questionnaire is intended to create a weight for each
scale. The subject is directed to make a pairwise comparison
for each scale. The second part has 15 questions. Our sub-
jects from a previous study gave negative feedback about the
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FIGURE 4. When the stressor appears, people check their inner resources.
The stressor could be mental demand, physical demand, temporal
demand, etc. If they feel that they can handle these demands, they will
not feel stressed. Otherwise, they will have mental stress.

length of the questionnaire since it has 21 questions in total.
Therefore, we used ‘‘RAW-TLX’’ by not applying the second
part of the NASA-TLX questionnaire. Each scale is examined
throughout the study.

2) ADAPTING NASA-TLX FOR STRESS DETECTION STUDIES
The NASA Task Load Index (TLX) [50] is comprised of six
subscales mentioned above. Taken together, these subscales
are aimed to operationalize the construct of mental workload,
and thus the NASA-TLX has principally been implemented
in organizational settings ( [51] and [52] just to mention two
examples). It is designed to measure the estimated workload
of subjects while they are performing a task or immediately
afterward [53].

Some studies used the raw NASA-TLX for measuring
stress levels [22], [25] and [15]. However, it is clear that the
workload is not the same as stress. In other words, cognitive
load in general and cognitive workload in particular do not
represent stress (represent perceived stress even less) as a
construct, which is mainly defined as the subjective appraisal
of the situational context, including the weighing of the own
resources to cope with a certain stressor. The first 5 sub-
scales of the NASA-TLX are only partially overlapped with
the conceptualization of what comprises a stressor. Especially
the physical demand component of the raw NASA-TLX
becomes irrelevant in mental stress detection. Furthermore,
high workload does not necessarily mean high stress levels.
If the subject is confident to deal with the workload with
his/her own resources, it might not cause stress (see Figure 4).
Too many difficult mathematics questions do not create stress
on experts in the field. On the contrary, the sixth subscale,
frustration, can partially represent subjective stress, under-
stood as the extent to which a person finds a situation to
exceed his capacity to successfully deal with the situation.

It includes information about insecurity, discouragement, irri-
tation, stress of individuals. For this reason, and given that
we wanted to have a perceived stress measure, we have only
taken into consideration the last subscale.

IV. EXPERIMENT DESIGN
A. ILKYAR SUMMER SCHOOL SEMINARS FOR TEACHERS
Every year, teachers from public schools of different cities
in Turkey are gathered and participate in seminars which
are given by university lecturers. This year, thirty-two teach-
ers participated in the ILKYAR summer school. A seminar
session took approximately three hours. We collected data
during this session with wrist-worn wearable devices which
are the combination of Samsung Gear S2, Samsung Gear S
and Empatica E4.

We first described the general outline of the study and
delivered informed consent forms to the teachers. The exper-
iment started after volunteering participants signed these
forms. All participants wore the wrist-worn wearables and
turn on the devices for data collection. At the beginning
of the event, Pittsburgh Sleep Quality Index (PSQI), Gen-
eral Wellbeing Index (GWBI), WHO-five Well-being Index
(WHO-5) Well Being and Perceived Stress Scale (PSS) base-
line questionnaires were collected. We explained these ques-
tionnaires to the participants and baseline signals are recorded
afterwards.

In the baseline session, participants read neutral maga-
zines about sports, design, clothes and cars. It took about
20 minutes. Following the baseline session, the lecture about
the research in the Computer Engineering Department was
briefly given. The length of the lecture session was about
40minutes.We gave a break after the lecture which was about
10 minutes. When they returned, we told them there is going
to be an important exam and we measure their performance.
The exam consisted of arithmetic tasks inspired by Trier
Mental Stress Test. The exam lasted for 20 minutes. The last
part of the experiment was the recovery session. They listened
to some relaxation music, they are told to take deep breathes
and think of their positive memories. In this way, we tried
to reduce their stress levels with the method inspired by the
HeartMath app [54]. The recovery sessions also took approxi-
mately 20 minutes. After all sessions (baseline, lecture, exam
and recovery), raw NASA-TLX questionnaires are collected
from the participants about the sessions. The procedure of the
experiment is shownwith the chronological order in Figure 5:

B. PARTICIPANTS AND APPARATUS
All participants are public school teachers within the age
range of 25 to 40. There were 10 female and 22 male
participants. For the wearable devices used in the exper-
iment, we searched the market with certain criteria. The
devices should be non-obtrusive, provide the raw physio-
logical data (with official SDK), give the Inter-Beat-Interval
(IBI) from heart activity. IBI is used for heart rate vari-
ability (HRV) measurement. HRV is an important indicator
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FIGURE 5. The timeline of the event is demonstrated. After each session, self reports were collected. We further took the baseline questionnaires at the
beginning of the event.

of stress. An optional feature would be providing EDA data.
EDA is another important physiological signal for especially
arousal detection. Empatica E4 satisfied all our expectations.
We also investigated the Samsung branded Gear S1, S2, and
S3 smartwatches. However, with the S3, Samsung stopped
providing IBI intervals with its original SDK. Previous Sam-
sung smartwatches (S1, and S2) give access to IBI raw data.
Microsoft Band 2 has also the two signals. However, raw data
access is not provided with the original SDK. It is removed
from the official website. Apple smartwatches also do not
provide raw data. We further evaluated the Polar chest band.
However, it could be considered as an obtrusive device for
real-life settings. Therefore, Empatica E4, Samsung S1 and
Samsung S2 off-the-shelf devices were selected for the exper-
iment.

When the battery lives of the devices were compared,
Empatica E4 outperformed Samsung S smartwatches. It col-
lects data for approximately two days. On the other hand,
Samsung smartwatches can collect data for approximately
4 hours when all sensors are active. However, it is important to
note that Empatica E4 is developed for research purposes and
it is more expensive than Samsung commercial smartwatches.
Samsung devices provide data via the Bluetooth connection.
Conversely, Empatica E4 have cloud support and data could
be downloaded from the cloud server. Data acquired by both
devices are available in CSV format.

As far as sensors are concerned, Empatica E4 devices have
four sensors for measuring the acceleration, photoplethys-
mography, electrodermal activity and the skin temperature
while Samsung Gear watches lack EDA and skin temper-
ature sensors but instead they are equipped with Gyro and
Barometer sensors. In this study, we used PPG, EDA and
ACC sensors for feature extraction.

C. ETHICS
The procedure of the methodology used in this study is
approved by the Institutional ReviewBoard for Researchwith
Human Subjects of Bogazici University with the approval
number 2018/16. Each subject signed a consent form explains
the procedure of the experiment and its aims and implications
to both the society and the subject before the data recording
begins. We further described the procedure verbally to the
participants. The recorded data are stored anonymously.

D. DATA DESCRIPTION
Data is recorded in different csv files in both devices with
timestamps. Participants are differentiated with the used
device id. Data is stored in different folders for each device.
For each modality, a different file is created under these
folders. A sample figure for different modalities of our data
is shown in Figure 6.

1) EDA DATA
EDA data is collected with Empatica E4 devices. The format
of this file is starting with the Linux timestamp followed by
samples. Empatica stated the sampling frequency of EDA
as 4Hz. EDA signal is used for feature extraction purposes.

2) IBI DATA
IBI data can be collected with all the wearable devices
we used in this experiment. All devices provide two
columns for this type of data. The first column includes the
IBI interval and the second column points out the time of the
sampling. This type of data structure is necessary because
non-equidistant sampling is employed due to the changing
frequency of heartbeats in time. We used this physiological
data type for feature extraction after the artifact removal and
interpolation.

3) ACC DATA
ACC data can be also recorded with all type of mentioned
devices in this experiment. There are three columns which
indicate X, Y and Z coordinates of the acceleration. The
sampling rate is 64Hz. We used this physiological data type
for both feature extraction and EDA artifact removal.

4) ST DATA
Skin Temperature (ST) data is used for EDA artifact detection
and removal. Only Empatica E4 devices have the capability
to collect this modality and the sampling frequency is 4Hz.

V. DISCUSSION
A. PSYCHOLOGICAL APPROACH
In this section, we examined two different issues. We con-
ducted an experiment that consists of lecture, exam and
recovery sessions. We first investigated the success of our
experiment in creating three different psychological states by
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FIGURE 6. A sample figure for the collected data with an Empatica E4 device. Different modalities are
shown separately.

using the collected raw NASA-TLX self-reports. T-test was
applied to measure the separability of these sessions from
each other. We further applied the same procedure after mod-
ifying raw NASA-TLX to demonstrate the separability when
the modified version is used. By doing that, we showed that
our experiment creates three different psychological states
and raw NASA-TLX and modified version can show the
difference between these states.

1) CLUSTERING OF WORKLOAD AND CONTEXT
In this study, we examined the workload in different contexts
for our experiment. As mentioned above, NASA-TLX is a
tool which can be used to evaluate the perceived workload.
By examining self-reports collected from participants after
lecture, exam and recovery sessions, the success of inducing
different workloads for these sessions is investigated. The
t-test in the R programming language is used to measure
whether these sessions are different or not in terms of per-
ceived workload. The paired t-test is used to evaluate the
separability of each session. The degree of freedom is 31.
We applied the variance test to each session tuple, we could
not identify equal variance in any of the session tuples. Thus,
we selected the variance as unequal.We used 95% confidence
intervals. The t-test results are provided in Table 3. For all
tuples, the null hypotheses stating that recovery is greater
than or equal to lecture, lecture is greater than or equal to
exam and recovery is greater than or equal to exam ses-
sions are rejected. The following p-values and test statistics
are provided in Table 3. The perceived workload levels of

TABLE 3. T-test results for session tuple comparisons of perceived
workload using RAW-TLX.

participants for the exam, lecture and recovery sessions are
observed to be significantly different.

From low to high perceived workloads, it can be sorted as
the following: Recovery < Lecture < Exam. The boxplot for
session tuples and all sessions are provided in Figure 7.

2) CLUSTERING OF SURVEY DATA AND CONTEXT AFTER
NASA-TLX MODIFICATION
After we modified the NASA-TLX for measuring perceived
stress levels, we further examined the self-reports in different
sessions. In other words, if our stress induction, cognitive
load induction and recovery sessions are successful in terms
of creating different perceived stress levels, self-reports for
each session should be separable. The same methods with
Section 5.1.1 are applied for perceived stress levels. The
results are provided in Table 4. The perceived stress levels
of the t-test are sorted from low to high as Recovery < Lec-
ture < Exam. Recovery session is designed as lower/mild
stress and lecture also creates a cognitive load which is
close to mild / low stress tasks in terms of perceived stress.
The similarity between these sessions is demonstrated with
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TABLE 4. Paired T-test results for session tuple comparisons of perceived
stress using frustration score.

FIGURE 7. The box plots of the raw and modified Nasa Task Load Index
(NASA-TLX) self-report scores during recovery, examination and lecture
sessions.

the t-test. The boxplot for session tuples and all sessions are
provided in Figure 7.

For all tuples, the null hypotheses states the above compar-
isons of Section 5.1.1 are rejected for perceived stress. The
following p-values and test statistics are provided in Table 4.
The perceived stress levels of participants for the exam, lec-
ture and recovery sessions are also determined to be signifi-
cantly different and from low to high perceived stress, it can
be sorted as the following, Recovery < Exam < Lecture.
The boxplot for session tuples and all sessions are provided
in Figure 7. As in the case of perceived workload, all of the
mean value of the distributions are different, however in terms
of distribution recovery and lecture sessions are the most
similar tuples. Recovery session is designed as lower/mild
stress and lecture also creates a cognitive load which is close
to mild / low stress tasks in terms of perceived stress. The
similarity between these sessions is expected.

3) CLUSTERING OF PARTICIPANTS WITH THEIR BASELINE
SURVEYS
Our 32 participants filled the Perceived Stress Scale – 14
(PSS14) questionnaires at the beginning of the event.
We calculated the scores of each individual. This question-
naire consists of questions regarding the stress level felt
during the last month before the experiment. By using these
scores, we clustered the participants into low stress, medium
stress and high stress classes. These classes demonstrate
the condition of participants before the experiment. The top
33 percentile is assigned to high stress, low 33 percentile
is assigned to low stress and the remaining 34 percentile is
assigned to medium stress classes. We used these clusters for
developing specific models in the next section.

TABLE 5. Effect of number of different modalities and combination of
them on the system performance. Note that number of classes are fixed
at 2 (stressed and recovery) and window size is 60 seconds.

B. PHYSIOLOGICAL APPROACH
1) EFFECT OF DIFFERENT MODALITIES TO STRESS LEVEL
CLASSIFICATION ACCURACIES USING KNOWN CONTEXT
In this study, we investigated the effect of two different
modalities on classification accuracies. We further examined
the effect of combining these two modalities. Heart rate vari-
ability (HRV) and electrodermal activity (EDA) are among
the most discriminative physiological signals for stress level
detection. HRV achieved higher classification accuracies than
EDA with all the classifiers. From this result, we can deduce
that HRV is a more discriminative physiological signal than
EDA. Another important finding was the combination of
these two signals achieve higher stress level classification
accuracies than these signals alone in most cases. Combi-
nation of modalities has a positive effect on the stress level
detection accuracy (see Table 5).

2) PERCEIVED STRESS, WORKLOAD LEVEL DETECTION
FROM SELF-REPORTS AND PHYSIOLOGICAL STRESS
LEVEL CLASSIFICATION IN KNOWN CONTEXT
We measured physiological stress and perceived stress sep-
arately in this study. Normally, it is expected that when
individuals exhibit signs of high physiological stress, they
also have high perceived stress levels. However, this might
not be the case in some situations [1]. Therefore, the two
stress types are examined independently. The ground truth
in physiological stress was selected as the stress level of
known context. The perceived workload levels are measured
with the answers from the whole NASA-TLX questionnaire.
In perceived stress, we used the stress level obtained from the
modified NASA-TLX self-report answers. The answer scale
collected in lecture, exam and recovery sessions is divided
into three levels. The low stress level is between 0 and 30 in
NASA-TLX self-report (scaled from 0-100), the medium
stress level is assigned if the answer is between 35-75 and
the high stress level is assigned if the self-report is equal
or above 80. We first examine the performance of modi-
fied the NASA-TLX questionnaire for measuring perceived
stress levels. The correlation with known context stress labels
increased from 0.32 to 0.54 with the modified NASA-TLX
when compared with whole NASA-TLX. This justifies the
modification for better perceived stress level measurement.
Since we collected answers in lecture, exam and recovery
sessions, we observed that low and mild stress levels are seen
in lecture and recovery sessions, thus we combined recovery
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TABLE 6. Physiological stress, perceived workload and stress detection
accuracies, EDA signal, the number of distinguished classes is 2 (recovery
- cognitive load (low / mild stress), exam (high stress)) and windows size
is 240 seconds. The NASA-TLX Perceived Workload and Perceived Stress
scores are divided into three classes. Two classes (low and mild) in
lecture and recovery sessions are combined in both known context and
perceived workload and stress evaluation.

TABLE 7. Physiological stress, perceived workload and stress detection
accuracies, HR signal, the number of distinguished classes is 2 (recovery -
cognitive load (low / mild stress), exam (high stress)) and windows size is
240 seconds. The NASA-TLX Perceived Workload and Perceived Stress
scores are divided into three classes. Two classes (low and mild) in
lecture and recovery sessions are combined in both known context and
perceived workload and stress evaluation.

and lecture into the low/mild stress class. In the analysis
of self-reports in Section 5.1.2, the two classes have closer
behavior as expected. The exam session is determined as
the high stress class. The same procedure is also applied
to the known context ground truth labels and recovery and
lecture sessions are merged into one low / mild stress context.
The exam session is labeled as the high stress context. The
perceived workload, perceived stress and physiological stress
detection accuracy results are provided in Tables 6 and 7.
The perceived workload results have always the best per-
formances with all classifiers. The workload level (physical,
mental, temporal demand, performance, effort and frustra-
tion) could be easily differentiated by individuals with self-
reports. The prediction accuracy of the perceived stress is
weaker than the perceived workload. Individuals may not
always perceive the true stress levels or express them with
self-reports [1] and these issues might result in the appear-
ance of lower system performance. The lowest classification
results are obtained when measuring physiological stress
levels with known context ground truth labels. Although we
prove the success of our stressors from the self-reports, some
participants could not be induced with the desired levels of
stress or cognitive load. Our data collection did not take
place in a laboratory. Instead, we record data in a real-life
event. Thus, some participants may not be cognitively loaded
in lectures or stressed in exams in a semi-controlled real-
life event and this decreases the accuracy of stress detection
accuracy with known context ground truth labels.

TABLE 8. Effect of general, personalized and clustered models on system
performance, EDA signal. Note that number of distinguished classes is 3
(relax, cognitively loaded, stressed) and window size is 120 seconds.

TABLE 9. Effect of general, personalized and clustered models on system
performance, HR signal. Note that number of distinguished classes is 3
(relax, cognitively loaded, stressed) and window size is 120 seconds.

3) EFFECT OF DIFFERENT MODELS: PERSONALIZED,
CLUSTER-SPECIFIC AND PERSON-INDEPENDENT
MODELS
Since the stress reaction of individuals has a unique pat-
tern, the ideal way to develop automatic stress detection
models is to use the individual’s data. However, in most
cases there is not enough personal data for developing this
kind of model. Another way is to develop models from
all collected data and apply this one model to all peo-
ple. However, the accuracy of this model is expected to be
lower than the personalized model because of the mentioned
person-specific stress reactions. In this section, we offered a
hybrid approach. As mentioned in Section 6.1.3, we clustered
participants by using their baseline stress levels. By using
self-report answers regarding the month before the experi-
ment, we divided them into low stress, medium stress and
high stress clusters. We then develop models for each cluster
separately since we expect people in the same cluster might
have similar physiological reactions to our stimuli. As it can
be seen in Tables 8 and 9, person-independent models have
the lowest stress classification accuracies whereas person-
alized models obtained the best results with all classifiers.
Our hybrid models have accuracies lower than personal and
higher than person-independent models. When the data is not
enough for personal models, our hybrid approach could be
used to increase the performance of the system.

4) EFFECT OF STRESS DETECTION INTERVAL AND
RESOLUTION TO CLASSIFICATION ACCURACIES
Another important research issue that we want to address
is to find the optimal interval for stress detection studies.
In other words, since stress reaction has certain physiological
characteristics, there might be an optimum time interval that
the stress level could be detected more easily from biofeed-
backs of individuals. We carried out experiments with 60,
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TABLE 10. Effect of stress resolution to stress detection accuracies.
Number of distinguished classes is fixed at 2(recovery, stressed),
EDA signal.

TABLE 11. Effect of stress resolution to stress detection accuracies.
Number of distinguished classes is fixed at 2(recovery, stressed),
HR signal.

TABLE 12. Effect of number of stress levels to stress detection
accuracies. Note that window size is fixed to 120 seconds and
enumerated classes are as follows: 1 (cognitive load - lecture),
2 (relax), 3 (stressed- exam), 4 (recovery- stress management),
EDA signal.

120, 240 and 480 second intervals. In 9 out of 10 experiments
(5 classifiers with EDA and 5 classifiers with HR), the best
accuracies are found with 120 - 240 second intervals (see
Tables 10 and 11). However, researchers should also take into
account the employed classifier algorithm when determining
the optimal interval for stress detection.

5) EFFECT OF NUMBER OF RECOGNIZED STRESS LEVELS TO
CLASSIFICATION ACCURACIES
The effect of the number of recognized stress level classes to
the accuracies is also examined. As mentioned, our experi-
ment has four different sessions: baseline, lecture, exam and
recovery with guided mindfulness. It is assumed that the
lecture will induce a cognitive load, the exam will induce
stress on the participants. We tried to bring them back to
their baseline states by applying guided mindfulness with a
relaxing music. We experimented with different tuples from
these four sessions. Lastly, we examined the performance of
our system on three class classification.

Three classes are selected as stressed, baseline and cogni-
tive load. Lecture vs. stress is the most difficult to distinguish
session tuple with both types of signals as it can be seen

TABLE 13. Effect of number of stress levels to stress detection
accuracies. Note that window size is fixed to 120 seconds and
enumerated classes are as follows: 1 (cognitive load - lecture),
2 (relax), 3 (stressed- exam), 4 (recovery- stress management),
HR signal.

TABLE 14. Effect of imbalance handling methodology: under-sampling of
the majority class and SMOTE. Accuracy is reported on HR signal for
discrimination of stressed-exam and relax states.

TABLE 15. Effect of number of stress levels to stress detection in terms of
Area under Curve (AUC). Note that the window size is fixed to
120 seconds and enumerated classes are as follows: 1 (cognitive load -
lecture), 2 (relax), 3 (stressed- exam), 4 (recovery- stress management),
using the EDA signal.

TABLE 16. Effect of number of stress levels to stress detection in terms of
Area under Curve (AUC). Note that the window size is fixed to
120 seconds and enumerated classes are as follows: 1 (cognitive load -
lecture), 2 (relax), 3 (stressed- exam), 4 (recovery- stress management),
using the HR signal.

in Tables 12 and 13. This is because of the similarity of
physiological reactions of cognitive load and stress behaviors.
Exam vs. recovery, lecture vs. baseline and exam vs. baseline
session tuples could be differentiated with relatively higher
accuracies with both modalities. Another important finding
is that exam and recovery sessions can be distinguished with
accuracies similar to (and sometimes higher than) lecture vs.
baseline and exam vs. baseline session tuples. This shows
that our recovery session successfully alleviates the stress of
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TABLE 17. High level accuracy calculation and decision level smoothing accuracy results with EDA signal. Note that number of classes is fixed at 2
(stressed and recovery) and window size is 60 seconds.

TABLE 18. High level accuracy calculation and decision level smoothing accuracy results with HR signal. Note that number of classes is fixed at 2
(stressed and recovery) and window size is 60 seconds.

participants and decrease their stress level. The three class
classification accuracy is similar to lecture - exam tuple but
less than other tuples. The difficulty in distinguishing these
two sessions is also interfering with the performance of the
three class classification system. However, even with these
three classes, we have similar accuracies with reported sys-
tems differentiating stress from cognitive load in laboratory
settings [55], [56].

We also tested the effect of class imbalance problem han-
dling techniques: SMOTE and removal of themajority classes
in Table 14. In most of the cases, SMOTE has lower accu-
racies than the other technique. It increases the accuracy of
the RF classifier. In Table 15 and Table 16, we also provided
the AUC results to compare the performance of classification
systems. We tested MLP with different numbers of hidden
layers. Deep Neural Networks (DNN) increase the perfor-
mance of systems when there are a huge amount of data. This
result showed that our data size might not be sufficient for
DNNs to learn and create better models than the traditional
classifiers.

6) INCREASING ACCURACIES WITH DECISION LEVEL
SMOOTHING
The classification errors can be corrected by examining the
results from a high level perspective. We examined our deci-
sions for a 60 second interval with this perspective since the
state of participants does not likely to change in such a short
interval and it takes at least a few minutes for stimulation
and recovery processes to complete [46]. We search for cases
which are not likely to occur when logically evaluated and
add some rules on top of our system. Our rule was correcting
changes with unusually high frequency. In other words, if a
subject is found out to be stressed in one window, not stressed
in the consecutive one and stressed again in the next window;
we determined this case as highly unlikely and an error

of our system. We applied our logic on top of our system
automatically. Themaximum accuracy of our system increase
from approximately 82% to 92% with EDA and HR signals
(see Tables 17 and 18). The performance of all classifiers
increases significantly with decision level smoothing.

7) HIGH LEVEL ACCURACY CALCULATION FOR STRESS
DETECTION
We divide all experiment data into 60 second windows and
test each window separately when calculating the accuracy.
However, in real-life, detecting stress for particular sessions
and time intervals might gainmore importance. Thus, we pro-
pose a different stress level detection accuracy calculation.
For all sessions, we labeled all small windows and applied
majority voting afterward for N consecutive intervals in a
sliding window fashion. To put it another way, our system
labels sessions by the majority of labels of small consecu-
tive windows. We called this method as ’high-level accuracy
calculation’. In this way, the accuracy for 2-class stress level
detection goes up to 94.44% with HR signal and 100% with
EDA signal (see Tables 17 and 18). If the aim is to identify
stress levels in specific sessions, high-level accuracy calcula-
tion could be used to increase the performance.

VI. CONCLUSION AND FUTURE WORK
We proposed new models and methods for improv-
ing multi-level real-life stress detection systems using
unobtrusive off-the-shelf smartwatches and smart bands.
We tested our algorithms in real-life settings which include
baseline, cognitive load, stress and recovery sessions
of 32 participants in a summer school. First, the effect of
our hybrid personal stress level clustering was examined.
In the person-independent model, the data of all participants
is divided into training and test parts. The personalized model
uses the data of each participant for developing a model.
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On the other hand, in our new hybrid model, we first clus-
ter the participants into low, medium and high stress lev-
els by examining their baseline self-reports. In this method,
we develop specificmodels for each cluster. The personalized
model has the highest and the person-independent model
has the lowest accuracy. Our hybrid model has accuracies in
between. It could be used in cases where there is not enough
data of participants to develop personalized models. In these
situations, our hybrid models will increase the accuracy of the
system when compared with person-independent models.

Furthermore, the perceived stress, workload and physi-
ological stress were investigated. We started with success-
fully classifying perceived workload level (3-class) using
NASA-TLX. The minimum classification accuracy is 91%
and the maximum accuracy is 94.52% for 3-classes. After
that, we used the modified version of NASA-TLX to measure
the perceived stress levels and compared with physiological
stress levels. Modifying the NASA-TLX increased the cor-
relation with known context labels from 0.32 to 0.54. When
the performance of 3-level physiological and perceived stress
detection classification accuracies are compared, perceived
stress levels are always detected more successfully with all
classifiers. Some participants might feel a different stress
level than known context labels. This might decrease the per-
formance of the physiological stress level detection system.

We further tested a decision-level smoothing method using
the fact that stress levels of participants do not oscillate
instantaneously. Ourmaximum accuracies with using a single
modality are around 80% in 2-class classification (81.82%
with EDA, 82.70%). To increase the performance of the
system, results were examined with a high-level perspective.
We applied an additional logical rule on top of our classi-
fier to correct some misclassifications. With decision level
smoothing, the classification accuracies increased to around
90 % with both modalities (92.89% maximum). We further
developed a session-based stress classifier. Majority voting
among windows of every session was applied to decide the
assigned class. We obtained a maximum accuracy of 94.44%
with HR, 100% with EDA signals. When the stress level of
a session is needed to be calculated, this method could be
applied.

We improved our platform independent stress level detec-
tion systemwhich works with off-the-shelf smartwatches and
smart bands. We tested our algorithms in a real-life setting
and obtained successful classification accuracies. As men-
tioned, personal stress level clustering and decision-level
smoothing increased the performance of our system consid-
erably. We also applied stress alleviation methods and proved
their effectiveness. Our system could be easily adapted
to daily life of individuals without interrupting their rou-
tines. The study has limitations that should be mentioned.
With regard to the measurement, we have initially included
NASA-TLX which is a cognitive workload scale. In order
to measure the perceived stress levels, as explained in
the methods section, we have selected the frustration sub-
scale which is the most representative for that purpose.

Nevertheless, future studies specifically focusing on the per-
ceived stress could better include specific scales such as
Daily Stress Inventory [57], Daily Experiences Survey [58]
or Perceived Stress Scale [59]. As a future study, we plan
to develop personalized perceived stress models from self-
reports.
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