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ABSTRACT This paper proposes two kinds of dual-loop nonlinear robust control strategies that are
implemented on an open-loop unstable two-degree-of-freedom (2-DOF) helicopter system with unmodeled
dynamics and uncertainties. The inner feedback loop is considered as a nominal controller realized by an
existing ‘‘intelligent’’ proportional differential controller (iPD) while the outer layer feedback control is
regarded as a compensation loop. We study two different forms of outer loop in this paper. One is model-
free sliding mode compensator (MFSMC) and another is model-free data-driven compensator (MFDDC).
The combination of the shared inner loop and either of the outer loops forms two different kinds ofmodel-free
robust control strategies, i.e., iPD-MFSMC and iPD-MFDDC. Both robust control approaches are validated
experimentally on the attitude tracking control of a 2-DOF laboratory helicopter, whose control objective
is to have the helicopter attitudes, i.e., pitch and yaw motions, track specified trajectories. To demonstrate
the utility of the two control approaches, we compare them with linear quadratic regulator (LQR), optimal
feedback linearization control (OFLC) and iPD, respectively. The extensive comparison of the simulation and
experimental results shows that the dual-loop robust control approaches are quite promising in controlling
the systems with unknown dynamical models.

INDEX TERMS Dual-loop nonlinear robust control, sliding mode compensator, data-driven compensator,
unmodeled dynamics and uncertainties, small helicopter.

I. INTRODUCTION
Flight control of unmanned aerial vehicles (UAVs) is a popu-
lar topic in recent years. Small helicopters can be considered
as a special type of UAVs with multi-variable, inherently
unstable and strongly coupled nonlinear dynamics. They have
been frequently studied as experimental platforms for control
designs. In this paper, we conduct two different model-free
robust control experiments for attitude control of a laboratory
helicopter and compare the proposed controls with model-
based control methods.

At present, we can retrieve a large number of papers
on helicopter control from various databases. From the
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perspective of whether the controller design depends on the
dynamic model of the system, the control design methods
can be roughly divided into two categories: model-based
and model-free. Generally, the model-based control method
requires the designer to establish a mathematical model that
can reflect the laws of helicopter motion, often in the form
of differential equations or difference equations. There are
many controlmethods that fall into this category, such as LQR
[1]–[4], feedback linearization control [5]–[7], backstepping
control [8]–[10], sliding mode control [11]–[13], model pre-
dictive control [14]–[16] and so on. When the helicopter
works near the hovering point, for the sake of simplicity,
a linear model can be built for controller design. The LQR
design is an example. To enhance the flight performance of
the helicopter in a complex environment or for maneuvering,
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a more accurate nonlinear system model for controller design
is needed. For a specific control method, the control perfor-
mance is positively correlated with the accuracy of the model.
However, the construction of an accurate helicopter dynamics
model is quite expensive, and there is the possibility that the
designed controller may not return the optimal set of parame-
ters in model-based design. For these reasons, the model-free
control design method has been favored by scholars.

In recent years, researchers are increasingly interested in
controller design and optimization based on experimental
data. As a result, there are less requirements for the sys-
tem model, or the model is not even needed at all. Numer-
ous model-free controller designing and tuning techniques
have been proposed based on the classical control theory,
such as simultaneous perturbations stochastic approximation
(SPSA) [17], iterative feedback tuning (IFT) [18], virtual
reference feedback tuning (VRFT) [19], model-free adaptive
control (MFAC) [20], model-free control (MFC) [21], model-
free iterative learning control (MFILC) [22], etc. These tech-
niques are general data-driven or data-based control methods
with extensive theoretical research and applications in differ-
ent fields [23]–[26].

Different from other model-free control approaches,
the MFC works with an ultra-local model continuously
updated according to input-output behavior, which can deal
with the unmodeled dynamics, system uncertainties, and
external disturbances. It usually works together with a
P/PD/PI/PID controller, by which the combination is known
as i-P/PD/PI/PID controller [21]. Without knowing the exact
dynamic model of the system, MFC only needs general
knowledge about system dynamics to determine and tune
controller parameters. Besides, it has large advantages in
dealing with the unmodeled system dynamics, uncertainties,
and external disturbances that could have a crucial effect on
system stability. It should be emphasized that this control
method has already been most successfully applied in many
practical case-studies [27]–[30]. The key to the success of
the MFC is to continuously update the unknown ultra-local
system dynamics with input-output data, while generating
control signals. However, many objective factors, such as
derivative estimation error, control signal lag, environmental
noise, etc., always introduce a certain difference between the
estimated value and the real value of the system dynamics.
They all affect the control performance of the system andmay
even lead to the instability of the controller. In this paper,
we take a PD controller based on MFC as a nominal con-
troller (iPD) to stabilize the 2-DOF helicopter system firstly.
Then, two different compensation strategies are introduced
to the iPD-controlled system to improve the attitude control
performance of the helicopter.

The first compensator derives from a nonlinear slid-
ing mode control (SMC) design. SMC is an easily under-
standable nonlinear control technique with the advantage of
robustness against system uncertainties, parameter variations,
and external disturbances [31]–[34]. To decrease the influ-
ence of derivative estimation error, control signal lag, and

environmental noise to MFC, the sliding mode controller is
used to design compensators that are embedded into theMFC
and enhance its control performance [35]. Wang et al. [36]
design a model-free based sliding mode controller (MFSMC)
by combining theMFC and a slidingmode controller together
and apply it to the attitude control of a quadrotor. In the
work of [37], two model-free sliding mode control system
structures are designed and validated by a set of real-time
experimental results on a nonlinear laboratory twin-rotor
aerodynamic system. In this paper, the model-free sliding
mode compensation technique is investigated and used to
improve the performance of the nominal controller. The com-
bination between the iPD and MFSMC forms the first dual-
loop control structure (i.e. iPD-MFSMC) we studied in this
paper.

The second model-free compensator in this paper is a data-
driven offline learning technique based on integral reinforce-
ment learning. Reinforcement learning (RL) is known in the
control community as adaptive (or approximate) dynamic
programming (ADP). RL can be divided into model-based
RL and model-free RL according to how much knowl-
edge of the system dynamics is known. In the scope of
model-based RL, the online synchronous policy iteration (PI)
algorithm [38] is used to update the actor and critic neural
networks (NN) [39] based on the full knowledge of system
dynamics. The integral RL (IRL) technique [40], [41] is
considered as a data-based RL only using partial knowledge
of system dynamics. With the combination of IRL and off-
policy scheme, the offline iterative learning is used to control
the partially unknown system [42]. In the scope of model-
free RL, Zhang et al. [43] make a significant contribution in
the optimal robust tracking control, which provides a solid
foundation for using RL in the field of optimal tracking
control of unknown general nonlinear systems. The method
has two main advantages: 1) only the input-output data are
required instead of an exact system model, 2) the tracking
error converges to zero asymptotically in an optimal way.
Based on the IRL technique and off-policy scheme [44],
the data-driven RL has been used in uncertain systems [45],
zero-sum games [46], [47], nonzero-sum games [48], [49],
H∞ control [50], etc. With online measurement and off-
policy learning, Zhang et al. [48] solved the continuous-
time unknown nonzero-sum game with partially constrained
inputs by a model-free ADP algorithm. However, this method
makes sense only if the right-hand side of system ẋ =
f (x)+g1(x)u1+g2(x)u2 is Lipschitz continuous on a compact
set � ∈ <n containing the origin and the system is sta-
bilizable on �. Unfortunately, few real-time applications or
actual studies apply this control method to open-loop unsta-
ble systems. In this paper, we extend this method to open-
loop unstable dynamic systems by introducing a dual-loop
feedback control strategy. The model-free iPD is considered
as the inner-loop to stabilize the initial system firstly, then a
model-free data-driven compensator (MFDDC) is embedded
into the iPD controlled system. The mixture of iPD and
MFDDC fully exploits their respective advantages, broadens
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FIGURE 1. The twin-rotor helicopter model made by Quanser company.

their application scope, and improves their control effects.
This mixed control approach (i.e., iPD-MFDDC) is the sec-
ond dual-loop control structure we studied in this paper.

Both dual-loop feedback control strategies are validated
on the attitude tracking control of an initially unstable aero-
dynamic system. Furthermore, this paper offers a thorough
discussion of experimental results by a cross-comparison of
different control approaches. The contributions of this study
are as follows,

(1) Proposed two dual-loop model-free control strategies
and apply them to the attitude tracking control of an unstable
aerodynamic system;

(2) Carried out a thorough experimental comparison
between the dual-loop control approach and other model-
based approaches. It is shown that the model-free controller
with/without the proposed compensator has better perfor-
mance than the model-based controller. By adding a com-
pensator to iPD, the tracking control performance can be
improved largely. Besides, iPD-MFDDC has superior com-
pensation performance to iPD-MFSMC.

This paper is organized as follows. Section II introduces
the helicopter setup and reviews a model-free control strat-
egy, i.e., iPD. The MFSMC and MFDDC are designed in
Section III and IV respectively. The simulation and experi-
mental studies are presented in Section V. Finally, Section VI
concludes this paper.

II. THE HELICOPTER SYSTEM AND MODEL-FREE
CONTROL DESIGN
The Quanser 2-DOF laboratory helicopter shown in Figure 1
consists of a helicopter model mounted on a fixed base with
two propellers that are driven by DC motors. The front pro-
peller controls the elevation of the helicopter pitch angle,
and the back propeller controls the side to side motion of
the helicopter yaw angle. The pitch θ and yaw ψ angles are
measured through two high-resolution encoders. The pitch
encoder and motor signals are transmitted via a slip ring,
which eliminates the possibility of wires tangling and allows
the yaw angle to rotate freely 360 degrees.

A. MODELING OF THE HELICOPTER
To establish an accurate model, many factors, such as the
thrust force produced by the rotation of the propeller, counter
torque produced by the rotation, gyroscopic effect, etc., are
usually taken into consideration. However, for convenience,
the helicopter body and the propellers are usually assumed
to be rigid. The complex rotor aerodynamics and their inter-
action with the helicopter fuselage are generally simplified.
The mathematical model of the 2-DOF helicopter is obtained
based on the following conventions [51],

1) The helicopter is horizontal when the pitch angle
θ = 0;

2) The pitch angle increases positively θ (t) > 0 when the
nose moves upwards and the body moves in counter-
clockwise direction;

3) The yaw angle increases positively ψ(t) > 0 when the
body rotates in counter-clockwise direction;

4) Pitch increases θ > 0 when the pitch thrust force is
positive Fp > 0;

5) Yaw increases ψ > 0 when the yaw thrust force is
positive Fy > 0.

With the Euler-Lagrangemethod, the equations of the pitch
and yaw motions with the servo motor voltages as inputs can
be described as follows [51],
(Jp + mhl2cm)θ̈ + mhl

2
cmψ̇

2 sin θ cos θ + Bpθ̇

+mhglcm cos θ = kppVθ + kpyVψ ,

(Jy + mhl2cm cos2 θ )ψ̈ − 2mhl2cmθ̇ ψ̇ sin θ cos θ

+Byψ̇ = kypVθ + kyyVψ . (1)

where Vθ and Vψ are the voltage inputs to the motors of the
propellers acting on the pitch and yaw respectively.

To consider the extra unmodeled dynamics and system
uncertainties, we can write the system model into a state-
space form equation as follows, ẋ1ẋ2ẋ3

ẋ4

 =
 x3

x4
f1 (x)
f2 (x)

+
 0 0

0 0
g11 g12
g21 g22

[ u1u2
]
, (2)

where x = [x1, x2, x3, x4]T is state variable, x1 = θ , x2 = ψ ,
x3 = θ̇ and x4 = ψ̇ represent the pitch angle, yaw angle, pitch
angle velocity, and yaw angle velocity respectively. fi (x), gij
and ui (i = 1, 2; j = 1, 2) represent the system drift dynamics,
input factor and input voltage respectively. They have the
following expressions,

f1 (x) = −
1
31

(mhl2cmx
2
4 sin x1 cos x1 + Bpx3

+mhglcm cos x1)+1f1,

f2 (x) =
1
32

(
2mhl2cmx3x4 sin x1 cos x1 − Byx4

)
+1f2,

g11 =
kpp
31
+ δ11, g21 =

kyp
32
+ δ21,

g12 =
kpy
31
+ δ12, g22 =

kyy
32
+ δ22,

31 = Jp + mhl2cm, 32 = Jy + mhl2cm cos2 x1,

u1 = Vθ , u2 = Vψ .
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where 1fi (i = 1, 2) represents the unmodeled dynamics
and uncertainties in the pitch and yaw channel respectively.
The unmodeled dynamics and uncertainties may include the
approximation of propeller viscous damping forces and aero-
dynamic forces, measurement error of system parameters,
external disturbances and other factors not mentioned here.
δij (i = 1, 2;= 1, 2) denote the uncertainties of experimental
measurements of the motor voltage-torque constant and pro-
peller torque-thrust constant. However, it is difficult or almost
impossible to determine the exact form of expression for 1fi
and δij in real applications.

The helicopter system can be simplified into a two-order
nonlinear model by considering the system outputs y1 = x1
and y2 = x2, and defining two user-defined non-physical
constants α1 and α2,[

ÿ1
ÿ2

]
=

[
f̃1 (·)
f̃2 (·)

]
+

[
α1u1
α2u2

]
, (3)

where αi (i = 1, 2) are non-zero user-designed parameters,
f̃1(·) = f1(·)+(g11−α1)u1+g12u2 and f̃2(·) = f2(·)+g21u1+
(g22−α2)u2 are two nonlinear functions that include unknown
system dynamics and undesigning control inputs.

Without an accurate dynamic model of the helicopter
system, it will be quite difficult to implement the control
task according to the traditional model-based optimal con-
trol methods. However, building an accurate mathematical
description of unmodeled dynamics, system uncertainties,
and external disturbances is usually difficult and expensive,
even impossible. The conflict between the need to build an
accurate mathematical model and its high cost drives our
research on model-free control in this paper. We take the
initiative to bypass the step of establishing a precise math-
ematical model of the helicopter and adopt a model-free
control method to complete its attitude control task.

B. A MODEL-FREE CONTROL APPROACH
By equivalent conversion, the system (3) can be approximated
for a short time window into an ultra-local model,

ÿi = hi + αiui (4)

where hi (i = 1, 2) is a continuously updated value that
captures all the unknown nonlinearity and uncertainties in
the input-output behavior of the system. Since the above
equation is valid for a short timewindow, it must be updated at
each sampling time, 1t . At time interval [k1t, (k + 1)1t],
the value of hi is updated from the measurement of αiui and
ÿi in the following manner,

ĥi (k) = [ÿi (k)]est − αiui (k − 1) , i = 1, 2 (5)

where ĥi (k) is the estimated value of hi at the time point k1t .
It will be used for the computation of the control input ui (k)
later. The notation [ÿi (k)]est is the estimated value of the
second-order derivative of the output yi at the time point k1t .
In this study, the first and second derivative are estimated by
low-pass filter (LPF) to attenuate the noisy signals with the

following transfer functions,

L1(s) =
ω2
cf s

s2 + 2ζf ωcf s+ ω2
cf

, (6)

L2(s) =
ω2
cf s

2

s2 + 2ζf ωcf s+ ω2
cf

, (7)

where ωcf = 20π and ζf = 0.85 are the cutoff frequency
and the damping ratio of the low-pass filter respectively.
Besides, to get the second derivative of a time sequence of the
measured output, we can also take the first derivative twice.
The notation ui (k − 1) is the control input of the previous
sampling time point. Generally, the model-free control input
can be written as

umfc,i = −
ĥi − ÿdi + uci

αi
, (8)

where ÿdi(i = 1, 2) is the second-order derivative of the
desired output and uci(i = 1, 2) is a feedback controller used
to stabilize the ultra-local system.

Substituting Equation (8) into (4), and assuming that hi can
bewell approximated by functions ĥi in Equation (5), we have

ëi + uci = 0, (9)

where ei = yi− ydi (i = 1, 2) is the output error. With an iPD
control strategy, uci = kpiei + kdiėi, i = 1, 2, the model-free
controller (8) reads

umfc,i = −
ĥi − ÿdi + kpiei + kdiėi

αi
, i = 1, 2. (10)

III. A MODEL-FREE SLIDING MODE COMPENSATOR
The key step for the success of the model-free control is
lying in updating the unknown system dynamics in real-
time through Equation (5). However, many factors, such as
derivative estimation error, control signal lag, environmental
noise, etc., always introduce a certain deviation between the
estimated value and the real value of the system dynamics.
In this section, a sliding mode compensator is developed to
compensate for the estimation errors of iPD.

A. SLIDING MODE COMPENSATION APPROACH
An augmented sliding mode compensator, usmc, will be
designed and added to the model-free controller (10),

ui = −
ĥi − ÿdi + kpiei + kdiėi

αi
+ usmc,i, i = 1, 2 (11)

Substituting Equation (5) into (11), the closed-loop control
system can be described by the state-space equations through
introducing new state variables, z1 = e1, z2 = e2, z3 = ė1
and z4 = ė2,

ż1 = z3,
ż2 = z4,
ż3 = −kd1z3 − kp1z1 + α1usmc,1 +1%1,
ż4 = −kd2z4 − kp2z2 + α2usmc,2 +1%2,

(12)
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where 1%i = ÿi − [ÿi]est = hi − ĥi, (i = 1, 2) represents
the unknown estimation errors. Because the state equations
in (12) are decoupled, two sliding model compensators can
be designed separately.

Define a pair of sliding surfaces for pitch motion and yaw
motion respectively,

s1 = z1 + λ1z3, s2 = z2 + λ2z4. (13)

For the pitch motion as an example, we consider a
Lyapunov function

V1 =
1
2
s21, (14)

According to the Lyapunov stability theory V̇1 < 0,
the design of pitch motion sliding mode compensator needs
to satisfy the following reaching and existence condition

s1ṡ1 < 0. (15)

On the sliding surface, we impose s1 = 0 and ṡ1 = 0,

ṡ1 = ż1 + λ1ż3
= z3 + λ1

(
−kd1z3 − kp1z1 + α1usmc,1 +1%1

)
. (16)

An equivalent control law can be solved,

usmc,eq1 =
1

λ1α1
[λ1kp1z1 − (1− λ1kd1)z3 − λ11%1]. (17)

Since the estimation error 1%1 is unknown and can’t be
measured accurately, the equivalent controller can’t be used
to control the system directly. In an actual implementation,
1%1 is usually replaced by a hypothetical value function
1%̂1, and then an additional switching term usmc,sw1 =
−

K1
λ1α1

sign(s1) with K1 > 0 a user-defined parameter is
added to ensure stable running of the system along the sliding
surface. Hence the final slidingmode compensation law reads

usmc,1 = ûsmc,eq1 + usmc,sw1, (18)

where ûsmc,eq1 = 1
λ1α1

[λ1kp1z1 − (1 − λ1kd1)z3 − λ11%̂1]
and the estimated error and the hypothetical value function
satisfies that

∣∣1%1 −1%̂1∣∣ ≤ E1. Here, E1 > 0 is a known
constant. Normally, the discontinuous switching law in Equa-
tion (18) may cause chattering phenomenon. To tackle this
issue, we follow the traditional practice by introducing a sat-
uration function to replace the sign function in the switching
law,

usmc,sw1 = −
K1

λ1α1
sat
(
s1
φ1

)

= −
K1

λ1α1


1, s1 > φ1
s1
φ1
, −φ1 ≤ s1 ≤ φ1

−1, s1 < −φ1

(19)

where 0 < φ1 < 1 is the boundary layer thickness of
the saturation function. The block diagram of the proposed
control structure for the model-free control with the sliding
model compensator is shown in Figure 2.

FIGURE 2. The block diagram of the iPD-MFSMC approach. The iPD acts
as the inner-loop controller that is used to stabilize the initial system
while the MFSMC serves as the outer-loop compensator, which is used to
compensate the inner-loop controlled system and finish the attitude
tracking task.

B. STABILITY PROOF
The stability of the model-free controller with the proposed
sliding mode compensator is discussed by taking different
values of the sliding mode parameter, s1 : |s1| ≤ φ1 and
|s1| > φ1.
Case 1: |s1| ≤ φ1
Substituting Equations (18) and (19) into Equation (16),

the existence and reaching condition (15) becomes

s1ṡ1 = s1

[
λ1
(
1% −1%̂1

)
− K1sat

(
s1
φ1

)]
= λ1

(
1% −1%̂1

)
s1 −

K1

φ1
s21

≤ λ1E1 |s1| −
K1

φ1
s21 (20)

If K1 >
λ1E1φ1
|s1|

, the reaching and existence condition (15)
is guaranteed.
Case 2: |s1| > φ1
Substituting Equations (18) and (19) into Equation (16),

the existence and reaching condition (15) becomes

s1ṡ1 = s1

[
λ1
(
1% −1%̂1

)
− K1sat

(
s1
φ1

)]
= λ1

(
1% −1%̂1

)
s1 − K1s1sign (s1)

= λ1
(
1% −1%̂1

)
s1 − K1 |s1|

≤ (λ1E1 − K1) |s1| (21)

If K1 > λ1E1, the reaching and existence condition (15) is
guaranteed yet.

When the value of parameter K1 is selected to
max

{
λ1E1φ1
|s1|

, λ1E1
}
+ η1 with η1 > 0 a positive con-

stant, the Lyapunov stable condition is satisfied, i.e.,
V̇1 = s1ṡ1 ≤ −η1 |s1|. The expression of the sliding mode
compensation law added to the model-free control (10) for
the pitch motion is

usmc,1 =
1

λ1α1
[λ1kp1z1 − (1− λ1kd1) z3

−λ11%̂1 − K1sat(s1/φ1), (22)
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FIGURE 3. The block diagram of the iPD-MFDDC approach. The iPD
controller and MFDDC represent the inner-loop and outer-loop
respectively.

Similarly, the sliding mode compensation law added to the
yaw motion can be written as

usmc,2 =
1

λ2α2
[λ2kp2z2 − (1− λ2kd2) z4

−λ21%̂2 − K2sat(s2/φ2)], (23)

K2 = max
{
λ2E2φ2
|s2|

, λ2E2

}
+ η2, η2 > 0, (24)

where E2 > 0 is a known constant. It is noting that the
gains K1 and K2 are relating to the sliding surface parameters
s1 and s2 respectively. In practice, we need to calculate the
value of each sliding surface at each sampling time t . Refer to
section V-B for the constant parameters used in this section.

IV. A DATA-DRIVEN COMPENSATOR
In this section, a model-free data-driven compensator
(MFDDC) that serves as the outer-loop control strategy
is introduced to iPD control. MFDDC is implemented
by an actor-critic neural network (NN), which learns the
optimal value function and optimal compensation policy
simultaneously. The dual-loop feedback control structure
(iPD-MFDDC) is illustrated in Figure 3.

Recalling the helicopter model with unmodeled dynamics
and system uncertainty described in Equation (2), substituting
the model-free control law (10) into it and considering the
data-driven compensator uddc, we can write the controlled
system into the following form,

ẋ = f(x)+ g(x)uddc, (25)

where x = [x1, x2, x3, x4]T , f(x) = [x3, x4, f1(x) +
g11umfc,1 + g12umfc,2, f2(x) + g21umfc,1 + g22umfc,2]T,

g(x) =
[
0, 0, g21, g22
0, 0, g11, g12

]T
and uddc = [uddc,1, uddc,2]T

represents the data-driven compensation law.
Define a continuous value function

V (x) =
∫
∞

t
L(x,uddc)dτ. (26)

where L(x,u) = 1
2 (x

TQx + uTddcRuddc) is the Lagrange
function with Q ≥ 0 a semi-positive symmetric matrix and

R > 0 a positive symmetric matrix. The Hamilton-Jacobi-
Bellman (HJB) equation for the system (25) is

L(x,uddc)+
∂V (x)T

∂x
[f(x)+ g(x)uddc] = 0. (27)

The optimal control can be solved from the HJB equation,

u∗ddc(t) = −R
−1gT(x∗)

∂V (x∗)
∂x

. (28)

where x∗ is the optimal state at time t . Let ukddc and V
k (x)

denote the control input and value function at the k th iteration
and let u′ddc denote an admissible control at the (k + 1)th

iteration step, we have
∂V k+1(x)T

∂x
[f(x)+ g(x)ukddc]+ L(x,ukddc) = 0,

V̇ k+1(x) =
∂V k+1(x)T

∂x
[f(x)+ g(x)u′ddc],

(29)

which implies that

V̇ k+1(x) = −L(x,ukddc)

+
∂V k+1(x)T

∂x
g(x)(u′ddc − ukddc). (30)

Besides, Equation (28) implies that ∂V k+1(x)T
∂x g(x) =

−(uk+1ddc )
TR. So the Equation (30) can be rewritten as

V̇ k+1(x) = −L(x,ukddc)− (uk+1ddc )
TR[u′ddc − ukddc]. (31)

According to the integral reinforcement learning [48], [52],
integrating both sides of (31) from t to t +1t , the following
equation is true

V k+1(x(t))− V k+1(x(t +1t))

−

∫ t+1t

t
(uk+1ddc (τ ))

TR(u′ddc(τ )− ukddc(τ ))dτ

=

∫ t+1t

t
L(x(τ ),ukddc(τ ))dτ (32)

With this updating rule, the unknown value function V k+1

and the compensation law ukddc are no longer relevant to
the system model. They both can converge to the optimal
ones V ∗ and u∗ddc simultaneously [48]. For implementation
purposes, the optimal value function V ∗ and control policy
u∗ddc can be approximated through a critic neural network
and an actor neural network respectively. The approximate
solutions of (32) based on the actor-critic NN can be written
as

V̂ k+1(x) = ŵT
V ,k+1φV (x), (33)

ûk+1ddc = ŵT
u,k+1φu(x), (34)

where φV : Rn
→ RKV , φu : Rn

→ RKu are linearly
dependent basis function vectors, ŵV ,k+1 ∈ RKV and
ŵu,k+1 ∈ RKu×m are the estimations of unknown coefficient
vector and matrix with KV and Ku the numbers of hidden
neurons. It is known that as KV → ∞ and Ku → ∞,
the approximate solution V̂ (x) and ûddc(t) will converge to
the true solution V (x) and uddc(t) respectively. For the special
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case of 2-DOF helicopter system, the parameters satisfies:
m = 4 and n = 2.

Define a time sequence tj = j1t with j = 0, 1, . . . , q for a
large interval. The residual error of the critic NN is

ek+1j = V̂ k+1(x(tj))− V̂ k+1(x(tj+1))

−

∫ tj+1

tj
L(x, ûkddc)dτ

−

∫ tj+1

tj
(ûk+1ddc )

T(Ru′ddc − ûkddc)dτ

=
[
φV
(
x(tj)

)
− φV

(
x(tj+1)

)]T ŵV ,k+1

−

∫ tj+1

tj
φTu ŵu,k+1R

(
u′ddc − ŵT

u,kφu

)
dτ

−
1
2

∫ tj+1

tj

(
xTQx+ φTu ŵu,kRŵT

u,kφu

)
dτ. (35)

The residual error can be written in a compact form by
introducing the Kronecker product ⊗,

ek+1j = ρTj (W̄k )W̄k+1 − πj(W̄k ) (36)

W̄k+1 =

[
ŵT
V ,k+1, vec(ŵu,k+1)T

]T
(37)

where W̄T
k+1 ∈ RK̄ is the estimated weighting function

vector with K̄ = KV + mKu. vec(·) denotes the vector-
ization of a matrix formed by stacking the columns of the
matrix into a single column vector. Besides, the iterative index
k ∈ {0, 1, . . .}, the time sequence index j ∈ {0, 1, . . . , q}, and
ρj, πj are defined as

ρj =

[
φV
(
x(tj)

)
− φV

(
x(tj+1)

)
,

−
∫ tj+1
tj

R
(
u′ddc − ŵT

u,kφu

)
⊗ φudτ

]
, (38)

πj =
1
2

∫ tj+1

tj
xTQx+ φTu ŵu,kRŵT

u,kφudτ. (39)

Based on the least-squares (LS) principle, the estimated
weighting function vector W̄k+1 can be determined by mini-
mizing (ek+1j )2. The solution is

W̄k+1 = [PT(W̄k )P(W̄k )]−1PT(W̄k )5(W̄k ) (40)

with

P(W̄k ) = [ρ0, ρ1, . . . , ρq]T, (41)

5(W̄k ) = [π0, π1, . . . , πq]T. (42)

The inverse of the matrix PT(W̄k )P(W̄k ) must exist,
i.e., the matrix PT(W̄k ) is a full rank matrix. In general,
the number of data points should satisfy q ≥ rank(P(W̄k )).
Besides, the terminate condition of the updating rule is set as∥∥W̄k+1 − W̄k

∥∥ ≤ ε, where ε is a very small positive number.
So, combining the data-driven compensator with the model-
free controller, we obtain the final control input

u = umfc + (ŵ∗u)
Tφu(x), (43)

where ŵ∗u is the optimal gain parameter trained with the input
and output data of the system. The model-free control law

with a data-driven compensator is completely independent of
the systemmodel but only related to the input and output data
of the system.

V. RESULTS AND DISCUSSIONS
We first review two kinds of model-based control approaches
that are used to compare to the proposed model-free control
strategies. Then, a simulation is taken to show the robustness
proprieties of the model-free controller with different types
of compensation mechanisms. Finally, we designed three
experiments to demonstrate the compensation effect of the
two designed compensators.

A. MODEL-BASED CONTROL FOR COMPARISON
By neglecting the unmodeled dynamics, system uncertainties,
and external disturbances in Equation (2), the 2-DOF heli-
copter system can be described accurately with the system
parameters listed in Table 1. The linear quadratic regula-
tor (LQR) control [51] and an optimal feedback linearization
control (OFLC) [7] are taken as two comparison baselines
to evaluate the control performances of the two model-free
control methods above. It’s worth noting that the two model-
based control methods are based on the state equation (2) that
ignores the unmodeled dynamics, system uncertainties, and
external disturbances.

1) LQR DESIGN
According to [51], the pitch angle θ is regulated by a pro-
portional integral differential (PID) with a feed-forward term,
meanwhile, the yaw angle ψ is regulated by a PID controller
without a feed-forward term. The nonlinear feed-forward
term in the pitch angle control compensates the gravitational
torque τg = mheliglcm cos θ in Equation (1) and reads

uff = kff
mheliglcm cos θd

Kpp
, (44)

where θd is the desired pitch angle and kff = 1.0 is the
feedforward control gain, which compensates the gravity. The
PID feedback control [u1, u2]T = Kpid (xd − x) is optimized
with LQRby linearizing the nonlinearmodel into a linear one.
The control gain is

Kpid =

[
18.94, 1.98, 7.49, 1.53, 7.03, 0.77

−2.2, 19.45,−0.45, 11.89,−0.77, 7.03

]
. (45)

So the model-based PID controller reads

u =
[
uff
0

]
+Kpid (xd − x) . (46)

2) OPTIMAL FEEDBACK LINEARIZATION CONTROL (OFLC)
Let y = [y1, y2]T = [θ (t), ψ(t)]T be the system output, and
yd = [yd1, yd2]T = [θd (t), ψd (t)]T be the desired trajectories
for the outputs. Neglecting the unmodeled dynamics and
system uncertainties in Equation 2 and extracting the last two
rows of this equation, we have

ÿ = F(y, ẏ)+G(y)u, (47)
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TABLE 1. The parameters of the helicopter system.

where F(y, ẏ) = [f1, f2]T and G(y) = [
g11 g12
g21 g22

]. Referring

to the results in [7], the optimal feedback linearization con-
troller (OFLC) is

uoflc = G−1[−F(y, ẏe)+Koflc(0d − 0e)], (48)

where ẏe is the numerical estimation of the derivative of
the output signal, 0T

d = [yTd , ẏ
T
d , 0

T
2 ] and 0

T
e = [yT, ẏTe ,∫ t

0 (y
T
−yTd )dτ ] are two extended vectors, and the control gain

reads

Koflc =

[
19.02, 0.82, 11.74, 0.47, 7.07,−0.25
2.14, 19.11,−0.47, 11.75, 0.25, 7.07

]
. (49)

B. PARAMETERS OF THE MODEL-FREE CONTROL
WITH/WITHOUT A COMPENSATOR
Before the simulation and experiment, we first give the
parameters of each controller and their selection basis. The
parameters of the iPD controller (10) are selected as

α1 = 18, kp1 = 3.1623, kd1 = 3.3652, (50)

α2 = 16, kp2 = 3.1623, kd2 = 3.3652. (51)

Based on iPD, the control parameters used in iPD-MFSMC
are

λ1 = 5, η1 = 2, φ1 = 0.1, (52)

λ2 = 3, η2 = 2, φ2 = 0.1. (53)

Furthermore, for convenience, we assume that the estima-
tion error is zero, i.e. 1%̂1 = 1%̂2 = 0, and after multiple
attempts, we set the estimation upper bounds as E1 = 2 and
E2 = 3.

The implementation of iPD-MFDDCneeds to train an opti-
mal compensator coefficient w∗u using the input-output data
of the helicopter system. In this study, we artificially choose
a set of probing excitation signal u′p(t) = [up,θ , up,ψ ]T with
the following form,

u′p(t) = −
1
2

[
sin(0.4t)+ 2 sin(1.6t),
sin(0.5t)+ sin(1.9t)+ sin(9.1t)

]
. (54)

The sampling time of each experiment is set as
1t = 0.005s. When the data generation experiment runs

FIGURE 4. The probing and pre-stabilizing control signal used to excite
and stabilize the systems, respectively. Only the data located in the time
window [12s,15.5s] will be used to train the data-driven compensator.

Trun = 20s, we totally accumulate 4001 pairs of input-
output data. The input data consists of the probing signal
u′p(t) and the iPD control signal u′mfc(t) while the output data
is composed of the system output y′, the output derivative
estimation [ẏ′]est and the integral of the system output signal∫ t
0 y
′dτ . The input data and the corresponding output data

are shown in Figures 4 and 5 respectively. Without loss of
generality, we select a narrow time window [12s, 15.5s] that
contains 700 pairs of input and output data from the whole
database for updating the compensator gain wu.
To approximate the optimal solutions of the value function

and control policy with actor-critic NN, we define the com-
plete basis function vectors as

φV = [x21 , x
2
2 , x

2
3 , x

2
4 , x1x2, x1x3, x1x4, x2x3, x2x4, x3x4]

T

= [θ2, ψ2, θ̇2, ψ̇2, θψ, θ θ̇ , θψ̇, ψθ̇, ψψ̇, θ̇ ψ̇]T , (55)

φu =

[
x1, x2, x3, x4,

∫ t

0
x1dτ,

∫ t

0
x2dτ

]T
=

[
θ, ψ, θ̇ , ψ̇,

∫ t

0
θdτ,

∫ t

0
ψdτ

]T
. (56)

The initial weights wV0 and wu0 of the two NNs are both
initialized to zero. In order to get an optimal solution with
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FIGURE 5. The measured output data and its derivative estimation and
integral value. Only the data located in the time window [12s,15.5s] will
be used to train the data-driven compensator.

sufficiently high precision, we set the iteration termination
condition of the LS updating rule as

∥∥W̄k+1 − W̄k
∥∥ < 10−8.

After 13 times iteration, the LS updating procedure is termi-
nated. We make the weight matrices w13

V and w13
u obtained

from the 13th iteration represents the gains of the optimal
value function and optimal compensator policy respectively,
i.e.,

V (x) ≈
(
w13
V

)T
φV , (57)

uddc(t) ≈
(
w13
u
)T
φu, (58)

with w13
V = [0.32, −0.89, −0.0003, 0.0003, −1.07, 0.01,

0.005, −0.024, −0.042, 0.007]T and

w13
u =

[
−4.24,−13.89, 0.25,−0.12,−1.21,−2.50
−0.87,−5.29, 0.43,−0.14,−1.10,−2.51

]T
.

C. SIMULATION RESULTS AND DISCUSSION
This section presents the simulation of step response for
the helicopter control based on five different control strate-
gies. By comparing the simulation results, we studied the
robustness of different control methods against unmodeled
dynamics, system uncertainties, and external disturbance.
We artificially set up two scenarios for comparison:

(1) Assume that the system model in Equation (2) is com-
pletely known and accurate, which means that the system has
no unmodeled dynamics, system uncertainties, and external
disturbance, i.e., 1fi = 0, δij = 0. This scenario serves as a
baseline that aims to illustrate all five control approaches are
effective.

(2) Assume that the system model has a certain degree
of unmodeled dynamics, system uncertainties and external
disturbance, i.e., 1fi 6= 0, δij 6= 0. In this scenario, we arti-
ficially add uncertainty and random noise to the system and
take it as the real accurate model of the system. For conve-
nience in this scenario, we assume that the uncertainty δij
can be written as a percentage of the corresponding item in
the original system. For example, we set δ11 = −0.153g11,

which means that we take g11 in Equation (2) without uncer-
tainty minus 15.3% of the original value as the exact value
of this item. Similarly, we add uncertainty to the other terms
in turn, i.e., δ12 = 0.165g12, δ21 = 0.137g21 and δ22 =
−0.185g22. Different from the handling way on δij, we set
1fi as a serial of random number with a specific mean
value and variance to represent the uncertainty and external
disturbance. In this study, we set 1f1 = rand(0.14, 0.27)
and 1f2 = rand(0.31, 0.23), which means that 1f1 and
1f2 are two random sequences with mean value 0.14 and
0.31 and variance 0.27 and 0.23 respectively. Besides, we add
two Gaussian white noise signals with mean value zero and
variance 0.0141 to the state variables x1 and x2 respectively
to simulate the sensor noise.

Since LQR and OFLC are model-based methods that
require a completely known system model, we design them
in scenario (1). On the contrary, the iPD, iPD-MFSMC, and
iPD-MFDDC are model-free methods. We design them in
scenario (2). After finishing the design of five controllers,
we test them in both scenarios (1) and (2). Figures 6 and 7
show the output and input signals of the step responses
respectively. Observing the output signals in scenario (1)
alone, we can see that each control approach has good
tracking control performance. It means that if we have an
accurate mathematical model, all five control methods can
well realize the control task. However, when we add unmod-
eled dynamics, system uncertainties and external disturbance
to the helicopter system, the tracking control performances
of LQR and OFLC become worse. Meanwhile, the control
performances of iPD, iPD-MFSMC, and iPD-MFDDC are
still satisfied, which means that the three model-free control
strategies are quite robust against uncertainties and external
disturbances. The simulation results shown in this section
imply that the proposed model-free control strategies have
stronger robustness compared to the model-based ones.

D. EXPERIMENTAL RESULTS AND DISCUSSION
The controls of the 2-DOF laboratory helicopter are carried
out by two servomotors. To protect the system hardware from
damage, the input voltages of two servo motors should be
limited in the finite intervals. The pitch control voltage of the
UPM-2405 DC motor is bounded by the amplifier outputs
Vp,max = 24V and Vp,min = −24V . The yaw control voltage
of the UPM-1503 DC motor is bounded by Vy,max = 15V
and Vy,min = −15V .

We demonstrate the effectiveness of the proposed control
algorithm through three tracking control scenarios:
Tracking a Circle: The reference signals θd and ψd

together form a circular trajectory, whose center coordinate
and radius are with (−10,−20) and 20 respectively,

(θd + 10)2 + (ψd + 20)2 = 202 (59)

Tracking a Square: The reference signals θd and ψd
together form a foursquare trajectory, whose center coordi-
nate and side length are with (−10,−20) and 40 respectively,
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FIGURE 6. The simulation results of the step response of five different
kinds of control methods. The subfigures (a1)-(e1) represent the pitch
motion trajectories under the control input of LQR, OFLC, iPD,
iPD-MFSMC, and iPD-MFDDC respectively. The corresponding yaw motion
trajectories are shown in subfigures (a2)-(e2). In each subfigure, the blue
line represents the reference signal, the red (green) curve represents the
result when the system model is with (without) uncertainties and
disturbances.

Tracking Complex Trajectories: The reference signal con-
sist of the summation of different harmonic signals,

θd = −8 cos
(

1
25
π t
)
+ 7 sin

(
2
25
π t +

π

4

)
+4 sin

(
7
50
π t +

π

3

)
− 10 (60)

ψd = 2 sin
(

1
10
π t
)
− 6 sin

(
27
50
π t +

π

9

)
−4 cos

(
16
25
π t +

π

3

)
− 20 (61)

To clearly evaluate the performance difference between
model-based and model-free control methods, we define a
statistical indicator,

Je (θ, ψ) = log10

(
|eθ | +

∣∣eψ ∣∣
2

)
, (62)

where eθ = θ − θd and eψ = ψ −ψd are the tracking errors
of the pitch and yaw motions. Besides, we use the average
integral absolute error function to quantitatively discuss the
control performance of each control method,

JIAE =
1
T

∫ T

0

(
|eθ | +

∣∣eψ ∣∣) dt, (63)

where T = 80s is the total running time of each experiment.

FIGURE 7. The control inputs of five different kinds of control methods.
Subfigures (a1)-(e1) show the pitch motion control input voltages of the
five control methods LQR, OFLC, iPD, iPD-MFSMC, and iPD-MFDDC
respectively. The corresponding yaw motion control input voltages are
shown in subfigures (a2)-(e2). In each subfigure, the red (green) curve
represents the control input voltage when the system model is
with (without) uncertainties and disturbances.

FIGURE 8. The experimental tracking control performances of different
control methods when tracking a circle. The blue and red lines represent
the result of LQR design and OFLC design respectively. The green lines in
subgraphs (a)-(c) represent the results of iPD, iPD-MFSMC, and
iPD-MFDDC respectively. The subgraph (d) shows the values of Je for
different control methods, where the green line represents the mean
value of three model-free approaches.

Figure 8 shows the experimental output of the first sce-
nario. We can see that the control performance of the OFLC
design is better than the LQR design. Compared to the model-
based control approaches (i.e., red and blue lines in each
subgraph), the model-free control method (i.e., green lines in
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FIGURE 9. The statistical values of the average integral absolute errors
for different control methods when tracking a circle.

FIGURE 10. The experimental tracking control performances of different
control methods when tracking a square. The blue and red lines represent
the result of LQR design and OFLC design respectively. The green lines in
subgraphs (a)-(c) represent the results of iPD, iPD-MFSMC and
iPD-MFDDC respectively. The subgraph (d) shows the values of Je for
different control methods, where the green line represents the mean
value of three model-free approaches.

FIGURE 11. The statistical values of the average integral absolute errors
fordifferent control methods when tracking a square.

each subgraph) has better control performance because they
are closer to the desired trajectory.

The values of (62) for each control method are shown
in Figure 8(d). Since there are similar outputs of the three
model-free methods, we calculate their average (green line
in Figure 8(d)) and compare it with the model-based method.

FIGURE 12. The experimental pitch motion tracking error of different
control methods when tracking a complex harmonic signal. The blue and
red lines represent the result of LQR design and OFLC design respectively.
The green lines in subgraphs (a)-(c) represent the results of iPD,
iPD-MFSMC, and iPD-MFDDC respectively. The subgraph (d) shows the
values of Je for different control methods, where the green line
represents the mean value of three model-free approaches.

FIGURE 13. The experimental yaw motion tracking error of different
control methods when tracking a complex harmonic signal. The blue and
red lines represent the result of LQR and OFLC respectively. The green
lines in subgraphs (a)-(c) represent the results of iPD, iPD-MFSMC, and
iPD-MFDDC respectively. The subgraph (d) shows the values of Je for
different control methods, where the green line represents the mean
value of three model-free approaches.

This graph quantitatively shows that the model-free method is
superior to the model-based method. To investigate which of
the three model-free control methods works best, we calcu-
late the average integral absolute error of each method and
present them in Figure 9. It proves again that the control
performance is significantly improved with three model-free
controls compared to LQR and OFLC. Besides, the con-
trol performance slightly improves with iPD-MFSMC and
iPD-MFDDC compared to iPD. According to the quantitative
calculation, the control effect of iPD-MFSMC is increased
by 5.41% compared with iPD. However, the control effect of
iPD-MFDDC is 9.48% higher than that of iPD. Figure 10
shows the experimental output results of the second sce-
nario. Similar results of the first scenario can be found in
this scenario. Figure 10(a)-(c) qualitatively show that the
model-free control has better control performance than the
model-based control. Also, Figure 10(d) quantitatively shows
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FIGURE 14. The statistical values of the average integral absolute errors
for different control methods when tracking a set of harmonic signals.

that model-free control is superior to model-based control.
Figure 11 shows the statistical results of the average integral
absolute error for each control method. We can see that
the model-free control performance improves significantly
compared to themodel-based. It shows that iPD-MFSMC and
iPD-MFDDC are about 4.93% and 5.27% higher than iPD
respectively.

Figures 12 and 13 show the experimental outputs of
the third scenario. Subfigures (a)-(c) qualitatively indicate
that the model-free control has smaller tracking errors than
model-based. Subfigure (d) quantitatively shows that model-
free control is superior to the model-based control. Figure 14
shows the statistical results of the average integral absolute
error for each control method. We can also see that the per-
formance of iPD-MFSMC and iPD-MFDDC are about 5.58%
and 9.68% higher than that of iPD respectively.

VI. CONCLUSION
This paper investigates two model-free compensators,
the MFSMC and the MFDDC. They are used to compensate
for a nominal iPD controller. The compensated nonlinear
controller is a dual-loop robust model-free controller with
iPD as the inner loop and the compensator as the outer
loop. The proposed dual-loop model-free control algorithms
are validated by simulations and experiments on a nonlinear
laboratory helicopter setup. The cross-comparisons between
two robust model-free control methods and two model-based
control methods show that: 1) the tracking performance of
the dual-loop robust model-free control approaches are supe-
rior to that of the model-based method, 2) with a compen-
sator (MFSMC or MFDDC) embedded in the inner loop
controller, its tracking performances are improved signif-
icantly, and 3) the compensator MFDDC performs better
than the compensator MFSMC slightly. The results in this
paper indicate that the proposed dual-loop robust model-
free control approaches are quite promising in dealing with
the control tasks for the systems with unmodeled dynamics
and uncertainties, even with unknown dynamical models.
This is a very favorable property to potential practical
applications.
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