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ABSTRACT Burden surface distribution plays a key role in achieving an energy-efficient status of blast fur-
nace (BF). However, actual adjustment of burden surface usually depends on the operator’s experience when
the production status changes. Meanwhile, due to the characteristics of high dimension, strong coupling, and
distributed parameters, it is difficult to establish the accurate mechanism model for BF ironmaking process.
Considering the aforementioned issues, this paper proposes an integrated multi-objective optimization
framework for optimizing burden surface distribution based on the analysis of BF operation characteristics.
Firstly, data-driven models are constructed for two objectives, i.e., gas utilization ratio (GUR) and coke
ratio (CR), and two constraints using adaptive particle swarm optimization (APSO) based extreme learning
machine (ELM), namedAPSO-ELM.Multi-objective optimization is subsequently carried out betweenGUR
and CR using the multi-objective differential evolution algorithm (MODE) to generate the Pareto optimal
solutions. Finally, TOPSIS is applied to select a best compromise solution among the Pareto optimal solutions
for this optimization problem. Comprehensive experiments are presented to illustrate the performance of the
proposed integrated multi-objective optimization framework. The experimental results demonstrate that the
proposed framework can give a reasonable burden surface profile according to the production status changes
to guarantee the BF operation more efficient and stable.

INDEX TERMS Blast furnace, burden surface optimization, multi-objective optimization, extreme learning
machine, MODE, TOPSIS.

I. INTRODUCTION
Iron and steel industry plays an important role on national
economy in many countries. Blast furnace (BF) is the first
step towards the production of steel and also one of the
main energy-consuming processes [1], [2]. In recent years,
the increasingly fierce market competition has made indus-
trial manufacturing enterprises put forward higher require-
ments for energy consumption, product quality, production
efficiency and cost. Therefore, the development of BF iron-
making process largely focuses on saving materials and
energy, as well as improving molten iron quality [3].
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During the BF ironmaking process, burden distribution
scheme in the upper part of BF is the most frequent and criti-
cal operation, which determines the raw material distribution
and further affects the gas flow distribution, the thermal state,
and the chemical reactions [4], [5]. Therefore, a reasonable
burden surface can guarantee the smooth and stable operation
environment, and achieve the energy-saving production and
the high-quality molten iron [6]. However, BF is an extremely
complicated ‘‘black box’’ system, it is difficult to fully under-
stand the phenomena occurred inside the furnace, and directly
evaluate its production status and production indicators. Cur-
rently, burden surface decision mainly relies on the rich expe-
rience of specialized operators [7]. In addition, it cannot be
fast and accurately adjusted to ensure the optimization of key
production indicators when the production status changes.
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Hence, the optimal setting of burden surface is of vital to sta-
ble operation and improvement of energy efficiency, which is
still an open problem both in academic research and industrial
production.

In the past decades, many research works paid much atten-
tion to the burden distribution, especially in the mathematical
model for the burden distribution process. Park et al. [8], [9]
developed a burden distribution analysis model based on bur-
den trajectory, descent model, and stock model to calculate
the burden surface. Fu et al. [10] demonstrated a mathemati-
cal model with the combination of falling curve model, stock
line profile formation model and burden descending model,
and discussed the effects of the non-uniform descending
velocity on burden distribution. Zhao et al. [11] established
a comprehensive model from flow control gate to stock sur-
face in detail and analyzed the non-uniformity phenomenon.
Xu et al. [12] proposed the circumferential burden distribu-
tion behaviors at bell-less top blast furnace with parallel type
hoppers to reduce the uneven degree of burden distribution.
The aforementioned contributions make us understand the
‘‘black box’’ system more clearly, and provide theoretical
support for decision-making. In terms of the optimal bur-
den surface decision, it is basically given by the results of
experience and empirical knowledge. Generally speaking,
platform plus funnel mode is recognized as the ideal burden
surface profile, which can satisfy the demand of gas flow
distribution to achieve the improvement of gas utilization effi-
ciency [13]–[15]. To our best knowledge, researchers rarely
attempt to find the optimal burden surface matching the pro-
duction status to achieve optimal key production indicators.
Uniquely, Li et al. [16], [17] constructed multiple models
set of burden surface by k-means clustering algorithm and
established a selection mechanism, but they did not consider
the effects of production status changes on burden surface
and this approach cannot guarantee the optimization of key
production indicators.

The purpose of BF ironmaking operation is high efficiency,
high quality and low consumption, which are interrelated
and differentiated [18]. Actually, the burden surface opti-
mal setting can be treated as a multi-objective optimization
problem (MOP) under the premise that the burden surface
is discretized. Meanwhile, the methods to solve the MOPs
have made considerable progresses in recent years. Many
multi-objective evolutionary algorithms (MOEAs) have been
introduced to solve MOPs, which can be divided into two
categories. The first category, including the non-dominated
sorting genetic algorithm (NSGA) [19], does not provide
an elitism mechanism. The second category, known as
NSGA-II [20], gains much attention from the researchers
due to their effectiveness and easy implementation. In addi-
tion, there are several multi-objective metaheuristic algo-
rithms, such as multi-objective ant colony optimization
(MOACO) [21] and multi-objective particle swarm opti-
mization (MOPSO) [22]. A review of multi-objective meta-
heuristic algorithms has been presented by Jones et al. [23].
Since the development of MOEAs, there has been a

growing interest in obtaining the Pareto optimal solu-
tions using different evolutionary algorithms. Among these
attendedMOEAs, multi-objective differential evolution algo-
rithm (MODE) [24] preforms better in solving the MOP.
In the past decade, MODE has been improved and widely
applied in optimization of various problems [25], [26]. These
algorithms lay a solid theoretical foundation for the burden
surface optimization problem.

Accordingly, in this paper, we focus on the optimal setting
of burden surface. Due to the complexity of BF and the
installation of radars in the top of BF, a multi-objective opti-
mization framework for burden surface is established based
on data-driven technique. The original burden surface data
collected by radars are analyzed, and the characteristics of
the burden surface are carefully considered to be discretized
according to the experience of operator. After data process-
ing, considering the constrains of the actual situation, and
upper and lower bounds of the variables, data-driven multi-
objective optimization models are constructed for optimiz-
ing burden surface with the aim to minimize the difference
between actual values and target values of gas utilization
ratio (GUR) and coke ratio (CR). We combine extreme
learning machine (ELM), which is a new kind of machine
learning approach with fast learning speed and excellent gen-
eralization performance, and adaptive particle swarm opti-
mization (APSO) to establish the accurate data-drivenmodels
for objectives and constraints, named APSO-ELM, in which
APSO is implemented to help determine appropriate hidden
layer parameters in ELM. On this basis, MODE algorithm
is used to optimize the goals to obtain the Pareto optimal
solutions. Then, a popular multiple criteria decision making
method called TOPSIS is adopted to rank the Pareto optimal
solutions to select a best compromise solution according to
production needs.

The main contributions of this paper can be summarized as
follows:

(1) At present, the optimal setting of burden surface has
been seldom investigated. In terms of the production indicator
optimization, the modeling for optimal burden surface is
considered as a MOP during ironmaking process.

(2) An integrated optimization framework is proposed to
solve theMOP for burden surface. The modified APSO-ELM
is applied to establish the process models between production
indicators and decision variables. The inputs of these process
models are the characteristic parameters of burden surface
and the operating status parameters. Next, MODE is utilized
to generate the Pareto optimal solutions, and then a best
compromise solution can be obtained using TOPSIS for this
optimization problem.

(3) Comprehensive experiments have been carried out to
validate the effectiveness of the proposed optimization frame-
work using actual data collected from a BF.

The remaining parts of this paper are arranged as follows:
Section II introduces the multi-objective problem for burden
surface based on the analysis of BF operation characteristics.
Multi-objective optimization strategy of burden surface is
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FIGURE 1. BF ironmaking process.

detailed in Section III, including data-driven models, MODE
solved Pareto optimal solutions, and the application of
TOPSIS for ranking the solutions. Section IV presents the
simulation results to verify the applicability and effectiveness
of the proposed multi-objective optimization framework for
burden surface. Conclusions are given in Section V.

II. PROBLEM FORMULATIONS
Creating a reasonable burden distribution in a BF is a highly
complicated task in reality, even though it is of utmost impor-
tance and absolutely essential for the smooth and efficient
operation of the furnace [27]. In this section, the BF iron-
making process and burden distributionmechanism are firstly
described. In addition, the actual adjustment status of burden
surface is analyzed. Then, according to the characteristics of
BF ironmaking and smelting experience, optimization objec-
tives and constraint conditions are determined, and the math-
ematical model of optimization problem for burden surface is
constructed, respectively.

A. BF IRONMAKING PROCESS
As shown in Fig. 1, BF is a giant shaftlike countercurrent
reactor used for smelting to produce molten iron. The solid
reactants, including iron ore and coke, are fed into the top
layer by layer iteratively, while the preheated air and some
auxiliary fuels are blown into the bottom through the tuy-
eres. During the ironmaking process, complex gas-solid, gas-
liquid, and solid-solid chemical reactions occur in different
zones under different temperatures, which are shown in the
right low corner of Fig. 1. The radial distribution of the
charged solid raw materials, i.e., burden surface (see the right
top corner of Fig. 1), influences the pressure loss and the
local mass flows of solid and gas inside the furnace, and
further affects the indirect reduction degree of the ore [15].
In addition, the burden surface is closely related to operating
status.

The actual adjustment status of burden surface in BF
ironmaking process is presented in Fig. 2. According to the
current production status, the upper limit yu, lower limit yl

and detection value y (t) of main production indicators and

FIGURE 2. Actual adjustment status of burden surface in BF ironmaking
process.

production boundary conditions B, the operator gives the
burden surface Xsp with experience. In practice, the operator
cannot accurately adjust the burden surface when the produc-
tion status changes in most situations. Therefore, an appro-
priate adjustment of the burden surface is required for smooth
BF operation, energy efficiency and quality improvement of
molten iron according to the production status changes.

B. MAIN PRODUCTION INDICATORS OF BF IRONMAKING
PROCESS
The production indicators can reflect the operation level of
production comprehensively. In terms of the optimization
problem of burden surface, only the suitable indicators can
be optimized to achieve a satisfactory effect.

1) ENERGY UTILIZATION RATIO
In the actual production, GUR is themain indicator for energy
utilization ratio. It represents the ratio of CO to CO2. The
improvement of GUR is an important embodiment of tech-
nical progress in BF operation [28], [29]. The corresponding
mathematical description is as follows:

ηCO=
CO2(%)

CO2(%)+ CO(%)
× 100% (1)

where, ηCO represents the GUR, CO2(%) and CO(%) are the
content of CO2 and CO, respectively.
During the ironmaking process, CO is the main reactant

to reduce iron ore, the utilization degree directly affects the
process of chemical reactions inside the furnace as described
in Fig. 1, leading to the rise of product yield. The burden
surface and the operating status have impacts on GUR. If the
burden surface profile is reasonable and the chemical reac-
tions are sufficient, the gas utilization degree will become
high. In addition, the operating status parameters, such as
blast temperature, blast volume, blast pressure, top temper-
ature, top pressure, and oxygen enrichment, are also closely
related to GUR.

2) ECONOMIC COST
Besides energy utilization ratio, economic cost is another
important target in BF ironmaking process. CR is the main
indicator for economic cost, which represents the amount of
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coke consumed by smelting one ton of qualified pig iron.
In order to reduce the production cost, it is urgent to reduce
the use of coke. Similarly, the burden surface and the operat-
ing status also have effects on CR. In the practical ironmaking
process, energy utilization ratio and economic cost are two
coupling and contradictory objectives.

3) PERMEABILITY INDEX
Permeability index (PI) is a significant symbol to measure
the smooth operation of BF, which can be defined as the ratio
of blast volume and pressure difference. The corresponding
mathematical representation can be shown as

PI =
BV
1P

(2)

where BV is the blast volume, 1P is the pressure difference
between the blast pressure and the top pressure. In normal
production, PI is stable, which means that it achieves a
dynamic balance between ascending hot gas and descending
charge material. If the gas permeability inside the furnace
becomes worse, it will cause the charge material fall to be
difficult. In severe case, it will lead to hanging. On the other
hand, increased PI indicates that the reaction between hot
gas and charge material is not enough. Generally speaking,
in order to ensure the BF running smoothly, PI should be kept
within 30 ∼ 34.

4) QUALITY INDEX
Asmentioned previously, the basic task of BF production is to
smelt iron ore into qualified hot metal. Hot metal silicon con-
tent (HMSC) is a main parameter by which product quality of
pig iron is measured [30]. It actually refers to the percentage
of [Si] elements in hot metal and is generally controlled
between 0.5% ∼ 0.7% to satisfy production demand.

C. BURDEN SURFACE ADJUSTMENT AS A
MULTI-OBJECTIVE OPTIMIZATION PROBLEM
The purpose of this paper is to determine the reasonable
burden surface according to the production status with highest
yield and lowest consumption among those satisfying all
constraints. Based on the aforementioned analysis, GUR and
CR are the two most important production indicators for
BF ironmaking process. Meanwhile, through analyzing the
monthly statistics of indexes, the relationship between GUR
and CR are depicted in Fig. 3. As observed from Fig. 3,
the GUR-CR relationship can be illustrated clearly and they
cannot be optimal at the same time. In practice, they need
to be maintained at their desired ranges, and their deviation
between real and target values should be less than a required
value.

With the development of automatic detection technique for
burden surface, radar-type instrument has been widely used
to obtain the burden surface data to establish burden surface
distribution model [31], [32]. In order to better characterize
the burden surface, feature extraction is performed for burden
surface discretization. In the charging operation, the width

FIGURE 3. Relationship between GUR and CR.

FIGURE 4. Burden surface distribution model.

of platform, the depth of funnel and the width of funnel
are the main features of burden surface. Hence, 7 features
are extracted to represent the burden surface according to
operator’s cognition and charging operation, including the
width of funnel l1, the width of platform l2, the distance
between zero position and burden surface h1, the depth of
funnel h2, the inclination angle of funnel α, the central angle
of funnel β and the inclination angle of edge γ , as depicted
in Fig. 4. Therefore, 7 characteristic parameters are used as
decision variables in the following optimization problem.

According to the above analysis, more specifically, the bur-
den surface optimization task can be summarized as

•

∣∣yGUR − y∗GUR∣∣ < ε1; ymin
GUR < yGUR < ymax

GUR
•

∣∣yCR − y∗CR∣∣ < ε2; ymin
CR < yCR < ymax

CR
• Satisfaction of constraint on PI and HMSC, keeping it
within prescribed bounds.

Due to the high complexity of the furnace interior,
the mechanism model of the iromaking process is difficult to
be established. Fortunately, data-driven intelligent modeling
approach can effectively deal with modeling problem for
complex industrial processes. In this paper, we try to con-
struct the data-driven process models for the two objectives
as well as the two constraints as

(yGUR, yCR, yPI , yHMSC ) = f (X , S) (3)

where yGUR, yCR, yPI and yHMSC are GUR, CR, PI and
HMSC, respectively. X = (l1, l2, h1, h2, α, β, γ ) is the bur-
den surface features, and S is the operating status parameters.
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Accordingly, burden surface optimization can be regarded
as a typical MOP. The corresponding mathematical descrip-
tion is as follows:{

min
(
yGUR − y∗GUR

)
min

(
yCR − y∗CR

)

s.t.


ylPI ≤ yPI ≤ y

u
PI

ylHMSC ≤ yHMSC ≤ y
u
HMSC

xbi ≤ xi ≤ x
u
i

(yGUR, yCR, yPI , yHMSC ) = f (X , S)

(4)

where i = 1, 2, . . . , 7, xbi and xui are the boundary constraint
and upper bounds of xi, yl1 and yu1 are the lower and upper
bounds of y1. In the constraints of Eq.(4), the first inequality
is to constrain PI to ensure the smooth and stable production,
the second inequality is to constrain HMSC to ensure the
production of qualified hot metal, and the third constraint
guarantees the 7 burden surface decision variables in the
given ranges. It should be noted that xbi is the burden surface
features of the last time charging operation, which is to ensure
that the optimized burden surface is higher than that before
optimization.

In order to solve the MOP for burden surface, an integrated
framework is proposed, which is illustrated in Fig. 5. Firstly,
this MOP is descripted and its mathematical model is pre-
sented (Phase 1). Next, the data-driven models between con-
trol targets and variables are established using APSO-ELM
algorithm (Phase 2). Finally, in Phase 3, MODE is utilized
to generate the Pareto optimal solutions, and then TOPSIS is
applied to select a best compromise solution among the Pareto
optimal solutions for this optimization problem. Different
from traditional manual decision, it can avoid the subjectiv-
ity and randomness. In addition, the proposed optimization
framework can search a trade-off solution that is consistent
with production needs and provides proper and feasible solu-
tions rapidly for decision makers.

III. MULTI-OBJECTIVE OPTIMIZATION STRATEGY OF
BURDEN SURFACE
As mentioned above, burden surface optimization can be
treated as a MOP. In addition, the process is difficult to
be modeled due to its complex nonlinear characteristic in
nature. In order to tackle these issues, we apply the proposed
multi-objective optimization strategy to determine the opti-
mal burden surface according to production status based on
the established data-driven process models.

A. PROCESS MODEL BASED ON APSO-ELM
The premise of burden surface optimization is to establish the
accurate process models. Due to the high complexity of the
furnace interior, data-driven process models are constructed
for the two objectives and the two constraints, i.e., GUR, CR,
PI, and HMSC.

ELM is a competitivemachine learningmethod for training
single hidden layer feedforward neural networks (SLFNs)

FIGURE 5. Integrated framework of multi-objective optimization problem
for burden surface.

with fast learning speed and good generalization perfor-
mance [33]–[35]. Different from other conventional machine
learning methods, e.g., back propagation neural network
(BPNN), or support vector machine (SVM), its hidden
layer parameters can be generated randomly, and the out-
put weights are analytically determined by Moore-Penrose
generalized inverse. The universal approximation capability
of ELM has been proved theoretically [36], [37]. Due to
the above advantages, ELM has been widely used in many
fields [38]–[40].

In order to establish the data-driven models between
the variables and the output shown in Eq.(3) and Fig. 6,
we employ the following modified APSO-ELM algorithm.

For N given samples {(xi, yi)}Ni=1, where xi =

[xi1, xi2, . . . , xin]T ∈ <n represents n-dimensional input
attributes of the ith sample, and yi = [yi1, yi2, . . . , yim]T ∈
<
m represents m-dimensional output variables. As four

data-driven models are expected to be established, there are
four output variables, i.e., m = 4. The output function of
ELM is

ŷi(x) =
L∑
i=1

βiG(ai, bi, xi) = h(x)β (5)
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FIGURE 6. Burden surface optimization model based on APSO-ELM.

where L is the number of hidden nodes, ai =

[ai1, ai2, . . . , ain] and bi are the learning parameters of the
ith hidden node, β = [β1, β2, . . . βL]T is the output weight
vector between the hidden layer and the output layer, and h(x)
is the hidden-layer output. h(x) actually maps the data from
the n-dimensional input space to L-dimensional hidden-layer
feature space and is decided beforehand.

The learning process of ELM aims to minimize the training
error as well as the norm of the output weight. Thus, it can be
represented as a constrained optimization problem to identify
β:

min : JELM =
1
2
‖β‖2 +

1
2

N∑
i=1

‖ei‖2

s.t. : h(xi)β = ŷTi − e
T
i (6)

where ei is the training error of the ith sample.
According to Karush-Kuhn-Tucker (KKT) theorem,

a Lagrangian function can be constructed as

L(β, e, α)=
1
2
‖β‖2+

1
2

N∑
i=1

‖ei‖2−
N∑
i=1

αi(h(xi)β−ŷTi +e
T
i )

(7)

where αi denotes the Lagrangian multiplier.
The optimality conditions of Eq.(7) are given in the follow-

ing equation:

∂L
∂β
= 0,

∂L
∂e
= 0,

∂L
∂α
= 0 (8)

After solving Eq.(8), the estimated output weight of β is
obtained as follows:

β̂ = (HTH )−1HTT (9)

After obtaining β̂, the predicted output of ELM can be
represented by Eq.(5).

However, due to the random determination of the hid-
den layer learning parameters, some un-optimal hidden layer
parameters may be generated. It should be noted that the
parameters may impose negative impacts on the performance
of ELM [41]. Adaptive particle swarm optimization (APSO)
can perform a global search over the entire search space,
which has the advantages of less parameters, low computa-
tional complexity and fast convergence speed. In addition,
the inertia weight is dynamically adapted for every particle
according to the fitness [42], [43]. Therefore, we adopt APSO

algorithm to search the optimal hidden layer parameters of
ELM.

The performance of ELM is evaluated using the following
root mean squared error (RMSE):

η =
1
N

N∑
i=1

(yij − ŷij)
2
, j = 1, 2, 3, 4 (10)

In normal case, RMSE on the whole training dataset is
used as the fitness. However, it may cause overfitting prob-
lem to ELM [44]. Hence, we set the fitness to RMSE on
the validation dataset (randomly selected from the training
dataset) instead of using the whole training dataset [41], [44].
Firstly, all the hidden layer parameters ai = [ai1, ai2, . . . , ain]
and bi are randomly initialized within the range of [-1, 1].
Then, we establish the ELM model, and meanwhile, APSO
is used to search the permitted area to decrease the fitness
value η gradually. Finally, η converges to the minimum, and
the corresponding ai and bi are the optimal parameters.
As mentioned above, we can summarize the proposed

APSO-ELM in the following steps:
Inputs: a training dataset, a validation dataset, a testing

dataset, number of hidden nodes L, the maximum iteration
times Tmax, the maximum and minimum of inertia weight ω
(ωmax and ωmin), population size 0.
Step1: Randomly generate particles for population. Ini-

tialize iteration counter k = 0, generate initial velocities
νkiτ of each particle. Initialize particle position ϕkiτ as the
best position Pbest , and the position with the best fitness ητ
(calculated by Eq.(10)) of all particles as the best position of
the entire swarm Gbest .
Step2: k = k+1, update the velocity and position for each

particle:

νk+1iτ = ωνkiτ + c1r1(P
k
best − ϕ

k
iτ )+ c2r2(G

k
best − ϕ

k
iτ )

(11)

ϕk+1iτ = ϕkiτ + ν
k+1
iτ (12)

ω =

ωmin+
(ωmax−ωmin)×(ηavg−ηmin)

η − ηmin
, η>ηavg

ωmax, η ≤ ηavg

(13)

Step3: Evaluate fitness η′τ of new position and update the
best position of the entire swarm. If η′τ < ητ , then ητ = η′τ
and the best position of position Pkbest = ϕ

k
iτ . Then denoting

η′e = min0τ=1 η
′
τ , and the corresponding position Gkbest is the

new best position of the entire swarm. If η′e < ηe, then ηe =
η′e and Gbest = Gkbest .
Step4: If k < Tmax, turn back to Step 2. Otherwise,

the global best position Gbest is the optimal parameter (ai,
bi) of ELM.
Step5: Obtain the updated ELM model with the optimal

parameters by Eq.(5).
Then, we employ APSO-ELM to establish the data-driven

models in regarding with GUR, CR, PI and HMSC, respec-
tively. In this sense, the burden surface optimization problem
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shown in Eq.(4) is formulated. Next, the selected objectives
are optimized according to problem formulation by aMOEA.

B. OPTIMIZATION STRATEGY FOR BURDEN SURFACE
BASED ON MODE AND TOPSIS
At present, the most popular multi-objective algorithms
based on meta-heuristic methods are the MOEAs [45]. Many
MOEAs have emerged and obtained satisfactory achieve-
ment [46]. In recent years, MODE is overwhelmingly applied
for several engineering problems [27], [47], which uses
DE [48] as the underlying optimization technique. The salient
features of MODE are: (a) it has a low computational com-
plexity, (b) it is easy to implement with simple structure,
(c) it has fast convergence speed and strong robustness, and
(d) it has efficient constraint processing method. Therefore,
MODE is employed to search the Pareto optimal solutions.

MODE can be outlined by Algorithm 1 (referred to [24]
for more details of MODE).

Pareto optimal solutions can be obtained through MODE
algorithm. However, even though the results are informa-
tive, the number of solutions may still be prohibitive for a
decision maker to make suitable choices. At this point, it is
very important to select a representative solution from the
Pareto optimal solutions [49], [50]. TOPSIS is a multi-criteria
decision analysis method, which was original developed by
Hwang and Masud [51]. The basic principle of this method
is that choosing the best alternative should have the shortest
vector distance from the positive ideal solution (PIS) and
the longest vector distance from the negative ideal solution
(NIS) [52]. Accordingly, TOPSIS is used to rank the Pareto
optimal solutions to select a best compromise solution.

An evaluation matrix R = (xij)m×n is firstly formulated,
which consists of m alternatives and n criteria. Then, after
initialization and weighting, the weighted normalized evalu-
ation matrix is constructed as follows:

µij = rij × ωj, i = 1, 2, . . . ,m; j = 1, 2, . . . , n (14)

where rij =
xij√
m∑
i=1

x2ij

, i = 1, 2, . . . ,m; j = 1, 2, . . . , n and

n∑
j=1
ωj = 1. Subsequently, the evaluation distance between

each alternative, and PIS and NIS, respectively, are calcu-
lated, which denote as d+i and d−i . Finally, the closeness
coefficient C∗i is calculated using Eq.(15). Ranking all the
alternatives according to C∗i and the optimal solution is
obtained.

C∗i =
d−i

d+i + d
−

i

, 0 < C∗i < 1, i = 1, 2, . . . ,m (15)

During the optimization process of burden surface,
the operating status parameters are taken as the current detec-
tion value and not involved in the optimization link. The
burden surface features are decision variables. Then, MODE
enhanced with TOPSIS is employed to search for burden
surface features satisfying the optimization conditions under

Algorithm 1MODE Algorithm
1: Iteration times t = 0
2: Create a random initial population Pi,t ,∀i, i =

1, . . . ,Npop
3: for t = 0 to I tmax do
4: for i = 1 to Npop do
5: Ui,t+1=Pi,t
6: end for
7: for i = 1 to Npop do
8: Select randomly three different chromosomes

r1, r2, r3
9: Generate a random integer value irand from 1 to D
10: for i = 1 to Npop do
11: Generate a random real value randj belongs to

[0, 1]
12: if randj < CR or j = irand then
13: uNpop+i,j,t+1 = xr3,j,t + F ×

(
xr1,j,t − xr2,j,t

)
14: else
15: uNpop+i,j,t+1 = xi,j,t
16: end if
17: end for
18: end for
19: Evaluate the fitness function fk

(
Ui,t+1

)
i = 1, . . . , 2×

Npop, k = 1, . . . ,K
20: n = 0
21: j = 1
22: while n < Npop do
23: Select all the non-dominated solutions Vp,t+1, p =

1, . . . ,H where 1 ≤ H ≤ 2× Npop
24: if n+ k < Npop then
25: for i = n+ 1 to n+ k do
26: Xi,t+1 = Vi−n,t+1
27: end for
28: else
29: Apply crowding distance sorting to Vp,t+1
30: for i = n+ 1 to Npop do
31: Xi,t+1 = Vi−n,t+1
32: end for
33: end if
34: n = n+ k
35: j = j+ 1
36: end while
37: end for

the current production status. Finally, burden surface profile
is obtained depending on the features.

IV. SIMULATION RESULTS
In this section, we present the simulation results based on
the actual production data from a BF to verify the effective-
ness of the proposed multi-objective optimization strategy for
burden surface. Data-driven process models are firstly estab-
lished based onAPSO-ELMalgorithm. After that, theMODE
enhanced with TOPSIS is applied to obtain the optimal solu-
tions of the MOP.
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FIGURE 7. Sample series of GUR, blast volume and PI.

A. DATA DESCRIPTION AND PREPROCESSING
The data are collected from a medium-size BF with an inner
volume of about 2500 m3. Some important and concerned
variables are considered as the operating status parameters,
including blast temperature (◦C), blast volume (m3/min),
blast pressure (kPa), top pressure (kPa), top temperature
(including four-point temperature) (◦C), differential pres-
sure (kPa), and oxygen enrichment (%). The daily produc-
tion data from February 2014 to June 2014 are selected
from the historical database for analysis. Fig. 7 demon-
strates the series of GUR, blast volume and PI. Accord-
ing to Fig. 7, there is a great difference in the magnitude
of the variables clearly. Considering the impacts of con-
vergence and complexity on modeling, all the samples are
normalized into [0, 1] to eliminate the influence of magni-
tude before applying in the experiments. The method is as
follows:

xk =
x̃k −min(x̃k )

max(x̃k )− min(x̃k )
(16)

where x̃k and xk are the kth variable before and after change
respectively,min(x̃k ) andmax(x̃k ) are the minimum and max-
imum values of the kth variable before normalization.
In addition, the raw data contain outliers, which may

affect the performance of the created models. These may
be due to irregular behaviors of the furnace interior in a
certain period of time, furnace shutdown or some wrong
readings [53]. In order to ensure the reliability of data-driven
models and decision making, the elimination of outliers is
performed. The histogram of blast volume and blast temper-
ature is depicted in Fig. 8. From this figure, it can be seen
that the data distribution does not obey normal distribution.
In this point, it is unreasonable to eliminate the outliers
by the criterion of 3σ . Therefore, the box-plot method is
adopted to eliminate outliers, which has no requirements for
data distribution. Fig. 9 represents the box-plot diagram of
variables. The red crossing mark is the extreme abnormal
points, which are choose as the outliers. The data can be used
for modeling and decision making after the aforementioned
preprocessing.

FIGURE 8. Histogram of blast volume and blast temperature.

FIGURE 9. Box-plot diagram of variables.

FIGURE 10. Changing trends of training error, testing error and training
time with the increase of L.

B. DATA-DRIVEN PROCESS MODELS VALIDATION
In this section, data-driven process models are constructed
for the two objectives and the two constraints based on
APSO-ELM algorithm. We randomly select 800 samples
from the preprocessed data. The first 600 samples are
chosen as training samples ℵtr = {(xi, yi)}600i=1, and the
remaining 200 samples are used as testing samples ℵte =
{(xi, yi)}200i=1,where xi ∈ <

17 is the input vector and yi ∈ <4 is
the output for GUR, CR, PI andHMSC, respectively. Because
CR is a statistic once a day, 100 samples are used as training
samples and 50 samples are used as testing samples for CR.
The sigmoidal functionG(a, b, x) = 1/(1+exp(−(a ·x+b)))
is adopted as the activation function. In order to construct the
accurate data-driven models using APSO-ELM algorithm,

VOLUME 8, 2020 35719



Y. Li et al.: Burden Surface Decision Using MODE With TOPSIS in BF Ironmkaing

FIGURE 11. Comparison results of four data-driven models in regarding with GUR, CR, PI and HMSC with ELM and
APSO-ELM. (a) Gas utilization ratio. (b) Coke ratio. (c) Permeability index. (d) Hot metal silicon content.

the number of hidden nodes L needs to be determined.
We gradually increase the hidden nodes number, and select
the one with the minimum testing error as the final one.
Taking the data-driven model for GUR as an example, Fig. 10
presents the changing trends of training error, testing error
and training time with the increase of L. In Fig. 10, the green
and blue curves correspond to training and testing errors, and
the red dotted curve is the training time. As observed from
Fig. 10, when L is less than 500, both errors are relatively
large. With the increase of L, the errors (i.e., RMSE) of
the model become smaller gradually and the training time is
increased. The minimum testing error is achieved when L is
within the range [500, 1000]. Considering the computational
complexity and testing error, L is set as 600. The samemethod
is performed for CR, PI and HMSC model to select the
corresponding optimal L.
The parameters of APSO used in APSO-ELM are set as

follows: population size0 is 25; the maximum iteration times
Tmax is set to 150 to get enough iterations to search for
the optimal solution; the maximum and minimum of inertia
weight ω (ωmax and ωmin) are set as 0.9 and 0.4, respectively;
the acceleration coefficient c1 and c2 are both set as 2.
As a result, four data-driven process models in regarding

with GUR, CR, PI and HMSC with ELM and APSO-ELM,
respectively, are depicted in Fig. 11. The number of hidden
nodes L are set to 600 for both ELM and APSO-ELM in
this simulation to make it more reasonable and fair. Fig. 12
shows the scatter diagram of actual value and predicted value.
According to Fig. 11, the predicted values of APSO-ELM
are closer to the actual values than ELM. As observed from
Fig. 12, it is apparent that the scattered points obtained by

APSO-ELM are more concentrated in the vicinity of the diag-
onal, i.e., y = x. For GUR model, the most predicted values
are between y1 = x + 0.025 and y1 = x − 0.025. It shows
that APSO-ELM provides more actuate predicted results and
lays a solid foundation for subsequent optimization.

Furthermore, the training RMSE, testing RMSE and test-
ing mean absolute percentage error (MAPE) are summa-
rized in Table 1. Twenty trials are carried out for each
approach. The average results are adopted as the comparison
results. According to Table 1, APSO-ELM outperforms ELM
and SVM, which again shows that the four data-driven pro-
cess models can obtain satisfactory performance. It proves
that the effectiveness of hidden layer parameters determi-
nation based on APSO and implies that optimal parameters
are searched. In this way, the created model can be used to
provide the basis for burden surface optimization.

C. OPTIMIZATION USING MODE ENHANCED WITH TOPSIS
In this section, the proposed MODE enhanced with TOPSIS,
presented in Section III-B, are applied to solve the MOP of
burden surface formulated as Eq.(4). There are 7 decision
variables in this optimization problem, represented by X =
(l1, l2, h1, h2, α, β, γ ). Before running the MODE algorithm,
its parameters need to be specified to control its convergence
rate. The parameters are set as follows: the number of popu-
lation Npop is set as 150, the maximum iteration times I tmax
are assumed to be 80,100 and 150, crossover probability CR
is 0.5, mutation factor F is 0.6.

The Pareto optimal solutions for GUR and CR in BF
ironmaking process obtained by MODE with different I tmax
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FIGURE 12. Scatter diagram of actual value and predicted value of four data-driven models.

TABLE 1. Performance evaluation results of four models.

TABLE 2. Summary solutions.

are given in Fig. 13. From Fig. 13(a), the Pareto optimal
solutions are not ideal. According to Fig. 13(b) and Fig. 13(c),
with the increase of the maximum iterations, the solutions
trend to convergence gradually. Therefore, I tmax is set as 150.
Table 2 presents a summary of the results obtained by

MODE. As observed from Fig. 13(c) and Table 2, it is pos-
sible to generate optimized operating conditions from the
Pareto optimal solutions to improve production performance.

Furthermore, the Pareto optimal solutions are prioritized
using TOPIS technique. For this purpose, objective functions
are considered as criteria. The weights of the criterion are
assumed to be equal. The rank of each solution is obtained
after applying the TOPSIS. The top 10 optimal efficient solu-
tions obtained by TOPSIS are presented in Table 3. In addi-
tion, the top 10 ranked optimal solutions are represented
in Fig. 14. Actually, considering the specific requirements,
operators can select appropriate burden surface features to
maximize efficiency. In this paper, we select the first ranked
solution as the final compromise solution. Furthermore, con-
sidering the production scheduling, the weights of the crite-
rion can be set to different values at a certain time period
by operators to give different attention. Thus, it will give a
solution that is more suitable for production planning. Finally,
according to the obtained burden surface features, the burden
surface profile can be drawn out.

In order to evaluate the performance of the proposed
integrated multi-objective optimization framework in dealing
with burden surface optimization, we develop it in three
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FIGURE 13. Pareto optimal solutions by MODE algorithm.

TABLE 3. Top 10 optimal efficient solutions obtained from TOPSIS.

different production situations. Table 4 shows the com-
parison results between the actual production values and
the multi-objective optimization results. In order to more
intuitively illustrate the burden surface optimization results,
the burden surface profile are depicted in Fig. 15. From
Table 4, we can find that the optimal burden features are

FIGURE 14. Top 10 solutions obtained by TOPSIS.

adjusted with the different production situations. Compared
with pre-optimization, GUR has increased, while CR has
decreased. It is consistent with production requirements
for energy efficiency. The phenomenon indicates that the
multi-objective optimization strategy can provide an effec-
tive and feasible solution for the operators. In addition,
as observed from Fig. 15, the optimized burden surface pro-
file is ‘‘platform + funnel’’ type, which accords with the
charging operation and again shows the reliability of the
optimization results.

In addition, in order to better verify the effectiveness and
feasibility of the proposed integrated optimization frame-
work for this optimization problem in BF ironmaking pro-
cess, we choose some relevant state-of-the-art MOEAs as
comparison, including NSGA-II [20], PESA-II [54], and
NSGA-III [55]. The usual Hypervolume (HV) [56], [57] is
used as the performance metric in the following experiments,
which calculates the volume of the objective space between
the obtained solution set and a reference point. The larger
the HV, the better performance of the solution set in terms
of convergence, diversity and uniformity can be obtained.
For the fairness, the maximum iteration times are assumed
to be the same value in all comparison algorithms. Twenty
trials are carried out in each approach. The comparison results
of statistical properties including mean and standard devi-
ation (SD) are summarized in Table 5. As observed from
Table 5, MODE has smaller SD than other three methods,
which shows that MODE runs more stable. In addition, for
the measurements of mean of HV, compared with PESA-II
and NSGA-II, MODE can achieve higher HV value. Mean-
while, the HV value of MODE is little lower than that of
NSGA-III. Therefore, MODE has satisfactory performance
on convergence, diversity and uniformity. The main reason is
that differential evolution generates new parameter vector by
adding the weighted difference between two population vec-
tors to a third vector to ensure the diversity and convergence
in mutation phase.

Furthermore, If K , D, Npop and I tmax represent the
number of objectives, the number of optimal parame-
ters, the number of population and the number of itera-
tions, respectively, the running complexity of MODE is
O
(
K · D · Npop · I tmax

)
[24]. In addition to the calculated
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TABLE 4. Comparison results between the actual production values and the multi-objective optimization results.

FIGURE 15. Comparison results of burden surface profile before and after optimization in different
production situations. (a) Comparison results in production situation one. (b) Comparison results in
production situation two. (c) Comparison results in production situation three.

TABLE 5. Comparison results about HV of different MOEAs.

performance measure, the running time of the above opti-
mization algorithms over ten independent runs are also calcu-
lated to evaluate the computational complexity. The average
running time with 150 iterations are obtained as 607.416s,
873.365s, 890.652s, and 875.500s, respectively. It can be
found that MODE takes the least time, which may be mainly
due to its parallel search mechanism. Overall, it is obvious
that MODE achieves better results as compared to other
algorithms, further indicating that MODE is more suitable
and effective for dealing with this kind of burden surface
optimization problem.

V. CONCLUSION
In this paper, the optimal setting of burden surface is
converted to a MOP, and an integrated multi-objective

optimization framework is proposed for solving the corre-
sponding MOP. Due to the high complexity of the furnace
interior, data-driven process models between objectives and
variables are established using APSO-ELM. Then, MODE
enhanced with TOPSIS method is used to optimize the goals
to obtain a best compromise solution for GUR and CR,
meanwhile, PI is guaranteed to vary in prescribed bounds to
ensure the smooth and stable production andHSMC is limited
to a given range to ensure the production of qualified hot
metal. The actual production data are employed to validate
the effectiveness of the proposed integrated multi-objective
optimization framework. The experimental results indicate
that the established data-driven models are more accurate and
the obtained optimal solution provides important guidance to
optimize BF ironmaking process.

In the present work, the optimization framework mainly
focuses on analysis of deterministic model and only con-
siders two objectives. However, in practice, variations in
raw material properties and production process lead to fre-
quent changes of model parameters including the constraints.
In addition, there may be more than two objectives that
need to be optimized for further improving the optimal
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performance. The future works worth exploring would be
establishing online model, introducing efficient constraint
handling mechanism and improving the multi-objective opti-
mization algorithm.
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