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ABSTRACT In order to satisfy the real-time need of model-based controllers for model parameters and
full states feedback, this paper has conducted in-depth research on the states and parameters estimation
of electro-hydraulic actuator in legged robot with three problems for time-varying parameters estimation
(including system parameters and external load force), non-measurable states estimation and measurable
states filtering. The first-order trajectory sensitivity method based on the dynamic model is used to determine
the parameter set to be estimated, and the parameter fast and slow characteristics are analyzed in detail to
obtain the generalized states and slow-varying parameters. Then, the combined algorithm with a fast-varying
time scale (composed of a fusion kalman filter and a fast-varying time scale extended kalman filter) and a
slow-varying time scale (composed of a slow-varying time scale extended kalman filter) is innovatively
proposed to realize the data-driven multi-scale online joint estimation of states and parameters for the
actuator system. Finally, the results of three comparative experiments show that the proposed algorithm
has better stability, faster convergence speed and more accurate estimation than the dual extended kalman
filter algorithm, and the states and parameters estimated by the proposed algorithm accurately reflect the
actual characteristics of actuator. Moreover, the algorithm has strong adaptability and robustness in different
actuator hardware environment and strong convergence ability for different initial values of states and
parameters.

INDEX TERMS Data-driven, fast-varying time scale, slow-varying time scale, multi-scale online joint
estimation of states and parameters, electro-hydraulic actuator.

I. INTRODUCTION
Electro-hydraulic actuators are extensively used in heavy-
duty electromechanical systems and legged robots, for their
high load capacity and large power density ratio [1]–[7].
Presently, classical PD control method has been extensively
chosen in designing position controller of electro-hydraulic
actuators for most legged robots. However, in situations
when parameter uncertainties and unknown load distur-
bances cannot be neglected, the system would exhibit
unexpected dynamic behavior and be difficult to meet
the performance requirements. In electro-hydraulic actua-
tor system, uncertainties are mostly caused by changes in
unknown viscous damping, physical characteristics of the
valve, effective bulk modulus and external load force [8].
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Moreover, some parameters and external load changes are
significant under different operating conditions [9]. In order
to improve tracking performance, several mainstream
model-based control schemes have appeared in recent lit-
erature, such as adaptive robust control [10], [11], active
disturbance rejection control [12], the method combining
Nussbaum function and adaptive control [13] and adaptive
extended interference observer [14], etc. However, these
schemes face some common problems. (1) When the sys-
tem is disturbed by high frequency and large external load,
the adaptive method has the problem of high gain feed-
back.When system parameters change, the performance of
ESO (Extended state observer)-based controller is poor.
(2) The impacts of measurement noise during full-state feed-
back are rarely considered. Practice shows that in some cases,
measurement noise has become the core issue in achieving
high tracking performance. The measurement signals are
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usually polluted by heavy noise, which seriously affects
the control performance.These schemes are based on the
theoretical design of noise-free, however, in practice, various
low-pass filters are used to mitigate the effect of noise, caus-
ing severe phase lag in the high-frequency range. (3) These
schemes are based on full state feedback, which means that
in addition to displacement signal, velocity and pressure
signals are required. When the actuator cannot install all of
these sensors due to cost and/or structural size restrictions,
such model-based control methods are difficult to realize
directly.

In legged robot applications, the leg performs a large swing
motion at a frequency of 3.3 Hz (high frequency). At the
mean time, the external load force of actuator changes signif-
icantly from −1500(N) to 2000 (N). The system parameters
such as equivalent flow coefficient, viscosity coefficient and
effective bulk modulus also have large time-varying charac-
teristics. The system parameters and external load force are
collectively referred to as parameters. Furthermore, because
the robot has set strict upper limit on the structural size
and weight of actuator in this paper, only displacement and
driving force sensors, and acceleration sensors which must
have little volume and weight are configured in the actuators,
resulting in the problems that velocity and pressures are not
measured and the measurable state (displacement) and signal
(driving force) contain noise. Evidently, it is necessary to
study the time-varying parameters estimation, unmeasured
states estimation and measurable states filtering of the actu-
ator, to lay the foundation for the design of high-precision
controllers based on model in the future.

At present, various methods have been proposed to esti-
mate the model parameters of electro-hydraulic system.
On the basis of all measurable states, Yuan et al. [15], [16]
and Peran [17] have used the open-loop input and output
data of electro-hydraulic system collected from the exper-
iment to estimate the parameters of a nonlinear gray box
model offline on MATLAB’s System Identification Toolbox.
Victor et al. [18] has measured the servo spool displacement,
flow and input current curves on the experimental platform
and estimated the servo valve parameters (port gain) by a
fitting method. Moon [19] has adopted the recurrent incre-
mental credit assignment neural network and genetic algo-
rithm to off-line estimate the system parameters of nonlinear
electro-hydraulic servo system, such as mass, viscosity coef-
ficient, spring constant and effective bulk modulus. Using the
input and output data gathering through experiments, a global
solution is obtained.

A common disadvantage of the above methods is that
the dynamic changes with varying operating conditions of
the model parameters are ignored. Therefore, the reliability
and applicability of these estimators are not fully discussed.
In order to overcome the disadvantage, online parameter
estimation methods are proposed to track the real-time char-
acteristics of actuator. Yao et al. [20] and Ahn et al. [21]
have proposed an adaptive robust control, which applies the
parameter adaptive estimation algorithm and extended state

observer to nonlinear control. Kim et al. [22] has used a high
gain PI disturbance observer to estimate and compensate the
external load disturbance. Yao et al. [23] have proposed a
multilayer neural-networks (NNs) estimator to estimate the
disturbance and improve the compensation accuracy of nom-
inal model-based control.The above methods have been fully
implemented with the measurable states. Kaddissi et al. [24]
has rewriten the system dynamic model in linear param-
eter form, identified parameters by recursive least square
method (RLS) and applied it to the nonlinear backstep algo-
rithm. Sadeghieh et al. [25] has adopted the same parameter
estimation method and applied it to the bio-inspired intel-
ligent controller to obtain better control performance than
the optimal PID controller. Wos and Dindorf [26] has used
the recursive least squares method to identify the nonlin-
ear Hammerstein model of the asymmetric electro-hydraulic
servo valve-controlled cylinder system, and the model with
nonlinear static block has captured the nonlinear dynamics
well. However, the recursive least squares method needs to
use the previous data in the recursive calculation, which
brings forward higher requirements on the system hardware
and software programming, and also requires the estimation
model to be linear as well as all states to be measurable. The
abundant disadvantages of RLS make it not possible for the
joint estimation of states and parameters. Therefore, many
researchers have begun to use the optimal filtering methods
to deal with the estimation problem, among them the kalman
filter is easy to realize and apply in real time on the computer,
and can deal with time-varying systems and non-stationary
signals. An and Sepehri [27] has applied the extended kalman
filter (EKF) to estimate the spool displacement, the cham-
ber pressure of actuator and the velocity of punch, which
has a fast and reliable ability to estimate pressure changes.
Chinniah et al. [28] has used the extended kalman filter to
estimate viscous friction and effective bulk modulus respec-
tively based on sensor data-driven and all states measurability
for fault monitoring. Cui et al. [29] has applied the robust
kalman filter to indirectly estimate the external leakage of
the hydraulic servo motor. However, the above cases are
only implemented under the condition that the states are
all measurable, but not estimated. Colorado has proposed a
novel on-line closed-loop parameter identification algorithm
for second order nonlinear systems, designed a cost function
based on the optimization method by using a linear com-
bination of the actual and an estimation system, and used
algebraic techniques to estimate the velocity and acceleration
signals, avoiding noise processing problems. This method
converges faster than the online and off-line least squares
algorithms, and has strong robustness against disturbance, but
without requiring any type of data pre-processing [30], [31].
In addition, he has also proposed a first integrals and adap-
tive parameter identification method for conservative Hamil-
tonian systems, and discussed the parameter identification
problem as an optimization one [32]. At present, the above
two methods are mainly applicable to second order nonlinear
systems and conservative Hamiltonian systems.
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For state estimation, ESO (Extended state observer) has
been used to estimate the unmeasured state [33]. EKF
also provides an efficient method for estimating the states
of discrete-time nonlinear dynamical system. Nevertheless,
the estimation accuracy of states is highly dependent on the
predetermined parameter values used in the model. There-
fore, based on the three problems in actuator control, the
joint estimation of the states and parameters for electro-
hydraulic actuator is particularly essential. So, in order to
make the estimation accuracy of the states more reliable,
model parameters need to be constantly calibrated regularly,
otherwise the estimation accuracy may be greatly reduced
and even lead to invalidation. In other words, when model
parameters are not available, a joint estimation algorithm is
needed to achieve reliable and accurate estimation of system
states and parameters.

In this case, the dual extended kalman filter based on real-
time data-driven is proposed, where the states and param-
eters of the dynamic system are simultaneously estimated
by coupling to achieve better prediction accuracy [34]–[37].
The algorithm is an online joint estimation method on the
same time scale, however, the estimation errors are relatively
much when dealing with the system with a large number of
parameters to be estimated and a large difference in the speed
of parameter change.

For the three problems of time-varying parameter estima-
tion, unmeasured states estimation, and measurable states
filtering of electro-hydraulic actuator under limited sensor
configuration, the previous literature review show that it is
difficult to obtain good online joint estimation of states and
parameters for these methods on this object.

The contribution of this paper is to innovatively propose
a data-driven multi-scale online joint estimation algorithm
with a fast-varying time scale (composed of a fusion KF
(Kalman filter) and a fast-varying time scale EKF (Extended
kalman filter)) and a slow-varying time scale (composed of
a slow-varying time scale EKF) for states and parameters
applied to actuator with three problems. This is the key step
and technique to ensure the position accuracy of actuators
for model-based controllers. Through comparative analysis,
the proposed algorithm has better stability, faster convergence
speed and more accurate estimation than the dual extended
kalman filter algorithm, and the states and parameters esti-
mated by the algorithm accurately reflect the actual charac-
teristics of actuator. The remainder of this paper is organized
as follows. In Section II, the fourth-order gray box state space
dynamic model of the actuator is established, the parameter
set to be estimated is selected using the first-order trajectory
sensitivity, and the change characteristic of parameter set
is analyzed in detail. The process and related derivation of
data-driven multi-scale online joint estimation algorithm for
states and parameters are detailed in Section III. Section IV
conducts three comparative experiments on the single-leg
experimental platform to fully discuss the estimation perfor-
mance of the proposed algorithm. Finally, Section V summa-
rizes the main points and future work.

II. DYNAMICES AND PARAMETER ANALYSIS
A. DYNAMICES
Compared with the white and black box model, the gray
box dynamic model, established based on mechanism, can
better describe the model structure of dynamic time-varying
parameter system, and also easily reflect the physical mean-
ing of parameters corresponding to the actual system. So the
dynamic model of actuator adopts the form of gray box.
At the same time, the way to solve the problem that the model
structure is too complicated and the computing resources
are too large is to find a trade-off between the structural
complexity and accuracy. Therefore, the accurate and sim-
ple modeling problem is hard to avoid here. In fact, with
ensured accuracy, the lower the model order is, the more
advantageous it is.

The actuator consists of the servo valve and actuating
cylinder. In legged robot application, the servo valve works in
the 3.3 Hz frequency band (far less than the natural frequency
of servo valve (120 Hz)), so the servo valve is modeled as a
proportional link and the higher order dynamics is ignored
here. Then the actuator dynamics is composed of the pro-
portional model of servo valve and the fourth-order model
of valve-controlled cylinder system. The state variables are
set as x = [x1, x2, x3, x4]T = [xp, ẋp,P1,P2]T , and the
open-loop state equation is obtained [10], [38].

ẋ1 = x2

ẋ2 = −
Bp
m
x2 +

Ap1
m
x3 −

Ap2
m
x4 −

FL
m

ẋ3 =
βe

V1
(−Ap1x2 − cip(x3 − x4)+ q1)

ẋ4 =
βe

V2
(Ap2x2 + cip(x3 − x4)− q2),

(1)

where

q1 =

{
Kdu
√
Ps − x3 u ≥ 0

Kdu
√
x3 − P0 u < 0,

q2 =

{
Kdu
√
x4 − P0 u ≥ 0

Kdu
√
Ps − x4 u < 0.

V1 = V01+Ap1L0+Ap1x1, V2 = V02+Ap2(L−L0)−Ap2x1.
xp is actuator output displacement, ẋp is velocity, P1 and P2
are two cavity pressures, Kd is equivalent flow coefficient,
u is control signal for valve, Ps and P0 respectively are the
supply and return pressures, m is the mass of actuator rod,
Bp is viscosity coefficient, Ap1 and Ap2 respectively are the
piston and rod areas, V01 and V02 are the pipeline volumes of
piston and rod cavity respectively, L is actuator total stroke,
L0 is piston initial position, βe is effective bulk modulus,
cip is internal leakage coefficient. Under normal operating
conditions, the actuator is free from external leakage. FL is
the external load force on the piston. The external load force
includes inertial force, Coriolis force, gravity, friction force of
rigid joint and interference force, which exhibit high dynamic
characteristic with the change of cylinder displacement and
joint angle. In this paper, the above forces are combined
into one as an external load force, which also exhibits high
dynamic characteristic.
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B. PARAMETER SENSITIVITY ANALYSIS
Due to the large number of parameter for electro-hydraulic
actuator, the accurate estimation of all parameters is hard to
achieve. In fact, only some parameters, called the dominant
parameters, exert giant influence on the dynamic perfor-
mance of position control. Therefore, it is necessary to use the
sensitivity analysis method to select the dominant parameters
as parameter set, and then employ the estimation algorithm to
estimate them.

In the paper, the first-order trajectory sensitivity method
is used to analyze the influence of parameters on the dis-
placement xp. Under the condition that u and parameters
are mutually independent, the first-order trajectory sensitivity
equation is as follows [39]–[41].

λ̇in =

[
∂f
∂x

]
n
λin +

[
∂f
∂αi

]
n
, (2)

where λin is the first-order trajectory sensitivity function
of state vector x to parameter vector α, the mathemati-
cal definition is λin = [∂x/∂αi]n , (i = 1, . . . , 12), and
its initial value is λi0 = [∂x0/∂αi]n , (i = 1, . . . , 12).
[∂f /∂x]n is the coefficient term, that is, the partial
derivative of state equation to state vector (Jacobian
matrix), [∂f /∂αi]n is the free term, which is the partial
derivative of state equation to parameter vector that is
α = [Kd ,Ps,P0, cip,L,L0,Ap1,Ap2, βe,m,Bp,FL]T .
Then the first-order approximation function of parameter

change 1α to state change 1x is

1x = λin ·1α. (3)

It is known from the above equation that to obtain1x, it is
necessary to first solve the first-order trajectory sensitivity
function λin corresponding to states, and then multiply it
with the parameter vector change 1α. These equations and
variables are calculated on the MATLAB platform.

The actuator position control is applied during the swing
period of leg movement. The legged robot performs the
desired forward movement with the speed of 1.5 m/s, the duty
ratio of 0.5, the gait period of 0.6 second, and the lift height
of 0.15 m. Then the operation space planning of swinging
leg is performed. Finally the desired trajectory of the hip
electro-hydraulic actuator is, as the expected displacement
value of dynamic model, obtained according to the inverse
kinematics. According to the structure size and measure-
ment, some parameter values such as area are obtained. The
empirical values of unknown parameters, such as viscosity
coefficient and effective bulk modulus, are determined by
referring to other literatures [42]–[45]. The parameter values
used in the simulation are shown in Table 1.

The coefficient and free term in Equation (2) contain state
variables, so the equation is a differential equation matrix
with variable parameters in 4 × 12 dimensions. The calcu-
lation process is as follows. Firstly, the proportional con-
troller is used to control the dynamics (Equation (1)), and the
numerical solutions of states are obtained. The displacement
closed-loop curves are shown in Fig. 1(a). Secondly the states

TABLE 1. Parameter values.

FIGURE 1. (a) The displacement tracking curve; (b) The time-history curve.

are introduced into the first-order trajectory sensitivity equa-
tion (Equation (2)), jointly calculating the first-order sensi-
tivity function value λin of the displacement to parameters.
Finally, λin is multiplied by the parameter change4α to obtain
the displacement change 4xp(Equation (3)). Each parame-
ter is set to change by 10%, and the parameter sensitivity
function time-history curves of displacement change4xp are
shown in Fig. 1(b).
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FIGURE 2. (a)The index I; (b) The index II.

FIGURE 3. (a)The index I; (b) The index II.

Two indices are used to evaluate the influence of parameter
change on displacement. The first one is the maximum dis-
placement change caused by parameter change, and the sec-
ond one is the integral of displacement change in the sampling
period. The histograms are shown in Fig. 2.

In fact, during the operation of actuator, some parameters
change very little. Such as, since the constant pressure vari-
able pump is used as the oil source, and the maximum output
flow of pump is greater than the maximum flow demand for
the simultaneous movement of actuators, the constant pres-
sure setting and flow output ensure that the supply pressure
α2(Ps) fluctuates very little. It is determined in the design
that the change of return pressure α3(P0) is small because
it is highly related to the design and selection of return
pipeline.The parameter fluctuations caused by the machining
errors of α5(L), α6(L0), α7(Ap1) and α8(Ap2) are much less
than 1%. So in the absence of structural damage, the struc-
tural parameters are fixed by default. Therefore, the new
histograms are obtained without considering the sensitivity
results of above pressures and structural parameters, as shown
in Fig. 3.

From Fig. 3(a), it is found that the index I of equivalent
flow coefficient α1(Kd ), effective bulk modulus α9(βe), vis-
cosity coefficient α11(Bp) and external load force α12(FL)
are all greater than 1.1e−5(m), wherein the value of equiv-
alent flow coefficient α1(Kd ) is the largest. From Fig. 3(b),
the equivalent flow coefficient α1(Kd ), effective bulk mod-
ulus α9(βe), viscosity coefficient α11(Bp) and external load
force α12(FL) have sustained influence on the displace-
ment. However, the index II of internal leakage coefficient
α4(cip) and rod mass α10(m) are far less than those of above
four parameters, so their influences on the system don’t
last. From the comparison, the four parameters of equiva-
lent flow coefficient α1(Kd ), effective bulk modulus α9(βe),

viscosity coefficient α11(Bp) and external load force α12(FL)
vary greatly with the load, hydraulic oil temperature and pres-
sure, commutation friction switching and other factors during
the control process, and they have an important influence on
the displacement accuracy. Therefore, the four parameters are
selected as the parameter set (Kd , βe,Bp,FL) for online joint
estimation.

C. THE FAST AND SLOW CHARACTERISTIC
ANALYSIS OF PARAMETER
The parameter set (Kd , βe,Bp,FL) obtained so far is dis-
tributed in the force balance equation and flow continuity
equation of dynamic model (Equation (1)), respectively.

The mathematical expression of equivalent flow coeffi-
cient is Kd = Cdw

√
2/ρ, where Cd is the flow coefficient

of valve port, w is the area gradient of spool valve and ρ
is the density of hydraulic oil. Ideally, the equivalent flow
coefficient Kd is a fixed value. However in practice, when
the valve structure has been determined, Kd exhibits a small
and slowly varying process with the small change of fluid
Reynolds number [46]–[47], so it is a slow-varying parameter.
The effective bulk modulus βe has a value range of about
1×109−2×109(Par). In high dynamic motion, it is mainly
compressed by pressure to show high dynamic fluctuation
at the same frequency as pressure, and is a fast-varying
parameter.

The viscosity coefficient Bp is sensitive to temperature
change. After the actuator starts from a cold state, the tem-
perature of hydraulic oil slowly rises to a certain value (the
hydraulic radiator controls the temperature within a cer-
tain range). At the same time, the viscosity coefficient of
hydraulic oil is gradually reduced to a fixed value.When tem-
perature shows a slowly changing characteristic, the viscosity
coefficient Bp is also a slow-varying parameter. The detailed
expression for external load force is FL = J · (M (q)q̈ +
C(q, q̇)q̇+G(q)+ τf ), whereM , C and G are inertial matrix,
Coriolis matrix, gravity vector respectively, τf contains the
frictional and interfering forces of rigid joints and unmodeled
dynamics. q, q̇ and q̈ are the joint angle, angular velocity
and angular acceleration of mechanism movement, and they
correspond exactly to the actuator displacement, velocity and
acceleration. J is the Jacobian matrix converted between the
joint angular velocity and actuator velocity, and the rela-
tionship is ẋp = J q̇. From the above detailed expression,
it is concluded that the external load force is a fast varying
parameter at the same frequency as the state displacement and
velocity of actuator.

From the above characteristic analysis, the fast vary-
ing parameter set is θfast = [βe,FL]T , the slow vary-
ing parameter set is θslow = [Kd ,Bp]T , and the actuator
states change rapidly with the high dynamics of operating
conditions. Based on the characteristics, the paper sets the
fast varying parameter set θfast = [βe,FL]T and the states
[xp, ẋp,P1,P2]T on the same fast scale for estimation, and
the slow varying parameter set θslow = [Kd ,Bp]T on the slow
scale for estimation.
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III. THE DATA-DRIVEN MULTI-SCALE ONLINE JOINT
ESTIMATION ALGORITHM FOR STATES
AND PARAME-TERS
Under the condition of limited sensor configuration, aiming
at the three problems for time-varying parameters estimation,
non-measurable states estimation, and measurable states fil-
tering of electro-hydraulic actuators, based on the fast and
slow changing characteristics of states and parameters ana-
lyzed in the previous section, this paper innovatively proposes
a data-driven multi-scale online joint estimation algorithm
with a fast-varying time scale (composed of a fusion KF and
a fast-varying time scale EKF) and a slow-varying time scale
(composed of a slow-varying time scale EKF) to realize the
real-time online estimation of actuator states and parameters.

A. SYSTEM DESCRIPTION
Firstly, the two measured values are the acceleration and
displacement signal of the axial movement for piston rod (the
same direction of two sensors). In this paper, the piston rod is
assumed to be a particle, and the axial displacement, velocity
and acceleration of piston rod are at the same centroid point.
Then the axial linear motion of piston rod is described by the
particle motion equation. After obtaining the real-time sig-
nal of displacement and acceleration with noise, the particle
motion equation is used to estimate the particle velocity as
the axial velocity of piston rod, and filter the displacement
measurement signal. The measured acceleration is taken as
the input signal u1,k,l , the measured displacement is set as
the output signal xp, and the state variables are set as χ1 =
[χ11, χ12]T = [xp, ẋp]T . Then the discrete time state equation
is as follows.{

χ1,k,l+1 = F1(χ1,k,l, u1,k,l)+ ω1,k,l

y1,k,l = G1(χ1,k,l, u1,k,l)+ υ1,k,l .
(4)

The detailed form

[
χ11,k,l+1

χ12,k,l+1

]
=

[
χ11,k,l +1tχ12,k,l +1t2u1,k,l/2

χ12,k,l +1tu1,k,l

]
+ω1,k,l

y1,k,l = χ11,k,l + υ1,k,l .

where χ1,k,l is the state vector at time tk,l = tk,0 + l ×
1t(1 ≤ l ≤ Lz), time scale k and l respectively describe
slow-varying and fast-varying time scale, Lz is the scale con-
version limit, that is, one slow-varying time scale is equal to
Lz fast-varying time scales,1t is the calculation time interval.
u1,k,l is the measured acceleration at time tk,l . ω1,k,l and
υ1,k,l are process and measurement noise matrix respectively,
whose corresponding covariance matrices are Qχ1 and Rχ1 .
F1(χ1,k,l, u1,k,l) is the transition matrix, andG1(χ1,k,l, u1,k,l)
is the measurement matrix.

Secondly, the state vector of actuator dynamic equation
(Equation (1)) is extended by two dimensions, and the fast
varying parameter set θfast = [βe,FL]T is filled in to obtain
the new state vector χ2 = [xp, ẋp,P1,P2, βe,FL]T with six
variables. The slow varying parameter set θslow = [Kd ,Bp]T

is taken as the parameter θ in the model, so θ = [Kd ,Bp]T .
In order to distinguish them from the states and parame-
ters with common meanings, χ2 is collectively referred to
as the generalized state vector and θ is referred to as the
slow varying parameter set. Then, a multi-scale nonlinear
discrete state space model including the generalized states
and slow-varying parameters is obtained as follows.

χ2,k,l+1 = F2(χ2,k,l, θk , u2,k,l)+ ω2,k,l

θk+1 = θk + ρk

y2,k,l = G2(χ̂1,k,l, χ2,k,l, θk , u2,k,l)+ υ2,k,l .

(5)

The detailed form
χ21,k,l+1
χ22,k,l+1
χ23,k,l+1
χ24,k,l+1
χ25,k,l+1
χ26,k,l+1



=



χ21,k,l +1tχ22,k,l

χ22,k,l +1t
(
−θ2χ22,k,l + Ap1χ23,k,l
−Ap2χ24,k,l − χ26,k,l

)
/m

χ23,k,l +1tχ25,k,l

(
q1 − Ap1χ22,k,l−
cip(χ23,k,l − χ24,k,l)

)
/V1

χ24,k,l +1tχ25,k,l

(
Ap2χ22,k,l − q2+
cip(χ23,k,l − χ24,k,l)

)
/V2

χ25,k,l
χ26,k,l


+ω2,k,l

q1 =

{
θ1u2,k,l

√
Ps − χ23,k,lu2,k,l ≥ 0

θ1u2,k,l
√
χ23,k,l − P0u2,k,l < 0

q2 =

{
θ1u2,k,l

√
χ24,k,l − P0u2,k,l ≥ 0

θ1u2,k,l
√
Ps − χ24,k,lu2,k,l < 0.[

θ1,k+1
θ2,k+1

]
=

[
θ1,k
θ2,k

]
+ ρk , y21,k,ly22,k,l

y23,k,l


=

 χ̂11,k,l
χ̂12,k,l

Ap1χ23,k,l − Ap2χ24,k,l

+ υ2,k,l .
It is important to note here that the displacement and velocity
in the measurement matrix are state estimates based on the
state equation (4). The specific reason for the usage is detailed
in Section III-B. Where χ2,k,l is the state vector at time tk,l =
tk,0+ l×1t(1 ≤ l ≤ Lz), u2,k,l is the input signal at the same
time (servo valve control signal). y2,k,l is the measurement
vector at time tk,l . G2(χ̂1,k,l, χ2,k,l, θk , u2,k,l) is the measure-
ment matrix. ω2,k,l and ρk are the process noise matrix for
generalized states and slow-varying parameters respectively,
whose covariance matrices are Qχ2 and Qθ respectively.
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υ2,k,l is the measurement noise matrix whose covariance
matrices is Rχ2 . Based on the definition of electro-hydraulic
actuator system, the goal is to estimate the generalized states
χ2 and slow-varying parameters θ from themeasurement data
y1 and y2, which contain the acceleration, displacement and
driving force with noise. The generalized states refer to the
filtered displacement xp, velocity ẋp, two cavity pressures
P1,P2, effective bulk modulus βe and external load force FL .
The slow-varying parameters refer to equivalent flow coeffi-
cient Kd and viscosity coefficient Bp. The generalized states
are on the fast-varying scale, and the slow-varying parameters
are on the slow-varying scale.

B. A DATA-DRIVEN MULTI-SCALE ONLINE
JOINT ESTIMATION ALGORITHM
The data-driven multi-scale online joint estimation algo-
rithm combines fast-varying time scale with slow-varying
time scale by using sensor data collected in real time.
The fast-varying time scale consists of a fusion KF and a
fast-varying time scale EKF, which are responsible for the
estimation of generalized states, and the slow-varying time
scale consists of a slow-varying time scale EKF, which is
responsible for the estimation of slow-varying parameters.
The values of slow-varying parameters remain unchanged
at time scale l = 0∼ (Lz − 1), that is θk = θk,0:Lz−1.
The two-scale estimators perform stepwise estimation of the
generalized states and slow-varying parameters, and the two
are performed alternately with each other as input. Moreover,
the estimators use the innovation from same source. The
algorithm has a coupling structure that guarantee a stable
closed-loop estimation of the final generalized states and
slow-varying parameters. And because the state innovation
is used, the algorithm adapts the state estimation through the
deployment of model parameters on the basis of guaranteeing
the state estimation effect. The advantage of the proposed
algorithm is that it fixes two slow-varying parameters in the
fast-varying time scale, reduces the dimension of generalized
states that need to be estimated simultaneously and improves
the estimation convergence. The generalized state dimension
of algorithm is six, while the generalized state dimension of
the ekf and dekf algorithms is eight.

The overall framework of algorithm is as follows. (1) In the
fast-varying time scale, since there is no sensor to measure
the state ẋp in actuator’s state space model (Equation (5)), the
fusion KF on the fast-varying time scale uses the measured
acceleration and displacement data to estimate the state vector
χ1 = [xp, ẋp]T based on equation (4). Then the fast-varying
time scale EKF uses the measured information (also called
innovation including measured driving force data, estimated
values of state vector χ1 = [xp, ẋp]T ) and slow-varying
parameters θ from the slow-varying time scale to estimate
the generalized states χ2 = [xp, ẋp,P1,P2, βe,FL]T based
on equation (5). (2) In the slow-varying time scale, the
slow-varying time scale EKF uses the same measured infor-
mation and generalized states χ2 from the fast-varying time
scale to estimate the slow-varying parameters θ = [Kd ,Bp]T .

FIGURE 4. Implementation flowchart of data-driven multi-scale online
joint estimation algorithm for states and parameters.

The specific calculation steps of the proposed algorithm
are summarized as follows and in the flowchart as shown
in Fig. 4.

(1)Step 1: Initialization, set the initial parameters of fusion
KF, fast-varying time scale EKF and slow-varying time scale
EKF, respectively.

χ1,0,0,P
χ1
0,0,Q

χ1 ,Rχ1 , χ2,0,0,P
χ2
0,0,Q

χ2 ,Rχ2 ,

θ0,Pθ0,Q
θ ,Rθ , d χ̂2,0,0/d θ̂

−

1 ,Lz.

where χ1,0,0,P
χ1
0,0,Q

χ1 ,Rχ1 are respectively the initial state
vector, the initial value of state estimation error covari-
ance matrix, the process noise covariance, and the measure-
ment noise covariance of fusion KF. χ2,0,0,P

χ2
0,0,Q

χ2 are
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respectively the initial generalized state vector, the initial
value of state estimation error covariance matrix, and the
process noise covariance of fast-varying time scale EKF.
θ0,Pθ0 , Q

θ are the initial slow-varying parameter set, the
initial value of parameter estimation error covariance matrix,
and the process noise covariance of slow-varying time scale
EKF, respectively. Rχ1 and Rθ are the measurement noise
covariances. Since the same innovation is used, Rχ2 = Rθ is
satisfied. d χ̂2,0,0/d θ̂

−

1 ∈ R6×2 is set as a matrix with zero
elements for calculation of parameter measurement matrix
Cθk . When the estimation starts, the value at time (0) is
converted to the value at time (k − 1), and the value at time
(0,0) is converted to the value at time (k − 1, l − 1).
For slow-varying time scale sequence, k = 1, 2, ...

(calculation from time (k − 1) to (k) ).
(2)Step 2: The prior estimation of slow-varying time scale

EKF {
θ̂−k = θ̂k−1

Pθ−k = Pθk−1 + Q
θ .

(6)

For fast-varying time scale sequence, l = 1, 2, . . .Lz
(calculation from time (k − 1, l − 1) to (k − 1,Lz)).
(3)Step 3: The prior estimation of fusion KF and

fast-varying time scale EKF{
χ̂−1,k−1,l = F1(χ̂1,k−1,l−1, u1,k−1,l−1)
Pχ1−k−1,l = A1,k−1,l−1P

χ1
k−1,l−1A

T
1,k−1,l−1 + Q

χ1 ,
(7){

χ̂−2,k−1,l = F2(χ̂2,k−1,l−1, θ̂
−

k , u2,k−1,l−1)
Pχ2−k−1,l = A2,k−1,l−1P

χ2
k−1,l−1A

T
2,k−1,l−1 + Q

χ2 .
(8)

(4)Step 4: The posterior estimation of fusion KF and
fast-varying time scale EKF
Kχ1k−1,l = Pχ1−k−1,l(C

χ1 )T
[
Cχ1Pχ1−k−1,l(C

χ1 )T + Rχ1
]−1

χ̂1,k−1,l = χ̂
−

1,k−1,l + K
χ1
k−1,l[

y1,k−1,l − G1(χ̂
−

1,k−1,l, u1,k−1,l)
]

Pχ1k−1,l = (I − Kχ1k−1,lC
χ1 )Pχ1−k−1,l

(9)

Pass χ̂1,k−1,l to y2,k−1,l in this step.
Kχ2k−1,l = Pχ2−k−1,l(C

χ2 )T
[
Cχ2Pχ2−k−1,l(C

χ2 )T + Rχ2
]−1

χ̂2,k−1,l = χ̂
−

2,k−1,l + K
χ2
k−1,l[

y2,k−1,l − G2

(
χ̂−2,k−1,l, θ̂

−

k , u2,k−1,l
)]

Pχ2k−1,l = (I − Kχ2k−1,lC
χ2 )Pχ2−k−1,l

(10)

For calculation of parameter measurement matrix Cθk .

d χ̂2,k−1,l
d θ̂−k
= (I − Kχ2k−1,lC

χ2 )

×

 ∂F2(χ̂2,k−1,l, θ̂
−

k , u2,k−1,l)/∂θ̂
−

k +

∂F2(χ̂2,k−1,l, θ̂
−

k , u2,k−1,l)

∂χ̂2,k−1,l

d χ̂2,k−1,l−1
d θ̂−k

 .
(11)

(5)Step 5: Cycle calculation of fast-varying time scale for
l = 1 : Lz. When the cumulative count is equal to Lz, scale
conversion is performed to activate the calculation of slow-
varying time scale. At this time, make the following switch.

χ̂2,k,0 = χ̂2,k−1,Lz , y2,k,0 = y2,k−1,Lz ,

u2,k,0 = u2,k−1,Lz ,
d χ̂2,k,0
d θ̂−k

=
d χ̂2,k−1,Lz
d θ̂−k

,Cθk = Cχ2
d χ̂2,k,0
d θ̂−k

. (12)

(6)Step 6: The posterior estimation of slow-varying time
scale EKF

K θk = Pθ−k (Cθk )
T
[
Cθk P

θ−
k (Cθk )

T
+ Rθ

]−1
θ̂k = θ̂

−

k + K
θ
k

[
y2,k,0 − G2(χ̂2,k,0, θ̂

−

k , u2,k,0)
]

Pθk = (I − K θk C
θ
k )P

θ−
k

(13)

where

A1,k−1,l−1

=
∂F1(χ̂1,k−1,l−1, u1,k−1,l−1)

∂χ̂1,k−1,l−1
=

[
1 1t
0 1

]
,

F1(χ̂1,k−1,l−1, u1,k−1,l−1)

=

[
χ11,k−1,l−1 +1tχ12,k−1,l−1 + 1t2

2 u1,k−1,l−1
χ12,k−1,l−1 +1tu1,k−1,l−1

]
Cχ1 =

∂G1(χ̂
−

1,k−1,l, u1,k−1,l)

∂χ̂−1,k−1,l
=
[
1 0

]
.

A2,k−1,l−1

=
∂F2(χ̂2,k−1,l−1, θ̂

−

k , u2,k−1,l−1)

∂χ̂2,k−1,l−1
,

Cχ2 =
∂G2(χ̂

−

2,k−1,l, θ̂
−

k , u2,k−1,l)

∂χ̂−2,k−1,l

=

 1 0 0 0
0 1 0 0
0 0 Ap1 −Ap2

 ,
Cθk =

dG2(χ̂2,k,0, θ̂
−

k , u2,k,0)

d θ̂−k
.

So far, the multi-scale online joint estimation of the gener-
alized states and slow-varying parameters at time k is com-
pleted, and then it is ready to enter the cycle at time k+1(end).

The calculation for measurement matrix Cθk of slow-
varying parameters is the most important step for ensuring the
convergence of coupling estimation, and it is the total deriva-
tive of measurement function with respect to the slow-varying
parameters. Considering that the generalized states are the
functions of slow-varying parameters, the total derivative is
decomposed into partial derivatives as follows.

Cθk =
dG2(χ̂2,k,0, θ̂

−

k , u2,k,0)

d θ̂−k
=
∂G2(χ̂2,k,0, θ̂

−

k , u2,k,0)

∂θ̂−k

+
∂G2(χ̂2,k,0, θ̂

−

k , u2,k,0)

∂χ̂2,k,0

d χ̂2,k,0
d θ̂−k

(14)
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From the posterior estimation of fast-varying time scale
EKF (Equation (10)),

d χ̂2,k,0
d θ̂−k

=
d χ̂2,k−1,Lz
d θ̂−k

=
d

d θ̂−k

(
χ̂−2,k−1,Lz + K

χ2
k−1,Lz

[y2,k−1,Lz−
G2(χ̂

−

2,k−1,Lz
, θ̂−k , u2,k−1,Lz )]

)
(15)

where

d

d θ̂−k

(
Kχ2k−1,LzG2(. . .)

)
=


Kχ2k−1,Lz

dG2(. . .)

d χ̂−2,k−1,Lz

d χ̂−2,k−1,Lz
d θ̂−k

+
dKχ2k−1,Lz
d θ̂−k

G2(. . . .)


and d

d θ̂−k

(
Kχ2k−1,Lzy2,k−1,Lz

)
= y2,k−1,Lz

dK
χ2
k−1,Lz

d θ̂−k
. Assuming

Kχ2k−1,Lz is not related to θ̂−k , so dKχ2k−1,Lz/d θ̂
−

k = 0. Then,
the Equation (15) is simplified as

d χ̂2,k,0
d θ̂−k

=
d χ̂2,k−1,Lz
d θ̂−k

=

(
I−Kχ2k−1,LzC

χ2
) d χ̂−2,k−1,Lz

d θ̂−k
(16)

From the prior estimate of fast-varying time scale EKF
(Equation (8)),

d χ̂−2,k−1,Lz
d θ̂−k

=


∂F2(χ̂2,k−1,Lz−1, θ̂

−

k , u2,k−1,Lz−1)

∂θ̂−k

+
∂F2(χ̂2,k−1,Lz−1, θ̂

−

k , u2,k−1,Lz−1)

∂χ̂2,k−1,Lz−1

d χ̂2,k−1,Lz−1
d θ̂−k


(17)

Then combine the above two equations (Equation (16)
and (17))

d χ̂2,k,0
d θ̂−k

=

(
I − Kχ2k−1,LzC

χ2
)

×


∂F2(. . .)

∂θ̂−k

+

∂F2(. . .)
∂χ̂2,k−1,Lz−1

d χ̂2,k−1,Lz−1
d θ̂−k

 . (18)

Since ∂G2(χ̂2,k,0, θ̂
−

k , u2,k,0)/∂χ̂2,k,0 = Cχ2 and
∂G2(χ̂2,k,0, θ̂

−

k , u2,k,0)/∂θ̂
−

k = 0 in Equation (14). Bring
equation (18) into equation (14), and finally get the function
form of parameter measurement matrix as follows.

Cθk = Cχ2
(
I − Kχ2k−1,LzC

χ2
)

×


∂F2(. . .)

∂θ̂−k

+
∂F2(. . .)

∂χ̂2,k−1,Lz−1

d χ̂2,k−1,Lz−1
d θ̂−k

 . (19)

FIGURE 5. The experimental platform.

From equation (19), Cθk contains the generalized state vec-
tor χ2, so it is an iterative variable on the fast-varying time
scale. The detailed calculation process is as follows.

In step 1: Initialization, d χ̂2,0,0/d θ̂
−

1 ∈ R6×2 is set as a
matrix with zero elements.

In step 4: The posterior estimation of fusion KF and
fast-varying time scale EKF

d χ̂2,k−1,l
d θ̂−k

= (I − Kχ2k−1,lC
χ2 )

×


∂F2(χ̂2,k−1,l, θ̂

−

k , u2,k−1,l)

∂θ̂−k

+
∂F2(χ̂2,k−1,l, θ̂

−

k , u2,k−1,l)

∂χ̂2,k−1,l

d χ̂2,k−1,l−1
d θ̂−k

.
(20)

In step 5: Scale conversion is performed to activate the
calculation of slow-varying time scale. At this time, make the
following switch.

d χ̂2,k,0
d θ̂−k

=
d χ̂2,k−1,Lz
d θ̂−k

,Cθk = Cχ2
d χ̂2,k,0
d θ̂−k

. (21)

IV. EXPERIMENT AND DISCUSSION
In order to evaluate the performance of the proposed algo-
rithm, the one-legged motion control experimental platform
has been built as shown in Fig. 5. The platform consists of
the single-legged rigid body, actuators and control system,
in which the electro-hydraulic actuators driving the joint
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mechanism have integrated the acceleration, displacement
and force sensor. The control system consists of a com-
puter, PC104 small board, ARM controller, amplifier and
16-bit A/D converter sensor. The QNX operating system with
1000Hz control frequency runs in the controller, where the
control and estimation algorithms are implemented.

A. DESCRIPTION OF THE EXPERIMENTAL PROCESS
In the experiment, the hip of single leg is fixed on the bracket
to suspend the foot and simulate the leg movement of legged
robot in the swing phase.Then the knee and hip actuators are
controlled and estimated.

Firstly, in the motion controller, the same desired displace-
ment trajectorys of actuators in the sensitivity analysis are
used, and then the closed-loop position control is performed
using the proportional controller to stabilize actuators. The
accuracy of proportional controller is not high, the main
purpose of which is to activate the dynamic characteristics
of actuator, and to avoid the divergence of open loop control,
as well as to prevent damage to the components. Secondly,
at each estimation time, the acceleration, displacement and
driving force data measured in real time are applied to the
proposed algorithm to realize the online joint estimation of
generalized states and slow-varying parameters. In order to
improve the efficiency of algorithm initial parameter adjust-
ment and performance comparison, and to realize the effec-
tive comparison of different estimation results for the same
data, the sensor data measured in the experiment are saved to
the computer, then the online joint estimation of generalized
states and slowvarying parameters is realized based on the
matlab / simulink platform.

The algorithm initial parameters are divided into five
types as follows. (1) Measurement noise covariances
Rχ1 ,Rχ2 and Rθ are the characteristics related to the sensors.
It should be noted that if this values are too large or too
small, the filtering effect will be very poor. And the closer
the values are to the actual noise, the faster the algorithm
converges. Their appropriate values need to be found grad-
ually through experiments. (2) State and parameter process
noise covariances Qχ1 ,Qχ2 and Qθ . Because the state inno-
vation is used, the algorithm adapts the state estimation
through the deployment of model parameters on the basis of
guaranteeing the state estimation effect. Therefore, the state
process noise covariances are set to be small, and only
the parameter process noise covariance need to be adjusted
through experiments. (3) The estimated error covariances
Pχ10,0,P

χ2
0,0 and P

θ
0 . As long as they are not zeros, the val-

ues have little effect on the filtering effect and converge
quickly. So they are set as the certain values without too
much analysis. (4) The time scale Lz. Too large or too small
value can affect the estimate effectiveness. (5) The initial
value of states vectors χ1, 0, 0 and χ2,0,0, the initial value of
slow-varying parameter vector θ0. Because the true values are
unknown, the estimated initial values are generally set based
on prior knowledge, but are not accurate. It is necessary to
rely on the convergence ability of the proposed algorithm

to make their estimated values quickly converge to the
true ones.

The adjustment method of initial parameters is as follows.
The state process noise covariances(Qχ1 , the first four dimen-
sions ofQχ2 ), the estimated error covariances (Pχ10,0,P

χ2
0,0,P

θ
0)

and the estimated initial values (χ1,0,0, χ2,0,0, θ0) are
set to fixed values, and then the measurement noise
(Rχ1 ,Rχ2 ,Rθ )and parameter process noise covariances(the
last two dimensions of Qχ2 ,Qθ ), and time scale(Lz) are
adjusted by experiments. The above three parameters with
a gradually increasing trend are respectively set, and then
the optimal values are determined by comparing the effect
of estimation.

Evaluation method of algorithm performance: Since gen-
eralized state and slow-varying parameters are estimated by
coupling with each other, in the case where the estimated
state follows the centerline of measurement value, the dis-
placement xp and velocity ẋp are directly related to each
other, as are the driving force and the two cavity pressure
P1,P2. Therefore, the comparison between the estimated
values of displacement and driving force and the center line
of measured ones, combined with the prior knowledge of
model parameters and the relationship between the states and
parameters are used to judge the estimation effect.

The prior knowledge is that the accuracy error of dis-
placement and driving force sensors is ±0.5%, the general-
ized state (fast-varying parameter) βe is changed by pressure
extrusion in the range of βe ∈ (1e9, 2e9)(Par), its frequency is
similar to pressure and driving force. FL is directly related to
the driving force and pressure, and the change frequency is the
same. The slow-varying parameter Kd has a small nonlinear
fluctuation characteristic reflecting the flow capacity of valve
port. As the hydraulic oil stabilizes at a certain temperature,
Bp stabilizes around a certain value in the range of Bp ∈
(0, 4e3)(N .s/m). In the experiments, the evaluation indices
used to estimate performance are mean square error (MSE),
maximum error (ME) and average error (AE).

B. ALGORITHM PERFORMANCE VERIFICATION
The sectionmainly shows the detail of algorithm performance
verification. It is divided into three experiments, which are
(1) the performance comparison with the combined algo-
rithm (dekf) of fusion kalman filter and dual extended kalman
filter, (2) verification of estimated performance on different
actuator hardware, and (3) convergence verification of dif-
ferent initial values for generalized states and slow-varying
parameters. Experiment (1) and (2) both include comparison
with dekf to verify the performance and advantages of the
proposed algorithm on different hardware, and experiment
(3) shows the ability of the proposed algorithm to converge
from different initial values.

Experiment (1) and (3) have used the 50 seconds measure-
ment data of hip actuator, which are the relative acceleration
of piston rod to cylinder, the displacement and driving force
as shown in Fig. 6. Since the slow-varying parameter Bp fully
converges near 50 seconds, the data length of 50 seconds

36894 VOLUME 8, 2020



J. Huang et al.: Data-Driven Multi-Scale Online Joint Estimation of States and Parameters for Electro-Hydraulic Actuator

FIGURE 6. Data curves for hip actuator sensors (a) Acceleration; (b) Displacement; (c) Driving force.

FIGURE 7. Data curves for knee actuator sensors (a) Acceleration; (b) Displacement; (c) Driving force.

is used. Due to the density and periodicity of measurement
data, only the first 10 seconds data is shown in the figures in
order to display the data clearly. Experiment (2) has used
the 50 seconds measurement data of knee actuator, as shown
in Fig. 7 (the length of displayed data is the same as that
in Fig. 6). In the data, the original acceleration signal con-
tain certain noise, especially the high-frequency interference
caused by vibration makes the signal to have a large devia-
tion. The first-order low-pass filter is used to filter out the
high-frequency random signal in the signal, and then the fil-
tered acceleration signal is imported into the proposed algo-
rithm in real time. The displacement and driving force signals
are noise-containing measurement values directly measured
by sensors, the data detail has been shown in the experiments.

(1) The performance comparison with the combined algo-
rithm (dekf) of fusion kalman filter and dual extended kalman
filter

In order to verify the estimation effect and performance,
the proposed data-driven multi-scale online joint estimation
algorithm (mekf) has been implemented on the hip actuator,
and compared with the combined algorithm (dekf) based on
fusion kalman filter and dual extended kalman filter. The
dimension of generalized states in the proposed algorithm
is six, while in the dekf algorithm, the eight dimensions of
generalized states and slow-varying parameters are in the
same fast-varying time scale. The initial parameters of the
proposed algorithm (mekf) on hip actuator are obtained by
the method described in the fourth paragraph of Section IV.A

as follows.

χ1,0,0 = [0, 0]T ,Pχ10,0 = [10; 01] ,

Qχ1 = diag
([

1e−20, 1e−20
])
,

Rχ1 = 6e−7, χ2,0,0 =
[
0, 0, 0, 0, 1e9, 1e2

]T
,

Pχ20,0 = diag
([

1e−1, 1e−5, 1e−10, 1e−10, 1e8, 1e−2
])
,

Qχ2 = diag
([

1e−20, 1e−20, 1e−20, 1e−20, 8e12, 1e3
])
,

Rχ2 = Rθ = diag
(
[0, 0, 6e7]

)
, θ0 =

[
5e−8, 2.5e3

]T
,

Pθ0 = diag
([

1e−20, 3e6
])
,Qθ = diag

([
2e−18, 3e3

])
,

d χ̂2,0,0/d θ̂
−

1

= zeros(6, 2),Lz = 200.

The initial parameters of dekf algorithm are the same
as those of mekf. The correlation estimation comparison
curves of generalized states χ2 = [xp, ẋp,P1,P2, βe,FL]T

(Fig. 8,10,11), driving force (Fig. 9) and slow-varying param-
eters θ = [Kd ,Bp]T (Fig. 12) are obtained respectively. As the
estimated value of Bp converges slowly, the 50 seconds data
is shown in Fig. 12 (b). Since other estimated values have
converged in about 2 seconds, in order to show the data more
clearly, other figures only show the first 10 seconds data. The
quantitative performance indices of displacement and driving
force under the two algorithms are shown in Table 2.
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FIGURE 8. The estimated displacement (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.

FIGURE 9. The estimated driving force (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.

FIGURE 10. (a) The estimated velocity; (b) The estimated pressure P1;(c) The estimated pressure P2.

FIGURE 11. (a) The estimated βe; (b) The estimated FL.

Performance evaluation of the mekf algorithm: both the
estimated displacement and driving force have smoothly

tracked along the center line of measurement values, and
most measurement noises are filtered out. The estimated
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FIGURE 12. (a) The estimated Kd ; (b) The estimated Bp.

TABLE 2. Quantitative indices of estimated performance.

velocity ẋp and pressures P1,P2 converge to a stable interval
quickly after starting from the initial value. The velocity
ẋp changes smoothly between the maximum amplitude of
−0.1− 0.45(m/s), the pressures P1 and P2 change smoothly
in the range of 5e6 − 13e6(Par) and 8e6 − 15e6(Par) respec-
tively, and their frequencies and phases are consistent with the
displacement and driving force respectively. The estimated βe
stabilizes quickly in the range of 1e9−1.7e9(Par), and the fre-
quency is close to the pressures, which is consistent with the
change characteristic of effective bulk modulus for hydraulic
oil during compression. The estimated FL stabilizes quickly
in the range of −2000 − 1500(N ), the frequency and phase
are consistent with the driving force, which corresponds to
their relationship and also reflects the dynamic characteristic
of hip joint dynamic load on the actuator. The estimated Kd
starts from the initial value, quickly stabilizes and slowly
changes in the range of 5.5e−8 − 7e−8(m3/(s.V )) showing
the nonlinear slow-varying characteristic. After 20 seconds
of adjustment, the estimated Bp have gradually converged to
around 1200(N .s/m). The parameter is mainly related to the
temperature of hydraulic oil. With the system running for a
long time, the oil temperature slowly increases and stabilizes
to a constant value. ThenBp decreases accordingly and finally
stabilizes near a fixed value. Therefore, the estimated Bp in
this experiment is consistent with the actual characteristics.
It is clear that Kd and Bp are updated every 0.2 second,
obtained by multiplying the fast-varying scale interval time
of one millisecond and Lz = 200.
Performance evaluation of the dekf algorithm: The esti-

mated driving force has failed to track the center line of mea-
sured value from 3 seconds, and the wave dynamic potential
appeared in the overall situation, resulting in similar changes
in the pressure P1 and fast-varying parameter FL . From the

direct correlation between them, it is considered that the
driving force, pressure P1 and the fast-varying parameter
FL estimated by the dekf algorithm do not conform to the
actual dynamic characteristics. The slow-varying parameter
Bp shows a large fluctuation and does not converge.
It has been concluded from the curves that the estimated

values of dekf algorithm are overshooting seriously in the
initial stage, while the ones of mekf algorithm have almost no
overshooting and converged quickly and smoothly, ensuring
the stability of adding the estimated values to themodel-based
controller in the future. In addition, the quantitative indices
of mekf are smaller than those of dekf. The MSE index of
driving force is only 31.4% that of dekf, the ME index ratio is
33.1%, and the AE index ratio is 30.9%. Therefore, the mekf
algorithm has better stability, faster convergence speed and
more accurate estimation than the dekf algorithm. Moreover,
the generalized states and slow-varying parameters estimated
bymekf algorithm accurately reflect the actual characteristics
of actuator.
(2) Verification of estimated performance on different

actuator hardware
In order to verify the estimated performance in differ-

ent hardware environments, the proposed algorithm (mekf)
has been implemented simultaneously on the knee actuator,
and compared with the combined algorithm (dekf) based on
fusion kalman filter and dual extended kalman filter. The ini-
tial parameter adjustment method of the proposed algorithm
for knee actuator is the same as above, and the configuration
after adjustment is as follows.

χ1,0,0 = [0, 0]T ,Pχ10,0 = [10; 01] ,

Qχ1 = diag
([

1e−20, 1e−20
])
,

Rχ1 = 4.5e−7, χ2,0,0 =
[
0, 0, 0, 0, 1e9, 1e2

]T
,

Pχ20,0 = diag
([

1e−1, 1e−5, 1e−10, 1e−10, 1e8, 1e−2
])
,

Qχ2 = diag
([

1e−20, 1e−20, 1e−20, 1e−20, 8e12, 1e3
])
,

Rχ2 = Rθ = diag
(
[0, 0, 8e7]

)
, θ0 =

[
5e−8, 2.5e3

]T
,

Pθ0, = diag
([

1e−20, 3e6
])
,Qθ = diag

([
2e−18, 3e3

])
,
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FIGURE 13. The estimated displacement (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.

FIGURE 14. The estimated driving force (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.

FIGURE 15. (a) The estimated velocity; (b) The estimated pressure P1;(c) The estimated pressure P2.

d χ̂2,0,0/d θ̂
−

1

= zeros(6, 2),Lz = 200.

The correlation estimation comparison curves of general-
ized states χ2 = [xp, ẋp,P1,P2, βe,FL]T (Fig. 13, 15, 16),
driving force (Fig. 14) and slow-varying parameters θ =
[Kd ,Bp]T (Fig. 17) are obtained respectively. The quantitative
performance indices of displacement and driving force under
the two algorithms are shown in Table 3.

It is also concluded from the curves and quantified indices
that the mekf algorithm has better stability, faster conver-
gence speed and more accurate estimation than the dekf
algorithm. Moreover, the generalized states and slow-varying

parameters estimated by mekf algorithm also accurately
reflect the actual characteristics of actuator. According to
the estimation results on different actuators, the proposed
algorithm has strong adaptability and robustness in different
hardware environments.

(3) Convergence verification of different initial values for
generalized states and slow-varying parameters

In the initial value configuration, the true values of gen-
eralized states and slow-varying parameters are unknown.
The estimated initial values are generally set based on prior
knowledge, but not accurate. Therefore, in the case of inac-
curate initial values, it is necessary to rely on the convergence
ability of the proposed algorithm to make their estimated
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FIGURE 16. (a) The estimated βe; (b) The estimated FL.

FIGURE 17. (a) The estimated Kd ; (b) The estimated Bp.

FIGURE 18. The estimated displacement (a) The estimated values; (b) The estimated errors.

TABLE 3. Quantitative indices of estimated performance.

values quickly converge to the true ones. In this experiment,
the convergence ability is verified on the hip actuator. Other
parameters are the same as experiment (1). Since the actu-
ator is started from the static state, the initial displacement
and velocity are determined to be zeros. Five groups initial

generalized states and slow-varying parameters are set for
estimation and comparison, as follows.

¬ χ2,0,0 =
[
0, 0, 0, 0, 1e9, 1e2

]T
, θ0 =

[
5e−8, 2.5e3

]T
,

 χ2,0,0 =
[
0, 0, 0, 0, 2e9, 5e2

]T
, θ0 =

[
7e−8, 3.5e3

]T
,

® χ2,0,0 =
[
0, 0, 0, 0, 1e8,−5e2

]T
, θ0 =

[
1e−8, 1e3

]T
,

¯ χ2,0,0 =
[
0, 0, 2e6, 2e6, 1e8,−5e2

]T
, θ0 =[

7e−8, 3.5e3
]T
,

° χ2,0,0 =
[
0, 0, 2e6, 2e6, 2e9, 1.5e3

]T
, θ0 =[

1e−8, 5e2
]T
. The correlation estimation comparison curves

of generalized states χ2 = [xp, ẋp,P1,P2, βe,FL]T

(Fig. 18, 20, 21), driving force (Fig. 19) and slow-varying
parameters θ = [Kd ,Bp]T (Fig.22) are obtained respectively.

From the curves, it is concluded that after setting five
groups initial values with large differences, the estimated

VOLUME 8, 2020 36899



J. Huang et al.: Data-Driven Multi-Scale Online Joint Estimation of States and Parameters for Electro-Hydraulic Actuator

FIGURE 19. The estimated driving force (a) The estimated values; (b) The estimated errors.

FIGURE 20. (a) The estimated velocity; (b) The estimated pressure P1;(c) The estimated pressure P2.

FIGURE 21. (a) The estimated βe; (b) The estimated FL.

FIGURE 22. (a) The estimated Kd ; (b) The estimated Bp.

displacement and driving force all have converged to the
same curves after 2 seconds and the estimation errors after

the time are exactly the same. The estimated velocity is
completely recombined into one curve. The generalized
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statesP1,P2, βe,FL and slow-varying parametersKd all have
started from different initial values and quickly converged to
the corresponding true values after finite amplitude adjust-
ment of 2 seconds. Only Bp has a longer convergence time.
It is verified that the proposed algorithm has strong conver-
gence ability for different initial values of generalized states
and slow-varying parameters.

V. CONCLUSION
The fourth-order gray box state space model based on mech-
anism is constructed and the parameter set to be estimated is
selected through the first-order trajectory sensitivity analysis.
The change characteristics of parameter set are analyzed in
detail, and it is divided into the fast-varying parameter set and
slow-varying parameter set. And then combined with the fast-
varying characteristics of states, the fast-varying parameters
and states are divided into fast-varying time scale, and the
slow-varying parameters are divided into slow-varying time
scale. A data-driven multi-scale online joint estimation algo-
rithm with a fast- varying time scale (composed of a fusion
KF and a fast-varying time scale EKF) and a slow-varying
time scale (consisted of a slow-varying time scale EKF) is
innovatively proposed to realize the efficient and accurate
states and parameters estimation of electro-hydraulic actuator
system with three problems of time-varying parameter esti-
mation, unmeasur- ed states estimation, andmeasurable states
filtering. Finally, the results of three comparative experiments
show that the proposed algorithm has better stability, faster
convergence speed, more accurate estimation than the dekf
algorithm, and the states and parameters estimated by the pro-
posed algorithm accurately reflect the actual characteristics
of actuator. Moreover, the algorithm has strong adaptability
and robustness in different actuator hardware environments,
and strong convergence ability for different initial values of
states and parameters.

In the future, the performance and generalizing ability of
the proposed algorithm will be further verified, and it will be
used in model-based controller, such as feedback lineariza-
tion and other model control algorithms, so as to further
improve the control accuracy of actuator system under strong
time-varying nonlinearity and interference, and to improve
the adaptability of control frame.

REFERENCES
[1] N.D. Manring, Hydraulic Control Systems. Hoboken, NJ, USA: Wiley,

2005, pp. 23–55.
[2] R. Playter, M. Buehler, and M. Raibert, ‘‘BigDog,’’ in Proc. Unmanned

Syst. Technol. VIII, At Orlando, FL, USA, May 2006, p. 201.
[3] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, ‘‘Optimization based

controller design and implementation for the atlas robot in the DARPA
robotics challenge finals,’’ in Proc. IEEE-RAS 15th Int. Conf. Hum. Robots
(Humanoids), Seoul, South Korea, Nov. 2015, pp. 101–109.

[4] C. Semini, ‘‘Design of HyQ–a hydraulically and electrically actuated
quadruped robot,’’ Syst. Control Eng., vol. 2, pp. 1–20, Aug. 2011,
doi: 10.1177/0959651811402275.

[5] S.-H. Hyon, D. Suewaka, Y. Torii, and N. Oku, ‘‘Design and experi-
mental evaluation of a fast torque-controlled hydraulic humanoid robot,’’
IEEE/ASME Trans. Mechatronics, vol. 22, no. 2, pp. 623–634, Apr. 2017,
doi: 10.1109/TMECH.2016.2628870.

[6] S.-H. Hyon, T. Yoneda, and D. Suewaka, ‘‘Lightweight hydraulic leg to
explore agile legged locomotion,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Tokyo, Japan, Nov. 2013, pp. 4655–4660.

[7] C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi,
D. G. Caldwell, and J. Buchli, ‘‘Towards versatile legged robots
through active impedance control,’’ Int. J. Robot. Res., vol. 34, no. 7,
pp. 1003–1020, May 2015, doi: 10.1177/0278364915578839.

[8] R. Fales and A. Kelkar, ‘‘Robust control design for a wheel loader using
mixed sensitivity H-infinity and feedback linearization based methods,’’ in
Proc. Amer. Control Conf., Portland, OR, USA, Jun. 2005, pp. 4381–4386.

[9] V. Milić, Z. Šitum, and M. Essert, ‘‘Robust H∞ position control synthesis
of an electro-hydraulic servo system,’’ ISA Trans., vol. 2010, vol.49, no. 4,
pp. 535–542, Oct. 2010, doi: 10.1016/j.isatra.2010.06.004.

[10] B. Yao, F. Bu, J. Reedy, and G. T.-C. Chiu, ‘‘Adaptive robust motion
control of single-rod hydraulic actuators: Theory and experiments,’’
IEEE/ASME Trans. Mechatronics, vol. 5, no. 1, pp. 79–91, Mar. 2000,
doi: 10.1109/3516.828592.

[11] C. Guan and S. Pan, ‘‘Adaptive sliding mode control of electro-
hydraulic system with nonlinear unknown parameters,’’ Control
Eng. Pract., vol. 16, no. 11, pp. 1275–1284, Nov. 2008,
doi: 10.1016/j.conengprac.2008.02.002.

[12] Q.Guo, JM.Yin, T.Yu, ‘‘Coupled disturbance observer based position
tracking control for a cascade electro-hydraulic system,’’ ISA Trans.,
vol. 68, pp. 367–380, Mar. 2017, doi: 10.1016/j.isatra.2017.02.014.

[13] Q. Guo, J. Yin, T. Yu, and D. Jiang, ‘‘Saturated adaptive control of an elec-
trohydraulic actuator with parametric uncertainty and load disturbance,’’
IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 7930–7941, Oct. 2017,
doi: 10.1109/TIE.2017.2694352.

[14] S. Li, J. Wei, K. Guo, and W.-L. Zhu, ‘‘Nonlinear robust prediction control
of hybrid active–passive heave compensator with extended disturbance
observer,’’ IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6684–6694,
Aug. 2017, doi: 10.1109/TIE.2017.2698358.

[15] H.-B. Yuan, H.-C. Na, and Y.-B. Kim, ‘‘System identification and robust
position control for electro-hydraulic servo system using hybrid model
predictive control,’’ J. Vibrat. Control, vol. 24, no. 18, pp. 4145–4159,
Aug. 2017, doi: 10.1177/1077546317721417.

[16] H.-B. Yuan, H.-C. Na, and Y.-B. Kim, ‘‘Robust MPC–PIC force con-
trol for an electro-hydraulic servo system with pure compressive elas-
tic load,’’ Control Eng. Pract., vol. 79, pp. 170–184, Oct. 2018,
doi: 10.1016/j.conengprac.2018.07.009.

[17] P. Toni, ‘‘Identification and control of an electro-hydraulic servo system,’’
M.S. thesis, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje,
Unspecified, Unspecified, Bologna, 2016.

[18] V. Barasuol, O. A. Villarreal-Magaña, D. Sangiah, M. Frigerio, M. Baker,
R. Morgan, G. A. Medrano-Cerda, D. G. Caldwell, and C. Semini,
‘‘Highly-integrated hydraulic smart actuators and smart manifolds for
high-bandwidth force control,’’ Frontiers Robot. AI, vol. 5, pp. 51–56,
Jun. 2018, doi: 10.3389/frobt.2018.00051.

[19] B.-Y. Moon, ‘‘Study of parameter identification using hybrid neural-
genetic algorithm in electro-hydraulic servo system,’’ Proc. SPIE,
vol. 6042, May 2006, Art. no. 60422G, doi: 10.1117/12.664659.

[20] J. Yao, W. Deng, and W. Sun, ‘‘Precision motion control for electro-
hydraulic servo systems with noise alleviation: A desired compensation
adaptive approach,’’ IEEE/ASME Trans. Mechatronics, vol. 22, no. 4,
pp. 1859–1868, Aug. 2017, doi: 10.1109/TMECH.2017.268 8353.

[21] K. K. Ahn, D. N. C. Nam, and M. Jin, ‘‘Adaptive backstepping control of
an electrohydraulic actuator,’’ IEEE/ASME Trans. Mechatronics, vol. 19,
no. 3, pp. 987–995, Jun. 2014, doi: 10.1109/TMECH.2013.2265312.

[22] W. Kim, D. Shin, D. Won, and C. C. Chung, ‘‘Disturbance-Observer-
Based position tracking controller in the presence of biased sinu-
soidal disturbance for electrohydraulic actuators,’’ IEEE Trans. Con-
trol Syst. Technol., vol. 21, no. 6, pp. 2290–2298, Nov. 2013,
doi: 10.1109/TCST.2013.2237909.

[23] Z. Yao, J. Yao, and W. Sun, ‘‘Adaptive RISE control of hydraulic systems
with multilayer neural-networks,’’ IEEE Trans. Ind. Electron., vol. 66,
no. 11, pp. 8638–8647, Nov. 2019, doi: 10.1109/TIE.2018.2886773.

[24] C. Kaddissi, J.-P. Kenne, andM. Saad, ‘‘Identification and real-time control
of an electrohydraulic servo system based on nonlinear backstepping,’’
IEEE/ASME Trans. Mechatronics, vol. 12, no. 1, pp. 12–22, Feb. 2007,
doi: 10.1109/TMECH.2006.886190.

[25] A. Sadeghieh, H. Sazgar, K. Goodarzi, and C. Lucas, ‘‘Identification and
real-time position control of a servo-hydraulic rotary actuator by means
of a neurobiologically motivated algorithm,’’ ISA Trans., vol. 51, no. 1,
pp. 208–219, Jan. 2012, doi: 10.1016/j.isatra.2011.09.006.

VOLUME 8, 2020 36901

http://dx.doi.org/10.1177/0959651811402275
http://dx.doi.org/10.1109/TMECH.2016.2628870
http://dx.doi.org/10.1177/0278364915578839
http://dx.doi.org/10.1016/j.isatra.2010.06.004
http://dx.doi.org/10.1109/3516.828592
http://dx.doi.org/10.1016/j.conengprac.2008.02.002
http://dx.doi.org/10.1016/j.isatra.2017.02.014
http://dx.doi.org/10.1109/TIE.2017.2694352
http://dx.doi.org/10.1109/TIE.2017.2698358
http://dx.doi.org/10.1177/1077546317721417
http://dx.doi.org/10.1016/j.conengprac.2018.07.009
http://dx.doi.org/10.3389/frobt.2018.00051
http://dx.doi.org/10.1117/12.664659
http://dx.doi.org/10.1109/TMECH.2017.2688353
http://dx.doi.org/10.1109/TMECH.2013.2265312
http://dx.doi.org/10.1109/TCST.2013.2237909
http://dx.doi.org/10.1109/TIE.2018.2886773
http://dx.doi.org/10.1109/TMECH.2006.886190
http://dx.doi.org/10.1016/j.isatra.2011.09.006


J. Huang et al.: Data-Driven Multi-Scale Online Joint Estimation of States and Parameters for Electro-Hydraulic Actuator

[26] P. Wos and R. Dindorf, ‘‘Nonlinear modeling and parameter identification
for electro-hydraulic servo system,’’ in Proc. 20th Int. Carpathian Control
Conf. (ICCC), May 2019, pp. 455–460.

[27] L. An and N. Sepehri, ‘‘Hydraulic actuator circuit fault detection using
extended Kalman filter,’’ Proc. Amer. Control Conf., Deriver, CO, USA,
Jun. 2003, pp. 4261–4266.

[28] Y. Chinniah, R. Burton, and S. Habibi, ‘‘Failure monitoring in a
high performance hydrostatic actuation system using the extended
Kalman filter,’’ Mechatronics, vol. 16, no. 10, pp. 643–653, Dec. 2006,
10.1016/j.mechatronics.2006.04. 004.

[29] X. Cui, Y. Dong, and K. Zhao, ‘‘Measurement of external leakage of
hydraulic servo-motor based on robust extended Kalman filter,’’ in Proc.
9th Int. Conf. Electron. Meas. Instrum., Aug. 2009, pp. 680–684.

[30] R. Miranda-Colorado,‘‘A new parameter identification algorithm for
a class of second order nonlinear systems: An on-line closed-loop
approach,’’ Int. J. Control, Autom. Syst., vol. 16, no. 3, pp. 1142–1155,
Apr. 2018, doi: 10.1007/s12555-017-0380-z.

[31] R. Miranda-Colorado and J. Moreno-Valenzuela, ‘‘An efficient on-line
parameter identification algorithm for nonlinear servomechanisms with an
algebraic technique for state estimation,’’ Asian J. Control, vol. 19, no. 6,
pp. 2127–2142, May 2017, doi: 10.1002/asjc.1511.

[32] R. Miranda-Colorado,‘‘Parameter identification of conservative hamil-
tonian systems using first integrals,’’ Appl. Math. Comput., vol. 369,
Mar. 2020, Art. no. 124860, doi: 10.1016/j.amc.2019.124860.

[33] J. Yao, Z. Jiao, and D. Ma, ‘‘Extended-State-Observer-Based output feed-
back nonlinear robust control of hydraulic systems with backstepping,’’
IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6285–6293, Nov. 2014,
10.1109/TIE.2014.2304912.

[34] G. Plett, ‘‘Extended kalman filtering for battery management systems of
LiPB-basedHEV battery packs: Part 1: Background,’’Power Sour., vol. 34,
pp. 252–261, Jun. 2004, doi: 10.1016/j.jpowsour.2004.02.031.

[35] C. Hu, B. D. Youn, and J. Chung, ‘‘A multiscale framework with
extended Kalman filter for lithium-ion battery SOC and capac-
ity estimation,’’ Appl. Energy, vol. 92, pp. 694–704, Apr. 2012,
doi: 10.1016/j.apenergy.2011.08.002.

[36] D. Andre, C. Appel, T. Soczka-Guth, and D. U. Sauer, ‘‘Advanced
mathematical methods of SOC and SOH estimation for lithium-
ion batteries,’’ J. Power Sources, vol. 224, pp. 20–27, Feb. 2013,
doi: 10.1016/j.jpowsour.2012.10.001.

[37] E. A. Wan and A. T. Nelson, Dual Extended Kalman Filter Methods-
Kalman Filtering and Neural Networks. Hoboken, NJ, USA: Wiley, 2003,
pp. 123–164.

[38] D. Jiang, T. Yu, and Q. Guo, ‘‘High-gain observer-based output feed-
back control of single-rod electro-hydraulic actuator,’’ IET Control The-
ory Appl., vol. 9, no. 16, pp. 2395–2404, Aug. 2015, doi: 10.1049/iet-
cta.2014.1158.

[39] W. Liu, ‘‘Sensitivity analysis and dynamic optimization design of sup-
ports’ positions for engine pipelines,’’ J. Aerosp. Power, vol. 27, no. 12,
pp. 2756–2762, Dec. 2012.

[40] M. J. Vilenius, ‘‘The application of sensitivity analysis to electrohydraulic
position control servos,’’ J. Dynamic Syst., Meas., Control, vol. 105, no. 2,
pp. 77–82, Jun. 1983, doi: 10.1115/1.3149648.

[41] S. Farahat and H. Ajam, ‘‘Sensitivity analysis of parameter changes
in nonlinear hydraulic control systems,’’ Int. J. Eng., vol. 18, no. 3,
pp. 239–252, Jan. 2005.

[42] Q. Guo, P. Sun, J. Yin, T. Yu, and D. Jiang, ‘‘Parametric adaptive
estimation and backstepping control of electro-hydraulic actuator with
decayed memory filter,’’ ISA Trans., vol. 62, pp. 202–214, May 2016,
doi: 10.1016/j.isatra.2016.02.009.

[43] J. W. Kim, D. J. Xuan, and Y. B. Kim, ‘‘Robust control application
for a three-axis road simulator,’’ J. Mech. Sci. Technol., vol. 25, no. 1,
pp. 221–231, Mar. 2011, doi: 10.1007/s12206-010-1104-y.

[44] D. Maneetham and N. Afzulpurkar, ‘‘Modeling, simulation and control of
high speed nonlinear hydraulic servo system,’’ J. Automat. Mobile Robot.
Intell. Syst., vol. 4, no. 1, pp. 94–103, Apr. 2010.

[45] M. R. Sirouspour and S. E. Salcudean, ‘‘On the nonlinear control of
hydraulic servo-systems,’’ in Proc. Int. Conf. Robot. Automat. (ICRA),
San Francisco, CA, USA, Apr. 2000, pp. 101–107.

[46] X. Pan, G. Wang, and Z. Lu, ‘‘Flow field simulation and a flow model of
servo-valve spool valve orifice,’’Energy Convers. Manage., vol. 52, no. 10,
pp. 3249–3256, Sep. 2011.

[47] Y. Ye, C.-B. Yin, X.-D. Li, W.-J. Zhou, and F.-F. Yuan, ‘‘Effects of groove
shape of notch on the flow characteristics of spool valve,’’ Energy Convers.
Manage., vol. 86, pp. 1091–1101, Oct. 2014.

JIE HUANG received the B.S. andM.S. degrees in
mechanical and electrical engineering from Cen-
tral South University, in 2008 and 2011, respec-
tively. He is currently pursuing the Ph.D. degree in
control science and engineering with the National
University of Defense Technology, China.

From 2011 to 2017, he was a Researcher in
hydraulic servo with Zoomlion. He holds eight
invention patents. His research interests include
electro-hydraulic servo control, foot robot motion,
and balance control.

HONGLEI AN received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology (NUDT), in 2006, 2009, and 2013,
respectively.

From 2013 to 2019, he was a Lecturer with
NUDT. His research interests include legged robot
control, nonlinear control theory, and optimal con-
trol application.

LIN LANG received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology (NUDT), in 2006, 2009, and 2016,
respectively.

Since 2018, he has been a Lecturer with the
Hunan University of Finance and Economics.
His research interests include legged robot control
and nonlinear control theory.

QING WEI received the B.S. degree in radio elec-
tronics from Fudan University, in 1991, and the
M.S. degree in automatic control and the Ph.D.
degree in automatic control and application from
the National University of Defense Technology,
in 1993 and 1996, respectively.

In 2001, he was a Visiting Scholar with The
Hong Kong University of Science and Technol-
ogy. From 2015 to 2016, he was a Senior Visiting
Scholar with the University of Southampton, U.K.

His research interests include legged robot control, nonlinear control theory,
and optimal control application.

HONGXU MA received the B.S. degree in auto-
matic control, the M.S. degree in intelligent con-
trol, and the Ph.D. degree in control science and
control engineering from the National University
of Defense Technology, in 1988, 1991, and 1995,
respectively.

He stayed at the school for research work,
in 1995. In 2000, he realized the dynamic walking
of Chinese Two-Legged Robots for the first time.
He is currently a Professor with the National Uni-

versity of Defense Technology. He has published more than 150 high-level
academic articles and one monograph. He holds more than ten patents.
His main research interest includes foot robots.

36902 VOLUME 8, 2020

http://dx.doi.org/10.1007/s12555-017-0380-z
http://dx.doi.org/10.1002/asjc.1511
http://dx.doi.org/10.1016/j.amc.2019.124860
http://dx.doi.org/10.1016/j.jpowsour.2004.02.031
http://dx.doi.org/10.1016/j.apenergy.2011.08.002
http://dx.doi.org/10.1016/j.jpowsour.2012.10.001
http://dx.doi.org/10.1049/iet-cta.2014.1158
http://dx.doi.org/10.1049/iet-cta.2014.1158
http://dx.doi.org/10.1115/1.3149648
http://dx.doi.org/10.1016/j.isatra.2016.02.009
http://dx.doi.org/10.1007/s12206-010-1104-y

