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ABSTRACT The demand for wearable devices that can detect anxiety and stress when driving is increasing.
Recent studies have attempted to use multiple biosignals to detect driving stress. However, collecting multiple
biosignals can be complex and is associated with numerous challenges. Determining the optimal biosignal
for assessing driving stress can save lives. To the best of our knowledge, no study has investigated both
longitudinal and transitional stress assessment using supervised and unsupervised ML techniques. Thus,
this study hypothesizes that the optimal signal for assessing driving stress will consistently detect stress
using supervised and unsupervised machine learning (ML) techniques. Two different approaches were
used to assess driving stress: longitudinal (a combined repeated measurement of the same biosignals over
three driving states) and transitional (switching from state to state such as city to highway driving). The
longitudinal analysis did not involve a feature extraction phase while the transitional analysis involved a
feature extraction phase. The longitudinal analysis consists of a novel interaction ensemble (INTENSE) that
aggregates three unsupervised ML approaches: interaction principal component analysis, connectivity-based
clustering, and K-means clustering. INTENSE was developed to uncover new knowledge by revealing the
strongest correlation between the biosignal and driving stress marker. These three MLs each have their
well-known and distinctive geometrical basis. Thus, the aggregation of their result would provide a more
robust examination of the simultaneous non-causal associations between six biosignals: electrocardiogram
(ECGQG), electromyogram, hand galvanic skin resistance, foot galvanic skin resistance, heart rate, respiration,
and the driving stress marker. INTENSE indicates that ECG is highly correlated with the driving stress
marker. The supervised ML algorithms confirmed that ECG is the most informative biosignal for detecting
driving stress, with an overall accuracy of 75.02%.

INDEX TERMS Digital health, anxiety monitoring, mental well-being, biosignals, mobile health, wearable

devices.

I. INTRODUCTION

The American Psychological Association has reported that
people are currently living with extremely high levels of
driving stress, and this is expected to increase in the com-
ing years [1]. Recently, researchers have found that stress
plays a major role in the development and progression of
cardiovascular diseases [2]. Therefore, the early detection
and continuous assessment of stress can improve health and
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well-being, helping to prevent severe consequences that can
lead to hospitalization and even death.

Recent advances in wearable devices, biosignal process-
ing, machine learning (ML), and app development could
contribute to providing objective feedback on driving stress.
Wearable devices have already been used in several health
interventions, achieving promising results [3].

The most used and best understood, biosignal in modern
medicine is the electrocardiogram (ECG). Thus, ECG-based
wearable devices have a great potential to succeed. Note that
most of the available ECG wearable devices on the market are
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not approved by the Food and Drug Administration. Several
studies have investigated ECG signals that detect different
reactions to anxiety, reporting contradictory results [4]. How-
ever, limited research has been conducted to compare the
efficacy of using ECGs with other biosignals in detecting
stress. In 2018, El Haouij [5] developed an algorithm to
detect stress using the ECG, electromyogram (EMG), Palmar
galvanic skin resistance (Palmar GSR), foot galvanic skin
resistance (Plantar GSR), heart rate (HR), and respiration
(RESP). She reported a 69% accuracy for detecting stress. Itis
worth noting that El Haouij has investigated the importance
of each biosignal; however, not all biosignals were included
in her investigation, such as the ECG, which was removed.
Recently, Smets et al. [6] developed an algorithm that used
an ECG, skin conductance, and skin temperature to detect
driving stress, eventually reaching 43% accuracy. However,
the study was not focused on questioning the importance of
each biosignal or ranking the biosignal based on its driving
stress detection accuracy. A recent study by Rizwan et al. [7]
used only ECG signals to assess driving stress; however, their
analysis was carried out independently without reporting a
relative comparison with other biosignals.

To the best of our knowledge, limited efforts have been
made to determine the effectiveness of the different biosignals
that can be collected by wearable devices, with a focus on
the ECG signal as a potential single biosignal for detecting
driving stress. In the current study, we will uncover hidden
relationships among all biosignals and investigate the impor-
tance of each biosignal for assessing driving stress.

Il. MATERIALS AND METHODS

A. DRIVING STRESS DATASET

The Stress Recognition in Automobile Drivers (SRAD)
database [8] is useful because it contains a collection of mul-
tiparameter biosignals collected simultaneously from healthy
volunteers. The biosignals were collected using wearable
devices while the volunteers were driving on a prescribed
route including city streets and highways in and around
Boston, Massachusetts, USA. Six different biosignals were
collected in the SRAD database: ECG, EMG, Plantar GSR,
Palmar GSR, HR, and RESP, all during real time; In addition,
the driving stress marker time series was collected as a way
to reflect the driver’s level of stress. The database is publicly
available and can be accessed via a website [9]. All signals
were recorded over seven driving periods (or segments) that
are as follows: first rest (R1), first drive in the city (C1),
first drive on the highway (HW1), second drive in the city
(C2), second drive on the highway (HW2), third drive in the
city (C3), and final rest (R2). The reason we chose the SARD
database is that to the best of our knowledge, there are no
other publicly available databases that contain biosignals that
were simultaneously collected to assess driving stress. More-
over, scientific evidence suggests that work-related stress,
life stress, and driving environment stress impact on driving
outcomes [10]. Thus, analysis of the SRAD may be valuable
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in identifying the optimal biosignal for driving stress assess-
ments in a practical multimodal stress scenario.

B. EXCLUSION CRITERIA

The SRAD database contains biosignals collected from
17 drivers. The experiment was quite complex, and the dura-
tion of the driving varied between 50 and 90 minutes. All
drivers started with approximately 15 minutes of rest, after
which the driver drove the car out of the garage toward a
congested city street. Full consistency in collecting data and
labeling driving stress was difficult to achieve; unfortunately,
not all signals were provided for all the drivers. Moreover,
in a few recordings, the marker signals were not clear. Thus,
nine recordings were excluded, as shown in Table 1. Eight
recordings with complete signals and clear driving stress
markers were finally included in the analysis.

TABLE 1. Excluded recordings from the analysis.

Excluded Record  Reason

drive0l Marker is missing
drive02 Palmar GSR and EMG are missing
drive03 HR & EMG and Marker are missing
drive04 EMG is missing
drive09 Marker is not clear
drivel3 Palmar GSR is missing
driveld HR is missing
drivel6 Marker is not clear
drivel7 Marker is not clear
C. METHODS

1) HYPOTHESIS

It is assumed that an individual’s stress level increases
when driving in the city and decreases when not driving (at
rest) [11]. Two approaches for assessing driving stress must
be investigated: longitudinal stress (repeated measurement of
the same biosignals combined over three driving states) and
transitional stress (switching from state to state, such as city
to highway driving). Thus, our hypotheses are as follows:

1) Based on the longitudinal stress analysis, the biosignal
most highly correlated with the marker signal (regard-
less of whether the driver was in the city or on the
highway) will be the most valuable and informative in
an assessment of driving stress.

2) Based on the transitional stress analysis, the biosig-
nal that provides the highest driving stress classifica-
tion accuracy will be best used for a driving stress
assessment.

3) Based on the multicomparison stress analysis,
the biosignal that most separates the three driving states
should be used for assessing driving stress.

4) The biosignal that satisfies the previous three analyses
will be considered the optimal biosignal for assessing
driving stress.

2) LONGITUDINAL STRESS ANALYSIS
The longitudinal stress analysis is the combined repeated
measurement of the same biosignals over three driving states.
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In this analysis, we examined all collected biosignals with
and without feature extraction. Note that the biosignals are
filtered (bandpass 0.5-7 Hz Butterworth filter). We propose
a novel interaction ensemble called INTENSE that aims to
combine multiple clustering models to produce robust results.
Note that INTENSE will be used for all collected biosignals
as is, without feature extraction. Many clustering models
have been reported in literature. Each method has a different
set of rules for defining “‘similarities” among biosignals.
We selected clustering methods that are commonly used for
simplicity and effectiveness. INTENSE aggregates results
from the following three clustering models, which are based
on three different geometrical perspectives:

1) The interaction principal component analysis, a multi-
interaction analysis, produces multiple biosignals
that interact with each other. This analysis repre-
sents a correlation-based eigenvector-based multivari-
ate analysis.

2) Connectivity-based clustering, a bi-interaction analy-
sis, groups every two biosignals based on the similarity
measure (pairwise distance) used.

3) K-means clustering, which is a centroid-based interac-
tion analysis, groups all biosignals based on the simi-
larity measure (distances between centroids) used.

4) The ensemble method aggregates the results from the
three clustering methods to produce a combined recom-
mendation about the interactivity among all biosignals
in the dataset.

INTENSE was developed because each clustering method
has potential shortcomings around clustering a certain dataset
depending on the initial value used, thresholds, similarity
measure, etc. The use of only one clustering algorithm
may provide insights into the interactions between biosig-
nals, based on the algorithm’s geometrical concept. How-
ever, if we combine the results from multiple clustering
methods, each one affords a unique geometrical perspective.
This will allow us to obtain solid findings and to agree
upon different clustering methods using a majority voting
rule.

3) INTERACTION PRINCIPAL COMPONENT ANALYSIS
The interaction principal component analysis (IPCA) pro-
posed in Ref [13] was used in this study. IPCA is a
correlation-based unsupervised machine learning (ML) tech-
nique. It finds linearly uncorrelated attributes within a set
of observations of possibly correlated attributes (in our case,
biosignals). It starts with a decorrelation process that does not
requires any prior information or settings about the processed
biosignals, followed by Pearson’s correlation process. IPCA
is a valuable technique for automatically revealing hidden
interactions between biosignals, without training or labeling.
IPCA analysis provides a level of artificial intelligence for
uncovering new behaviors between examined biosignals. The
IPCA algorithm involves the following steps:

1) All recordings were combined into one matrix, X, with

the dimensions of (764, 483 samples x 7 biosignals).
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2) The Min-Max normalization was applied, as follows
Z = (X — Xmin)/(Xmax — Xmin), this was done to ensure
that Z had a zero mean.

3) The covariance matrix was obtained C = % Z}: 122 T
where f is the number of biosignals.

4) The eigen decomposition of C was performed and the
er eigenvalues and their corresponding eigenvectors,
vr, were computed to satisfy the equation Cv = ev.

5) The eigenvalues were sorted in descending order, e >
e > > e7, along with their corresponding
eigenvectors. Note that the eigenvector with the largest
eigenvalue was called the first principal component
(PC1) while the last PC associated with the lowest
eigenvalue was called PC7.

6) We calculate Pearson’s correlation between biosignals
and between the biosignals and PCs.

7) We select PCs that show more than two strong correla-
tions (|Jr > 0.5]) with variables (biosignals), and then
return these variables (biosignals).

Seven segments (or periods) were extracted from the seven
biosignals: a driving stress marker, ECG, EMG, Plantar GSR,
Palmar GSR, HR, and RESP. To compare the different driving
segments (e.g., driving in the city vs. driving on the high-
way), the Wilcoxon—-Mann—Whitney test (p,,) was used for
two independent groups. A p value of < 0.05 was consid-
ered significant. Pearson’s correlation coefficient was used
to calculate the correlation between the biosignals and PCs.
We used Matlab 2018b software and Python 3.6.5 software to
analyze the data.

4) CONNECTIVITY-BASED CLUSTERING

The connectivity-based clustering (CBC) is an algorithm that
connects ‘“‘biosignals” to form ‘““groups’’ based on their dis-
tance. It is a different unsupervised ML approach that was
utilized to quantify and visualize the dissimilarities among
the biosignals. The Euclidean distance was used as a metric
to provide hierarchical clustering, which is also called a
Dendrogram.

5) K-MEANS CLUSTERING

K-means clustering (KMC) is considered to be the most
widely known clustering algorithm as its concept is simple
but effective. This algorithm divides the number of factors
F into C disjoint clusters. The means of the clusters are
referred to as ‘“‘centroids.”” The KMC algorithm aims to
choose centroids that minimize the distance between each
group of factors and its centroid. The minimization process
is called ““inertia” or within-cluster sum-of-squares, and it is
defined as follows: ||fi — cj||2, where f; refers to all values
in factor i, and c; refers to cluster j. Note that applying PCA
prior to KMC clustering is highly recommended to speed up
the process and avoid computational problems.

6) MULTICOMPARISON TEST
Here, the multiple statistical comparison test was based on
the mean square error achieved by the Kruskal-Wallis test.
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The multicomparison displays the mean estimates and stan-
dard errors with the corresponding state. Each driving state
mean is represented by a symbol, and the interval is repre-
sented by a line extending out from the symbol. Two driving
state means are significantly different if their intervals are
disjointed; they are not significantly different if their intervals
overlap. Note that the biosignals were not used as is, which
is in contrast to the INTENSE analysis. A feature extraction
was applied first, as follows:

The Skewness statistic measure was used as a feature to
compare all the biosignals because a previous study [14]
found that Skewness is associated with morphology changes
in time-series biosignals. Note that the study [14] compared
different features and ranked Skewness as the optimal feature.
Skewness is a measure of the symmetry (or the lack thereof)
of a probability distribution, which is defined as follows:

N
S=1/NY Ixi — /o], (1)
i=1
where 11, and o are the empirical estimate of the mean and
standard deviation of x;, respectively, and N is the number of
samples in the biosignal.

7) TRANSITIONAL STRESS ANALYSIS

The transitional stress analysis is defined as switching from
state to state, specifically for the following five transitional
states: (R1 vs. C1), (H1 vs. C1), (R1 vs. C2), (H2 vs.
C2), and (R2 vs. C3). The transitional stress analysis relies
on supervised ML algorithms. Using a leave-on-out cross-
validation, 17 different supervised classification techniques
were tested: KNN weighted, Tree Fine, SVM Cubic, Logistic
Regression, SVM Quadratic, Quadratic Discriminant, and
SVM Fine Gaussian. Skewness was applied as a feature to
capture driving stress.

An algorithm is needed to detect state switching in order to
automatically extract biosignals based on the seven driving
states. The two event-related moving averages (TERMA)
algorithm [12] was used in our study to detect the main spikes
in the marker signal.

8) TERMA METHOD
TERMA is computationally efficient and robust to noise.

Therefore, the TERMA was used to segment each biosignal
into seven groups: R1, C1, HW1, C2, HW2, C3, and R2.

N M=n+(W;—1)/2

MA;[n] = % >y

Y n=1 m=n—(W;—1)/2
THR; = MAj[n] +«, THR, = W;. 3)
BLOCKS[n] = MA|[n] > THR;, ()
Peaks = max(BLOCKS[n] > THR»), (@)

ylml, ()

The TERMA-based marker detection function has five
inputs (starting frequency [F ], end frequency [F?3], first mov-
ing average [ MA| with a window size of W], second moving
average [MA; with a window size of W3], and rejection
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threshold [B]). First, the driving stress marker signal passes
through a third-order Butterworth bandpass filter F1—F5. The
resulting signal is squared, and two moving averages (MA;
and MA;) are applied, followed by a threshold (8 to reject
noise), this process generates the so-called “‘blocks of inter-
est”. By searching for the maximum absolute value within
each block of interest, the marker location can be determined.
Here, we found that the optimal setting for detecting markers
was the following: F| = 0.5 Hz, F, = 7 Hz, W; = 500
samples, W, = 1000 samples, and 8 = 5.

9) DATA AVAILABILITY
The data that support the findings of the current study are

publicly available online at https://www.physionet.org/pn3/
drivedb/

Ill. RESULTS

The overall visual representation of biosignals for driveO7 is
shown in Fig. 1. It is very difficult to differentiate among the
biosignals collected during the city driving, highway driving,
and at rest by visual inspection alone. Even if we can identify
some patterns or significant changes between the different
segments or periods in one recording (or one biosignal),
we may not be able to generalize the findings.

There was a need to automatically segment all biosignals
based on the driving stress marker signal to statistically com-
pare all segments. Thus, the TERMA method was used to
segment the biosignals into seven periods: R1, C1, HW1, C2,
HW2, C3, and R2. The TERMA method was applied to detect
the switching states within the driving stress marker, as shown
in Fig. 2. Based on visual inspection, the detection accuracy
of the seven periods achieved on all used records was 100%.
This step was important to demarcate the driving activity in
all biosignals for comparative purposes.

Fig. 3 shows the significance of the seven PCs extracted
from the SRAD database, after applying a principal compo-
nent analysis (PCA) to all biosignals (driving stress marker,
ECG, EMG, Plantar GSR, Palmar GSR, HR, and RESP).
PC1 explains the most variance (40%), reflecting its relevance
and importance. PC2 explains nearly 23% of the variance,
while PC3 explains a little more than 17% of the variance.
As expected, upon visual inspection, PC1 is the most volatile
PC2 is the second most volatile, and PC7 is the least volatile.
In fact, PC7 showed no relevance.

Fig. 4 shows the heat map of the IPCA longitudinal stress
analysis, which is a correlation matrix among all PCs and
biosignals. The diagonal entries are all equal to 1. As can be
seen, the heat map consists of four 7 x 7 blocks. The top right
block is the correlation matrix for the PCs. We know that the
PCs are orthogonal. As expected, this block contains zeros
(numerically negligible values) in its off-diagonal entries,
demonstrating that the PCs are mutually orthogonal (and
therefore uncorrelated). The bottom left block is the heat
map showing no correlation between all biosignals. Thus,
the bottom left block is not informative.
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FIGURE 1. Visualizing all biosignals collected from volunteer #7 (drive07) during three driving states: city, highway, and at rest.
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FIGURE 2. Detection of state switching of the driving stress marker using the TERMA (two
event-related moving averages) method [12]. This is an important step for the longitudinal

and transitional stress analysis.

As shown in Fig. 4, the bottom right 7 x 7 block contains
interesting results. The 7 x 7 block, which is surrounded
by dashed black lines, reflects the correlation between each
biosignal and each PC. The first column, in the dashed
block, shows a significant correlation between PC1 and the
marker, ECG, and RESP. PC1 shows that ECG and RESP
are correlated with the driving stress marker; however, both
features are moving in the same direction of the driving stress
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marker. Given that PC1 is the PC with the highest eigenvalue,
there is a hidden correlation among the ECG, RESP, and
the driving stress marker. The second column, which is in
the dashed block, shows that the Palmar GSR and Plantar
GSR are moving in the same direction, and both are strongly
correlated with PC2. This suggests that there is a hidden
correlation between the Palmar GSR and Plantar GSR. The
third column, which is in the dashed box, shows that the
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FIGURE 3. Principal component analysis (PCA) of all biosignals used from the Stress Recognition in Automobile
Drivers (SRAD) database. PC1 has the highest variance, while PC7 has the lowest variance.

driving stress marker and ECG move in the same direction,
and both are strongly correlated with PC3, suggesting that
a hidden correlation exists between the driving stress marker
and ECG. PC4 is only correlated with HR while PCS is corre-
lated with EMG and HR. PC6 is correlated with Plantar GSR
while PC7 was unable to capture any correlation between
biosignals. Interestingly, this analysis highlights the correla-
tion between the driving stress marker with ECG, as captured
by PC1 and PC3.

Here, we investigated the hierarchical clustering of biosig-
nals and analyzed the Dendrogram generated as a result of the
clustering process. This method builds the hierarchy from the
independent biosignals by progressively merging the biosig-
nals to generate clusters. In this case, we have six biosignals.
The first step is to determine which two biosignals are close
enough to each other to be merged into a cluster.

The biosignals were grouped into clusters using the lon-
gitudinal CBC analysis, based on their similarity, as shown
in Fig. 5. Visually inspecting Fig. 5, the changes in the driving
stress marker are similar to those in ECG, EMG, Palmar
GSR, and HR. Interestingly, the first biosignal close to the
driving stress marker is ECG. Moreover, the Palmar GSR and
Plantar GSR are forming an independent cluster far from the
driving stress marker. These results are similar to the findings
from the PCA shown in Fig. 4, hence confirming the corre-
lation between Palmar GSR and Plantar GSR. Interestingly,
the Dendrogram ranked the biosignals based on how close
they were to the driving stress marker in the following order:
ECG, RESP, EMQG, Plantar GSR, Palmar GSR, and HR.

KMC serves as our third geometrical lens and provides a
different clustering perspective. The KMC result, as shown
in Fig. 6, is similar to and confirms the findings obtained
using the CBC, as shown in Fig. 5. Interestingly, KMC
grouped the stress marker with ECG and EMG, suggesting
that the marker is correlated with ECG and EMG. Therefore,
INTENSE indicates that ECG is consistently correlated with
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the stress marker, suggesting that ECG is an optimal biosignal
for assessing driving stress.

It is necessary to examine the pairwise comparison results
using a multiple comparison test for each biosignal in terms
of city driving, highway driving and at rest. The longitudi-
nal multiple comparison can generate a graph of the mean
estimates and standard errors. Fig. 7 shows the multiple
comparison of the means of the extracted feature (Skeweness)
for each biosignal. The mean of each status (e.g., at rest) is
represented by a symbol, and the interval is represented by a
line extending from the symbol.

As can be seen in Fig. 7 the mean of at rest is highlighted
and the comparison interval is in blue. As the comparison
intervals for driving in the city and on the highway do not
intersect with the intervals for the at rest mean, they are
highlighted in red, except for in Fig. 7(HR). The intersection
among the intervals indicates no significant difference, while
the lack of intersection indicates that both means are different
than the at rest mean. In other words, if the means of driving
in the city and on the highway are significantly different
and if their intervals are disjointed, they are not significantly
different if their intervals overlap.

Fig. 7 shows that HR is the worst signal for differentiating
among the three driving statuses. The rest of the biosignals
can differentiate being at rest and either driving in the city
or on the highway. However, ECG is the only biosignal with
no overlap between driving in the city and on the highway.
This result suggests that an ECG is the optimal biosignal for
capturing stress in different driving statuses.

Fig. 7 magnifies the separability among the biosignals,
suggesting a need to examine the classification ability of each
biosignal. Table 2 summarizes the transition stress analysis,
showing the classification accuracy between the transitional
states: (R1 vs. C1), (H1 vs. C1), (R1 vs. C2), (H2 vs. C2),
and (R2 vs. C3). Interestingly, the ECG and RESP scored the
highest accuracy of 81.3% in detecting driving stress in the
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FIGURE 4. Longitudinal stress analysis using the interaction principal component analysis (IPCA) for all biosignals obtained from the Stress
Recognition in Automobile Drivers (SRAD) database. Here, « refers to the hidden correlation. The black arrow indicates an absolute value of

the correlation coefficient >= 0.5 is achieved.

test (R1 vs. C1) using the KNN-Weighted classifier. Plantar
GSR scored the highest accuracy in detecting driving stress
in the test (R2 vs. C3) using the Quadratic classifier, while
RESP was the most accurate (R1 vs. C2) using the Tree-Fine
classifier.

It is clear that ECGs were able to capture overall driving
stress in all possible driving status tests, with an overall accu-
racy of 75.02%. The second highest accuracy was achieved
by Palmar GSR with an overall score of 72.52%, while the
lowest accuracy was scored by HR, with an overall accuracy
of 63.78%.

IV. DISCUSSION

A. DRIVING STRESS MARKER

The driving stress marker is a continuous time-series signal
that divides various driving zones due to the assumption
that driving in city evokes high stress levels, driving on
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the highway evokes medium stress levels, and that being
in a state of rest evokes the lowest stress levels. The driv-
ing zone marker in the current study is referred to as the
driving stress marker. The driving stress signal is typically
used as the gold standard for assessing different driving
stress level changes over time for each recording. If the
quality of the driving stress marker is high, there will be
eight clear outstanding spikes that determine seven driv-
ing zones (R1, Cl1, H1, C2, H2, C3, and R2), as shown
in Fig. 2.

B. ECG

An ECG is a time-series signal that reflects the electrical
activity of the heart [15]. Usually, three electrodes are placed
on the chest to record ECG signals. In the original study,
the ECG signals were captured using a modified lead II
configuration to minimize motion artifacts and to attain a
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FIGURE 5. Longitudinal stress analysis using connectivity-based clustering for all biosignals
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FIGURE 6. Longitudinal stress analysis using K-means clustering (KMC) for all biosignals obtained from the Stress Recognition in Automobile
Drivers (SRAD) database. Here, “x’ represents the centroid of a cluster while PC stands for principal component.

good record of the R peak. Previous studies investigated be considered pilot studies without a clear discussion of how
the correlation of different ECG features with stress by the features were extracted. In addition, no cross validation
using the same dataset, such as the R peak amplitude [16], was used, and no relative analysis to other biosignals was
QT interval [17], and QRS complex [18]. These studies can reported.
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FIGURE 7. Longitudinal stress analysis of the multicomparison test for all biosignals (Skewness with one second
window was used as a feature). Two driving periods are significantly different if their intervals are disjointed; the two
driving periods are not significantly different if their intervals overlap with a gray color. One can observe that ECG
significantly differentiates between three driving states. Note that EMG, RESP, Plantar GSR, and Palmar GSR overlap
with driving in the city and highway while HR has a complete overlap with all driving states.

TABLE 2. Transitional stress analysis using supervised machine learning (ML) algorithms. It compares the classification accuracy among driving states
using biosignals. Note that Skewness with one second window was used as a feature. Leave-one-out cross validation was used.

R1vs.Cl Hl1 vs. Cl R1vs.C2 H2 vs. C2 R2vs. C3 Overall Accuracy
(%) (%) (%) (%) (%) (%)

ECG 81.3 75 75 75 68.8 75.02
KNN weighted Tree Fine Tree Fine Tree Fine KNN weighted

EMG 68.8 62.5 62.5 56.3 75 65.02
Tree Fine Logistic Regression ~ Cubic SVM Logistic Regression Medium Gaussian SVM

Plantar GSR 75 50 68.8 56.3 81.3 66.28
SVM Fine Gaussian ~ Cubic SVM Linear SVM Linear SVM Quadratic Discriminant

Palmar GSR  68.8 87.5 87.5 56.3 62.5 72.52
Cubic SVM KNN Fine KNN weighted Cubic SVM Quadratic Discriminant

HR 50 62.5 68.8 68.8 68.8 63.78
Tree Fine Quadratic SVM Quadratic Discriminant ~ Quadratic Discriminant ~ Quadratic SVM

RESP 81.3 50 81.3 50 62.5 65.02
Tree Fine KNN Cosine Tree Fine KNN Cosine Quadratic Discriminant

In our study, the ECG was analyzed in relation to other C. EMG

biosignals, and all biosignals were included in the records.
The longitudinal IPCA analysis showed that the ECG is cor-
related with the driving stress marker and RESP. In addition,
the Dendrogram showed that ECG was ranked as closest to
the driving stress marker. The multiple comparison of means
reflected a significant difference for all driving status tests
when using ECG, without any overlap between the three
driving statuses, as shown in Fig. 7. Interestingly, ECG was
ranked first for detecting driving stress based on the overall
accuracy (75.02%), as shown in Table 2. To our knowl-
edge, this finding has not been reported in the literature; in
fact, some features extracted from ECG signals have led to
contradictory results [4] in detecting anxiety. It seems that
the morphology of the ECG waveforms contains valuable
information and is correlated with driving stress.
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An EMG noninvasively measures muscle action potentials
during contraction. In the literature, EMGs have been inves-
tigated for analyzing six emotional states [19], identifying
intensive valence and arousal affective states [20] and detect-
ing driving stress [8], [21]. Our study examined the effective-
ness of EMG relative to other biosignals. The IPCA analysis
showed that EMGs are not correlated with the driving stress
marker; however, EMG was correlated with HR. The Den-
drogram showed the EMG was ranked third in closeness to
the driving stress marker. The multiple comparison of means
reflected a significant difference for all driving status tests
using EMGs. However, there was an overlap between the
city and highway driving, as shown in Fig. 7. After apply-
ing different supervised classifiers, EMG was ranked fourth
for detecting driving stress based on the overall accuracy
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(65.02%), as shown in Table 2. This finding has been con-
firmed previously in the literature; in fact, a previous study [5]
showed that EMGs were the least informative biosignal for
detecting driving stress.

D. PLANTAR GSR

Plantar GSR is the galvanic skin response or skin conductance
measured by the foot. A GSR measures autonomic nervous
system activity. Typically, two electrodes are placed on the
foot skin to capture changes in the skin’s glands when pro-
ducing ionic sweat [22]. It worth noting that the Plantar GSR
was not considered in the original study [8], [11]. However,
a recent study [5] showed that the Plantar GSR was the
most biosignal correlated with driving stress. We considered
the Plantar GSR in our study and examined its importance.
The IPCA analysis showed that the Plantar GSR and Palmar
GSR are correlated and both were ranked second based on
PC2. Interestingly, the Dendrogram grouped the Plantar GSR
and Palmar GSR together, confirming the results in PC2.
The multiple comparison of means reflected a significant
difference between at rest and driving in the city and on
the highway. In fact, there was a complete overlap between
driving in the city and on the highway, as shown in Fig. 7,
suggesting that the Plantar GSR is unable to capture changes
in driving stress (or stress transition). Interestingly, the Plan-
tar GSR was ranked third for detecting driving stress based
on overall accuracy (66.28%), as shown in Table 2.

E. PALMAR GSR

Palmar GSR is the skin conductance measured from the
hands. Typically, two electrodes are placed on the skin on the
hand to capture changes in the skin’s glands when producing
ionic sweat [22]. Healy and Picard [11] reported that Palmar
GSR is correlated with driving stress level. Palmar GSR
was not considered in the original study [8], [11]. However,
a recent study [5] showed that Palmar GSR was the biosignal
most correlated with driving stress. As mentioned above,
the unsupervised ML methods revealed that Plantar GSR and
Palmar GSR are correlated, as shown in Fig. 4 and Fig. 5.
The multiple comparison of means presented similar results
as for the Plantar GSR, see Fig. 7, suggesting a significant
difference between at rest and driving in the city and on the
highway with an overlap between driving in the city and on
the highway. This result shows that Palmar GSR is not sensi-
tive for driving stress changes. The supervised ML methods
ranked Palmar GSR second for detecting driving stress based
on the overall accuracy (72.52%), as shown in Table 2.

F. RESP

RESP provides valuable information about breathing rate,
which is considered an indicator of emotional states, includ-
ing stress, arousal, and mental workload [23]. Typically,
the sensor is integrated in a chest belt to measure the inhala-
tion and exhalation by capturing the expansion and reduc-
tion of the belt size. The RESP signal has been examined
previously to assess the affective state [23]-[25]. A previous
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study [11] ranked the RESP signal third, while another
study [5] ranked it second when compared with other biosig-
nals when it comes to its correlation with driving stress.
As mentioned above, PC1 showed that the RESP is correlated
with the driving stress marker, as shown in Fig. 4. Moreover,
the Dendrogram categorized the RESP near the driving stress
marker; but placed it in a separate group (cf. Fig. 5). The
multiple comparison of means presented similar results as for
Plantar GSR, Palmar GSR, and EMG, as shown in Fig. 7.
Note that ECG was able to detect the three driving zones
while RESP detected driving in the city and in the highway as
one zone. The overlap between driving in the city and on the
highway suggests less sensitivity for detecting driving stress.
The supervised ML methods ranked RESP fourth for detect-
ing driving stress based on the overall accuracy (65.02%),
as shown in Table 2.

G. HR

The variability in HR provides valuable information about
the autonomic nervous system, which is considered a marker
of driving stress [26]. The HR signal has been examined
previously to assess the affective state [23]-[25]. Previous
studies [5], [11] ranked the HR signal fourth when compared
with other biosignals on the same dataset for detecting driving
stress. It is important to note that the HR is extracted from the
ECG signal by detecting the R peaks.

As mentioned above, the PCA analysis did not find a cor-
relation between HR and the driving stress marker, as shown
in Fig. 4. Moreover, the Dendrogram did not categorize HR
near the driving stress marker. In fact, it was the farthest
away (cf. Fig. 5). The multiple comparison of means revealed
a complete overlap among all driving statuses, as shown
in Fig. 7, suggesting that the HR is the least informative
biosignal for a driving stress level assessment. The supervised
ML methods ranked HR sixth (bottom of the rank) for detect-
ing driving stress based on the overall accuracy (63.78%),
as shown in Table 2. Interestingly, given that the HR is derived
from ECGs, the ECG signals achieved a higher performance
than the HR. This means that there is valuable information
within the ECG waveforms that are correlated with driving
stress. In other words, the RR intervals are not sufficient
enough to capture driving stress. It is worth mentioning that
the purpose of this analysis is to rank biosignals based on their
abilities to detect driving stress.

H. WHICH BIOSIGNAL IS MOST CORRELATED

WITH DRIVING STRESS?

To answer this question objectively, we compared previous
studies using the same dataset. Table 3 compares the finding
from our study with other studies that used the same dataset.
Study 1 [11] and Study 2 [5] confirmed that in general,
the GSR is the most informative biosignal for assessing driv-
ing stress levels. However, Study 2 reported Plantar GSR,
while Study 1 reported Palmar GSR as optimal biosignals
for detecting driving stress. Perhaps the reason behind getting
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TABLE 3. Ranking biosignals based on their ability to assess driving stress
using the Stress Recognition in Automobile Drivers (SRAD) database.

Rank  Study [ [11]  Study 2 [3]
Supervised _ Supervised

This work (PCA) _ This work (Clustering) _ This work (Classification)
Unsupervised Unsupervised Supervised

1 Palmar GSR  Plantar GSR  ECG ECG ECG

2 EMG RESP RESP RESP Palmar GSR

3 RESP Palmar GSR  Plantar GSR EMG Plantar GSR
4 HR HR Palmar GSR Plantar GSR RESP or EMG
5 - EMG HR Palmar GSR HR

6 - EMG HR -

two different results is because Study 1 excluded Plantar GSR
from the analysis.

Another contradiction between Study 1 and Study 2
pertains to the second most informative biosignal. Study 1
recommended HR as the second best (in combination with
Palmar GSR), while Study 2 recommended RESP as second
best. A reasoning for this contradiction is that Study 2 used
wavelet-based features, while Study 1 used basic statistical
features, such as mean and standard deviation. The most
interesting finding from our analysis is that ECG was found
to be the most informative biosignal among all biosignals
after rigorous testing using unsupervised and supervised ML
methods. Note that Study 1 and Study 2 did not include ECG
in their analysis and that may be why this finding has not been
previously reported.

We must question whether the overall accuracy achieved
in our analysis is important or not. The ECG signals achieved
an overall accuracy of 75.02% using only one feature
extracted per second. This result outperformed that of a recent
study [5], Study 2 (Table 3), which used 12 different features
extracted from the Palmar GSR, Plantar GSR, and RESP,
achieving 69% accuracy. It is worth mentioning that Study
2 used two-thirds of the dataset for training and one-third for
testing, while in our study, a leave-one-out cross-validation
was carried out. Study 2 used only five minutes from each
segment, while our study considered the whole segment with-
out removing any data points. Moreover, in the current paper,
unsupervised and supervised techniques were used to rank
the biosignals, while in Study 2, the findings were based on
supervised learning. In addition, in this paper, both the raw
data and extracted features were used to confirm the findings,
while Study 2 relied on certain features only, which may
have negatively impacted the overall driving stress detection
accuracy.

We have attempted to objectively identify the optimal
biosignal for assessing driving stress. The results consistently
showed, using longitudinal, transitional and multicomparison
analyses, that ECG is the optimal biosignal for a driving stress
assessment. Note that, to our knowledge, this is the first study
that has rigorously ranked multiple biosignals using different
ML techniques. One must acknowledge several other perti-
nent factors that faced previous studies to reach to the same
finding, such as the exclusion of some biosignal from the
analysis, the rigorousness and clarity of the cross validation,
the examination of different driving statuses such as (R1 vs.
Cl1), (H1 vs. C1), (R1 vs. C2), (H2 vs. C2), and (R2 vs. C3),
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examining the time-series data itself, and considering all data
points in each driving zone.

V. PRACTICALITIES OF STUDY FINDINGS

The practicality of collecting ECGs and the long-term impli-
cations of doing so can only be speculated at this point.
It is conceivable that this technology could help individuals
to manage stress when driving, which in turn could reduce
accident risk.

1) ECG Sensor Placement. Many attempts have been
made in the past to monitor a driver’s visual and cog-
nitive distractions [27]. Yet, most of the techniques did
not become a practical application (i.e., integrated in
smart cars). Perhaps this is due to the practicality of
placing the ECG sensor in the car and the questionable
robustness of detecting stress during driving. We pro-
pose mounting the ECG electrodes on the steering
wheel to monitor stress while driving. This approach
seems to be more convenient and has a good chance
of being accepted by The National Highway Traffic
Safety Administration as it will not distract the driver.

2) Improve Driving Experience: When a smart car detects
stress, with integrated ECG sensor, the car could rec-
ommend playing relaxing music or changing the vehi-
cle temperature, as suggested in a previous study [28].
Adding an indication light feature on the dashboard
could help with providing feedback to the drivers; per-
haps increasing the sense of control they have over
their driving state. For example, if the light on the
dash board is green, indicating low stress, the driver
may then in return feel calmer and more emotionally
stable. In contrast, a red light would indicate that the
driver is in a high-stress state and the smart car could
recommend pulling over while playing calming music.

3) Reducing Insurance Costs: Maintaining a consistently
low stress level while driving could help to build a solid
credit history over the long-term, which consequently
could lower insurance costs. Insurance companies usu-
ally offer discounts to policyholders who have not had
any accidents or moving violations for a certain period
of time. Similarly, increasing stress levels over a certain
amount time may lead to further discounts.

VI. LIMITATIONS OF STUDY AND FUTURE WORK

One of the main limitations of the current study is the small
sample size. The next step is to test the same methodology on
a different database and see if the same results are achieved.
However, the focus of the current study was not on improving
the detection rate of driving stress. Rather, the focus was on
ranking biosignals. Thus, different existing ML algorithms
to rank the biosignals were used. One may question the
difference between the best performance (75.02% with ECG)
and worst performance (64.02% with HR) when it comes
to detecting driving stress. At a first glance, this difference
does not appear to be particularly significant. However, our
aim was to identify which biosignal is more informative and
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sensitive in detecting driving stress, for example, determin-
ing if ECG signal is more informative than HR, or vice
versa. Even though the purpose of the present study was to
rank the biosignals, the classification results outperformed
other recent published works that focused on driving stress
detection.

If the purpose of the current study was to improve the
detection of driving stress using biosignals, specifically ECG,
then more features would need to be extracted, or deep learn-
ing would need to be applied. Another approach that could
be used to improve the detection of driving stress would be to
combine multiple biosignals.

For formulating future studies, we recommend the col-
lection of hemodynamics parameters (e.g., blood pressure
levels and dilation of pupils) and to conduct psychological
driving stress tests during the collection of biosignals. This
will improve our understanding of driving stress levels and
their correlation with biosignals changes.

VIl. CONCLUSION

This paper has described the biosignal that best determines
driving stress, by looking at biosignals such as ECG, EMG,
Plantar GSR, Palmar GSR, HR, and RESP. Without prior
training or knowledge, the INTENSE method (aggregating
three ML methods: IPCA, CBC, and KMC) was able to
detect a complex dynamic between different biosignals and
the driving stress marker. There is agreement between all
ML methods that a significant correlation exists between the
driving stress marker and ECG. Moreover, when supervised
ML methods were used, ECG scored the highest overall accu-
racy for detecting stress in different driving scenarios. One
interesting result is that the HR did not correlate well with
the driving stress marker. These findings are timely because
more than ever, ECG-based wearable devices are being used
on a large scale in different scientific fields. The results of
this study can contribute to recommendations for the use of
ECG signals as an informative means of measuring driving
stress and anxiety. Using this newfound knowledge together
with artificial intelligence, we can better use ECGs to not only
monitor cardiac abnormalities, but also for assessing driving
stress.

REFERENCES

[1]1 Stress in America: The State of Our Nation, Stress in America Survey,
Amer. Psychol. Assoc., Washington, DC, USA, 2017.

[2] M. Kiviméki and A. Steptoe, “Effects of stress on the development and
progression of cardiovascular disease,” Nature Rev. Cardiol., vol. 15, no. 4,
pp. 215-229, Dec. 2017.

[3] J. M. Jakicic, K. K. Davis, R. J. Rogers, W. C. King, M. D. Marcus,
D. Helsel, A. D. Rickman, A. S. Wahed, and S. H. Belle, “Effect of
wearable technology combined with a lifestyle intervention on long-term
weight loss: The IDEA randomized clinical trial,” JAMA, vol. 316, no. 11,
p- 1161, Sep. 2016, doi: 10.1001/jama.2016.12858.

[4] M. Elgendi and C. Menon, “Assessing anxiety disorders using wearable
devices: Challenges and future directions,” Brain Sci., vol. 9, no. 3, p. 50,
Mar. 2019, doi: 10.3390/brainsci9030050.

[5] N. El Haouij, “Biosignals for driver’s stress level assessment: Functional
variable selection and fractal characterization,” Ph.D. dissertation, Univ.
Paris-Saclay, Ecole nationale d’ingénieurs de Tunis (Tunisie), 2018.

VOLUME 8, 2020

[6]

[71

(8

—

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]
(23]
(24]

[25]

[26]

E. Smets, E. Rios Velazquez, G. Schiavone, I. Chakroun, E. D’Hondt,
W. De Raedt, J. Cornelis, O. Janssens, S. Van Hoecke, S. Claes, 1. Van
Diest, and C. Van Hoof, “‘Large-scale wearable data reveal digital phe-
notypes for daily-life stress detection,” npj Digit. Med., vol. 1, no. 1,
Dec. 2018, doi: 10.1038/541746-018-0074-9.

M. E. Rizwan, R. Farhad, F. Mashuk, F. Islam, and M. H. Imam, “Design
of a biosignal based stress detection system using machine learning
techniques,” in Proc. Int. Conf. Robotics,Electr. Signal Process. Techn.
(ICREST), Dhaka, Bangladesh, Jan. 2019, pp. 364-368.

J. A. Healey, “Wearable and automotive systems for affect recognition
from physiology,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 2000.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215-e220, Jun. 2000.

P. Rowden, G. Matthews, B. Watson, and H. Biggs, “The relative impact
of work-related stress, life stress and driving environment stress on driving
outcomes,” Accident Anal. Prevention, vol. 43, no. 4, pp. 1332-1340,
Jul. 2011.

J. A. Healey and R. W. Picard, “Detecting stress during real-world driving
tasks using physiological sensors,” IEEE Trans. Intell. Transp. Syst., vol. 6,
no. 2, pp. 156-166, Jun. 2005, doi: 10.1109/TITS.2005.848368.

M. Elgendi, “TERMA framework for biomedical signal analysis:
An economic-inspired approach,” Biosensors, vol. 6, no. 4, p. 55,
Nov. 2016.

M. Elgendi, “Characteristics of a highly cited article: A machine learn-
ing perspective,” IEEE Access, vol. 7, pp. 87977-87986, Jul. 2019,
doi: 10.1109/ACCESS.2019.2925965.

M. Elgendi, “Optimal signal quality index for photoplethysmogram sig-
nals,” Bioengineering, vol. 3, no. 4, p. 21, Sep. 2016, doi: 10.3390/bio-
engineering3040021.

M. Elgendi, B. Eskofier, S. Dokos, and D. Abbott, “Revisiting QRS detec-
tion methodologies for portable, wearable, battery-operated, and wireless
ECG systems,” PLoS ONE, vol. 9, no. 1, Jan. 2014, Art. no. e84018,
doi: 10.1371/journal.pone.0084018.

R. Chaudhary, “Electrocardiogram comparison of stress recognition in
automobile drivers on MATLAB,” Adv. Electron. Elect. Eng., vol. 3, no. 8,
pp. 1007-1012, 2013.

C. Karmakar, M. H. Imam, A. Khandoker, and M. Palaniswami, ‘‘Influence
of psychological stress on QT interval,” in Computing in Cardiology.
Cambridge, MA, USA, 2014, pp. 1009-1012.

K. A. Sidek and I. & Khalil, “Automobile driver recognition under dif-
ferent physiological conditions using the electrocardiogram,” in Proc.
Comput. Cardiol., Cambridge, MA, USA, 2011, pp. 753-756.

S. Jerritta, M. Murugappan, K. Wan, and S. Yaacob, ‘“Emotion recognition
from facial EMG signals using higher order statistics and principal com-
ponent analysis,” J. Chin. Inst. Eng., vol. 37, no. 3, pp. 385-394, Jul. 2013.
J.-W. Tan, A. O. Andrade, H. Li, S. Walter, D. Hrabal, S. Rukavina,
K. Limbrecht-Ecklundt, H. Hoffman, and H. C. Traue, ‘“Recognition of
intensive valence and arousal affective states via facial electromyographic
activity in young and senior adults,” PLOS ONE, vol. 11, no. 1, Jan. 2016,
Art. no. 0146691, doi: 10.1371/journal.pone.0146691.

R. Luijcks, H. J. Hermens, L. Bodar, C. J. Vossen, J. V. Os, and R. Lous-
berg, “Experimentally induced stress validated by EMG activity,” PLoS
ONE, vol. 9, no. 4, Apr. 2014, Art. no. 95215, doi: 10.1371/jour-
nal.pone.0095215.

W. Boucsein, Electrodermal Activity. Boston, MA, USA: Springer, 2012.
A. H. Roscoe, “Assessing pilot workload. Why measure heart rate, HRV
and respiration?”” Biol. Psychol., vol. 34, nos. 2-3, pp. 259-287, Nov. 1992.
Y. Lin, H. Leng, G. Yang, and H. Cai, “An intelligent noninvasive sensor
for driver pulse wave measurement,” [EEE Sensors J., vol. 7, no. 5,
pp. 790-799, May 2007, doi: 10.1109/JSEN.2007.894923.

H. J. Baek, H. B. Lee, J. S. Kim, J. M. Choi, K. K. Kim, and K. S. Park,
“Nonintrusive biological signal monitoring in a car to evaluate a Driver’s
stress and health state,” Telemedicine e-Health, vol. 15, no. 2, pp. 182-189,
Mar. 2009, doi: 10.1089/tm;j.2008.0090.

J. E. Thayer, F. Ahs, M. Fredrikson, J. J. Sollers, and T. D. Wager,
“A meta-analysis of heart rate variability and neuroimaging studies:
Implications for heart rate variability as a marker of stress and health,”
Neurosci. Biobehavioral Rev., vol. 36, no. 2, pp. 747-756, Feb. 2012,
doi: 10.1016/j.neubiorev.2011.11.009.

34373


http://dx.doi.org/10.1001/jama.2016.12858
http://dx.doi.org/10.3390/brainsci9030050
http://dx.doi.org/10.1038/s41746-018-0074-9
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1109/ACCESS.2019.2925965
http://dx.doi.org/10.3390/bioengineering3040021
http://dx.doi.org/10.3390/bioengineering3040021
http://dx.doi.org/10.1371/journal.pone.0084018
http://dx.doi.org/10.1371/journal.pone.0146691
http://dx.doi.org/10.1371/journal.pone.0095215
http://dx.doi.org/10.1371/journal.pone.0095215
http://dx.doi.org/10.1109/JSEN.2007.894923
http://dx.doi.org/10.1089/tmj.2008.0090
http://dx.doi.org/10.1016/j.neubiorev.2011.11.009

IEEE Access

M. Elgendi, C. Menon: ML Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress

[27] M. Kautila, M. Jokela, G. Markkula, and M. R. Rue, ‘“Driver dis-
traction detection with a camera vision system,” in Proc. IEEE Int.
Conf. Image Process., San Antonio, TX, USA, Sep. 2007, p. VI-201,
doi: 10.1109/ICIP.2007.4379556.

[28] J.Hernandez, D. McDuff, X. Benavides, J. Amores, P. Maes, and R. Picard,
“AutoEmotive: bringing empathy to the driving experience to manage
stress,” in Proc. Companion publication Designing Interact. Syst. DIS
Companion, 2014, pp. 53-56, doi: 10.1145/2598784.2602780.

MOHAMED ELGENDI (Senior Member, IEEE)
is currently a Senior Postdoctoral Fellow at the
UBC'’s Department of Obstetrics and Gynecology,
an Adjunct Professor with the UBC’s Department
of Electrical and Computer Engineering, and a
Senior Fellow at the Howard Brain Sciences Foun-
dation. In addition to his 104 years of experience
in the field of data analysis, he received training
on Big Data Analysis and Leadership in Education
from MIT. His experience in the areas of digital
health, data analysis, and visualization includes his work in global health
with the PRE-EMPT Initiative (funded by the Bill and Melinda Gates
Foundation), the Institute for Media Innovation at Nanyang Technological
University (Singapore), and Alberta’s Stollery Children’s Hospital (Canada).
He specializes in bridging the areas of engineering, computer science, psy-
chology, and medicine for knowledge translation.

34374

CARLO MENON (Senior Member, IEEE)
received the Laurea degree in mechanical engi-
neering and the Ph.D. degree in bio-robotics from
the University of Padua, Padua, Italy, in 2001 and
2005, respectively.

He was a Research Fellow at the European
Space Agency, The Netherlands, in 2005 and 2006,
respectively. In 2007, he joined the School of Engi-
neering Science, Simon Fraser University (SFU),
Canada, as an Assistant Professor, and founded the
Menrva Research Group, where he has been an Associate Professor, since
2012. He has published over 250 scientific works, including both journals
and conference papers. He is a member of the American Institute of Aero-
nautics and Astronautics (AIAA), and the American Society of Mechanical
Engineers. He received the International Astronautical Federation (IAF)
Luigi G. Napolitano Award, Spain, in 2006, and the International Biomimet-
ics Network for Industrial Sustainability (BIONIS) Award in Biomimetics,
U.K., in 2007. In 2012, he received both the Career Investigator Award from
the Michael Smith Foundation for Health Research (MSFHR) and the New
Investigator Award from the Canadian Institutes of Health Research (CIHR).
He is a member of the editorial board of the Journal of Bionic Engineering
and an Associate Editor of Bionics and Biomimetic (Frontiers).

VOLUME 8, 2020


http://dx.doi.org/10.1109/ICIP.2007.4379556
http://dx.doi.org/10.1145/2598784.2602780

	INTRODUCTION
	MATERIALS AND METHODS
	DRIVING STRESS DATASET
	EXCLUSION CRITERIA
	METHODS
	HYPOTHESIS
	LONGITUDINAL STRESS ANALYSIS
	INTERACTION PRINCIPAL COMPONENT ANALYSIS
	CONNECTIVITY-BASED CLUSTERING
	K-MEANS CLUSTERING
	MULTICOMPARISON TEST
	TRANSITIONAL STRESS ANALYSIS
	TERMA METHOD
	DATA AVAILABILITY


	RESULTS
	DISCUSSION
	DRIVING STRESS MARKER
	ECG
	EMG
	PLANTAR GSR
	PALMAR GSR
	RESP
	HR
	WHICH BIOSIGNAL IS MOST CORRELATED WITH DRIVING STRESS?

	PRACTICALITIES OF STUDY FINDINGS
	LIMITATIONS OF STUDY AND FUTURE WORK
	CONCLUSION
	REFERENCES
	Biographies
	MOHAMED ELGENDI
	CARLO MENON


