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ABSTRACT Internet of Things (IoT) devices have connected millions of houses around the globe via the
internet. In the recent past, threats due to hardware Trojan (HT) in the integrated circuits (IC) have become
a serious concern, which affects IoT edge devices (IoT-ED). In this paper, the possibility of the IoT-ED with
embedded HT that can cause serious security, privacy, and availability problems to the IoT based Home
Area Network (HAN) has been discussed. Conventional network attack detection techniques work at the
network protocol layers, whereas IoT-ED with HT can lead to the peculiar manifestation of attack at the
physical and/or firmware level. On the other hand, in the IC design, most of the HT-based attack detection
techniques require design time intervention, which is expensive for many of the IoT-ED and cannot guarantee
100% immunity. The argument in this paper is that the health of modern IoT-ED requires a final line of
defense against possible HT-based attacks that goes undetected during IC design and test. The approach is
to utilize power profiling (PP) and network traffic (NT) data without intervening into the IC design to detect
malicious activity in HAN. The proposed technique is to effectively identify multiple attacks concurrently
and to differentiate between different types of attacks. The IoT-ED behaviors for five different types of
random attacks have been studied, including covert channel, DoS, ARQ, power depletion, and impersonation
attacks. Data fusion has been leveraged by combining the PP andNT data and is able to detect, without design
time intervention, each of the five attacks individually with up to 99% accuracy. Moreover, the proposed
technique can also detect all the attacks concurrently with 92% accuracy. To the best of authors’ knowledge,
this is the first work where multiple HT based attacks are concurrently detected in IoT-ED without requiring
any design time intervention.

INDEX TERMS Internet of Things, hardware security, home area network, hardware Trojan, machine
learning, power profile, ARQ attack, DoS attack.

I. INTRODUCTION
Internet of Things (IoT) is fundamentally a collection of
smart devices inserted with remote correspondence capacity
of wireless connection [9], [17]. They are utilized as a part of
different applications in everyday life. IoT devices are preva-
lent in the smart city, smart grid, home area network (HAN),
advanced manufacturing, health monitoring, and many other
modern applications. The mobility report from Ericsson Inc.
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stated that the number of IoT devices are expected to grow
by 27 percent annually and will reach 4.1 billion devices by
2024 [1]. On the other hand, total spending on IoT devices and
administrations has come to nearly $800 billion in 2017 and
is expected to reach $1.4 trillion by 2021 [2].

The United State Federal Trade Commission’s report,
in [3] and [4], states that an IoT device is exposed to a variety
of possible safety risks. They can be used by adversaries
to infiltrate into the IoT devices at the hardware, software
or communication interface level. Although these risks exist
with traditional computer networks, in [4] it has alluded
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that with poor security in IoT devices these threats can be
more catastrophic in modern IoT based systems. This fact is
further corroborated with the reports published by Gartner
Inc., which states that 1) the market for information secu-
rity reached $114 billion in 2018, and will grow by 8.7%
in 2019 to reach $124 billion [5], 2) worldwide IoT security
spending expected to reach $3.1 billion in 2021 [6].

With the advent of the possibility of hardware intrinsic
attacks, such as the Hardware Trojan (HT) attack [7], the
absence of concrete measures of security in IoT devices has
turned into a major concern to the academic and industrial
research communities [7]–[11]. As all the IoT devices contain
an Integrated Circuit (IC) chip, the HT-based attacks’ vulner-
abilities are universal to all IoT devices [12], [13]. This can
harm the IoT-based network’s performance, security, privacy,
accessibility, and may even provide backdoor access leading
to information leakage [14]–[17], [57].

One of the major consumers of IoT devices is the Home
Area Network (HAN). In modern smart grids [18], IoT-based
HAN are connected via smart meters. Hence, the security
of IoT-based HAN is essential for overall well-being of the
smart grid. Several researchers have studied the security
challenges in IoT-based HAN. Jokar et al. in [19] pro-
posed a model that uses intrusion detection and preven-
tion systems for ZigBee-based HAN. This model employs
a dynamic machine learning-based prevention technique. In
[20], Faisal et al. proposed a technique for the comprehen-
sive Intrusion Detection System (IDS) in Advanced Meter-
ing Infrastructure (AMI), which is designed to be reliable,
dynamic and accommodates the realtime nature of traffic for
each component in AMI. The authors in [20] have observed
that some algorithms that use a very minimal amount of
computing resources and offer a moderate level of accuracy
can potentially be used for the smart meter IDS. However,
these models can detect only attacks made at the network
layer level. The network layer detection mechanism needs
access to the content of the messages, to detect attacks, which
raises privacy preservation issue. The HT-based attack can
lead to a different characterization of communication traffic,
which may not be identified by such traditional IDS used
in [19] and [20].

The above observations made researchers believe that,
since HT-based attacks cause unique characterization to
communication traffic, HT-based attacks need to be fur-
ther investigated. For example, a power depletion attack for
IoT-based HAN networks, which is caused by HT-based
attacks, mostly affects the physical parameters. More specif-
ically, the attacker in a power depletion attack intends to shut
down the IoT device and disconnect it from the HAN network
or sabotage the HAN’s topology in case of a multi-hop or
tree network. Similarly, HT-based attacks can lead to imper-
sonation attacks under a legitimate IoT device’s identity (ID),
hence these types of attack cannot be detected by traditional
IDS and firewall monitoring systems. Furthermore, in HT-
based covert channel attacks, the attacker IoT device may
send legitimate data, simultaneously or staggered, through a

legitimate and a covert channel interface. The covert channel
interface may or may not be visible to traditional IDS or
firewall monitoring systems [14]–[16]. Along the same lines,
the HT-based attacks may also lead to a Denial-of-Service
(DoS) attack, and a new type of attack, which has been named
Automatic Repeat reQuest (ARQ) attack. In the ARQ attack
the infected device with this HT-based attack ignores the
acknowledgment signal, thus causing multiple requests from
the sender. Although such attacks are detectable using tradi-
tional IDS and firewall monitoring systems [21], they cannot
distinguish between ARQ and DoS attacks. This distinction
between ARQ and DoS attacks is important to reduce false
positives.

To fill the gap of HT-based attacks detection and overcome
the unique characterization of HT-based attacks on IoT-based
networks, researchers secure the IoT edge device (IoT-ED)
through the utilization of design time intervention techniques.
In these techniques, they protect the IC chips from HT-based
attacks bymodifying the layout at design time, which protects
the IC chip from HT-based attacks but not the whole IoT
device [8], [9], [14]. In some other works, researchers utilized
a network protocol level detection mechanism to secure the
network without taking hardware problem into perspective
[19], [20]. On the other hand, most of the works in literature
address one attack or a couple of attacks at a time with-
out taking into consideration the variety of attacks on the
IoT-based network. To overcome the above limitations, this
paper, ‘‘FusIon: On-Field Security and Privacy Preservation
for IoT Edge Devices; Concurrent Defense Against Multiple
types of Hardware Trojan Attacks’’, proposes a novel attack
detection system to concurrently detect the above mentioned
attacks due to HTs. The effect of HT-based attacks inside the
IoT device on the security of the HAN network have been
studied. The study includes how the behavior changes, due
to HT-based attacks, of some of the well-known attacks on
the HAN network, namely, a DoS attack, a covert channel
attack, an impersonation attack, a power depletion attack, and
an ARQ attack. The network traffic (NT) data and power
profile (PP) data have been utilized without intervening into
the IoT devices.

The data fusion technique has been exploited to increase
detection accuracy and decrease false positives. The new set
of fused data has been provided to the machine learning
model for classification purposes. The proposed data fusion
based techniques against different attack scenarios have been
verified experimentally. The results show that the proposed
data fusion techniques can successfully detect HT-based
attacks on IoT edge devices if they fall within the above attack
categories. In order to emulate the real-world attack scenar-
ios, implementation of random attacks following Gaussian
distribution has been conducted. The frequency, duration, and
the instance of attacks all are randomly distributed. The main
contribution of this paper is as follows:
• For the first time randomness created due to data fusion
has been exploited to detect multiple HT-based attacks
on HAN. The proposed methodology can detect an
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impersonation attack even if the attacker uses a legiti-
mate ID of legitimate IoT edge devices and it can differ-
entiate between an ARQ attack and a DoS attack.

• HT-based attacks are investigated on IoT edge devices
in the HAN network using NT and PP data-sets. An on-
filed, run-time approach is proposed without requiring
any design time intervention to detect hardware attacks.
The proposed methodology does not require accessing
or destroying the IC chips in the IoT edge device as well.

• The proposed approach follows the privacy-preservation
based methodology that detects attacks on HANwithout
accessing the contents of the messages.

The remainder of this paper is organized as follows: The
related work is provided in Section II. The background is
provided in Section III. Section IV describes the details of the
studied network, threat model and attack scenarios. Section V
describes the randomization of hardware attacks. On-field
IoT-ED security and privacy preservation defense against
hardware Trojan is in Section VI. The experimental setup and
the results are given in Section VII. Conclusions are drawn in
Section VIII.

II. RELATED WORK
IoT security is generally addressed in the literature from
either the network layer level (the assumption is cloud-based
security falls within the network level) or the physical layer
level perspective [47]. Researchers have utilized various dif-
ferent techniques to detect attacks in IoT-EDs at each level.
With the enormous success ofmachine learning,many studies
have been able to successfully apply machine learning at the
network level to detect attacks in IoT-EDs. Yang et al. in [48],
investigate the active learning method for intrusion detection
of wireless IoT device networks. It is seen that the active
learning method can efficiently improve the performance
over the traditional supervised learning methods for intrusion
detection. But this work does not address hardware-level
attacks or breach of firmware in IoT-EDs. Firmware breach
in IoT-EDs is studied by Ling et al. in [17]. The authors
show that attacks can be launched successfully by exploiting
the insecure communication protocol of a known brand of
a smart plug system. Though Ling et al. provide possible
attack scenarios, their work does not provide any defense
to such attack mechanism. The advancement in the threat of
physical layer level security in the recent past warrantedmany
researchers to look into possible solutions for these types of
attacks as discussed below.

Many attacks stem out from the hardware level but
manifest at the network layer level. Xiao et al. in [49] have
recognized such IoT-ED attack models and learning-based
security methods. This involves IoT-ED authentication,
access control, malware detection, and secure offload-
ing, which are proved to be assuring protection for the
IoT-EDs against attacks that are sowed at the hardware
level and manifest in the network layer. In the same direc-
tion, Thangavelu et al. in [50] introduce a distributed device
fingerprinting technique (DEFT), where fingerprinting is

generated by the unique pattern of network packets corre-
sponding to each IoT-ED. The network controller and gate-
ways in DEFT coordinate to recognize whether the incoming
hardware device is a legitimate one or not.

Another type of attack, power depletion attack, has been
addressed in [46] and [51]. Power depletion attacks in IoT
have been surveyed in [46] by Lopez et al. They present
their three-layered approaches to hardware attacks, namely:
1) physical layer, 2) batterymanagement system (BMS) layer,
and 3) application layer. Their unique contribution is related
to analyzing vulnerabilities in BMS that can lead to a power
depletion attack on IoT-ED. They presume that a power
depletion attack results in a complete dysfunctional device,
but they did not study its possible implication at the network
layer level. Wei et al. in [51] report a machine learning-based
method to detect malicious mobile malware in Android appli-
cations. They implemented a malicious application detection
tool, named Androidetect, which implicitly saves the IoT-ED
from depleting power.

A covert channel attack or data leakage attack has been
addressed in [14], [15], and [22]. Cañedo et al. in [22]
study utilizing Artificial Neural Networks (ANN) in a gate-
way to detect anomalies in the data transmitted from the
IoT-EDs. They use the ANN to determine the healthy state
of a system and connected devices. They use IoT-ED ID,
sensor value, and a timestamp of transmitted data as input
features to the ANN. By using these features, they pre-
vent some attacks like the man-in-the-middle attack. In [14],
Subramani et al. introduce a hardware Trojan attack which
utilizes the error-correcting capabilities of the Forward Error
Correction (FEC) encoder in the baseband circuits of an
802.11a/g transmitter. They argue that FEC provides pro-
tection against a noisy channel more than it requires. In a
Trojan free communication channel, the noise distribution
is centered around zero. Systematic inconsistencies in the
channel noise distribution can be caused byHT. The detection
scheme monitors the channel noise distribution and varia-
tions in the noise distribution that can identify HT at the
sender end. In [15], Caviglione et al. introduce two machine
learning methods using a neural network and decision tree
algorithm to detect the appearance of malware exploiting
power consumption. They use the power consumption value
from a high-level application and file system as an input
feature to the machine learning algorithms. The first method
utilizes regression to predict the expected behavior of power
consumption. The second method utilizes classification to
provide information on covert channel communication using
IoT-ED power consumption. They claim to detect seven types
of covert channel attacks in Android devices. Their solution
requires access to the firmware.

A combination of attacks, denial-of-service attack and
covert channel attack, have been addressed in [8] and [9].
In [8], Dofe et al. introduce a dynamic permutation method
to address both hardware Trojan and side-channel analysis
attacks. The utilized permutation method decreases the prob-
ability of launching hardware attacks successfully in IoT-ED.
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The dynamic permutation method prevents the hardwares
attack and changes the power consumption (profile) over
time. They do not need network-level protection or run-time
detection. Liu et al. in [9] introduced a framework to monitor
data communications in the IoT-EDs. They utilize different
vendors for IoT-EDs to build a distributed framework where
each IoT-ED monitors the trustworthiness of their neighbors.
Any effort to leak confidential information or to collude with
each other that lead to catastrophic failures can be detected.
This distributed monitoring scheme creates a trustworthy
communication channel between untrustworthy IoT-EDs. In
both cases, the solution requires design time intervention.

From the literature review, so far researchers have focused
on one attack at a time. In a few cases when the attacks
are similar, a research work addresses two types of attacks
(e.g. covert channel attack and DoS attack in [8] and [9]).
Hence, there is a growing need for a solution or framework
that can cater to multiple types of attacks simultaneously. So
far whenever HT based attack are discussed in IoT-EDs such
as [8], [9], and [14], they require design time intervention to
be able to get detected. In some other cases, like [15] and
[17], they require access to the firmware. Also, the existing
literature related to hardware Trojan attacks in an IoT system
does not discuss the possibility of them affecting network
traffic. This is the second problem that has been addressed in
this work by proposing a novel, on-field, run-time HT based
attack detection in IoT-ED.

III. BACKGROUND
In this section, an overview of some of the concepts that help
in understanding the rest of the paper has been provided.

A. IOT DEVICE CATEGORIES
IoT devices in the IoT system can be divided into two cat-
egories: 1) IoT Edge Device (IoT-ED) and (2) IoT Gateway
Device (IoT-GD) [22]. An IoT-ED is typically equipped with
low-computation capability, low-communication bandwidth,
and low-power budget. IoT-ED usually has a unique pur-
pose, for instance, collecting sensed data and reporting it to
the IoT-GD. IoT-GD is equipped with more resources than
IoT-EDs. It is responsible for collecting the sensed data from
the IoT-EDs and connects them to the outside world [22].

Many of these smart devices are becoming part of modern
domestic daily life as part of the HAN. These smart devices
in HAN are IoT-EDs, which play an important role in the
HAN network. Fig. 1 illustrates a conceptual HAN network,
equipped with a smart meter (SM) or IoT-GD and multiple
IoT-EDs inside SHAs. Through interfacing with the IoT-GD,
IoT-ED sends its power consumption reading to the IoT-GD
periodically after every short period of time. The power
consumption readings of all IoT-EDs are reported to the
utility company after being collected by IoT-GD [23]–[25].
A household can interface with IoT-ED through the internet
for device status checking, task scheduling, task execution,
and task termination.

FIGURE 1. Home Area Network (HAN), where, IoT-GD (Smart Meter) is
connected through a wireless connection to IoT-ED inside the Smart
Home Appliances. IoT-GD also connected to the Utility company through
the Internet.

B. HT DETECTION, DESIGN TIME INSERTIONS IN THE
CIRCUIT
The IC design and fabrication process has become more vul-
nerable to hardware attacks or malicious insertions of hard-
ware units, called hardware Trojans (HT) [26]–[29]. An HT
is a malicious piece of hardware circuitry that is embedded
into the IC of IoT-ED and is characterized by its physical
representation and behavior [27], [29]. In IC design, due to
globalization and usage of third party intellectual properties
(3PIP), IC can be tampered with at any stage of the design
and fabrication process. The modern embedded system con-
tains several ICs as its major components. HTs embedded
in ICs are divided into two types based on their activation
techniques: 1) always-on HT; it can affect the IC operation
at any time; 2) triggered HT; this Trojan can affect the IC
operation on the event it is triggered [27], [29]. The trigger
for the HT can be internal or external. An internally triggered
HT is activated by an event that occurs within the targeted
IC. The internal event may be a timer or a combination of
binary inputs. An externally triggered HT requires external
input to the target IC to activate the HT. The external event
may be introduced by keyboard input, a keyword, a push-
button, a switch or maybe a combination of events. An HT
is composed of two parts: 1) payload; and 2) trigger. The
payload is responsible for the malicious activity and trigger
is responsible for activating the payload [27], [29].

Detection can be performed during test time or run-time.
In [8] and [14], the authors protected the IC chips of IoT-ED
from a HT-based attack by inserting a detection mechanism
during design time. This prevents the IoT-ED from a hard-
ware attack or helps with HT detection in run-time. But, this
extra hardware comes with extra effort, cost, design time, and
time to market, which results in the added cost of IoT-ED and
delay to the market.
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C. HT DETECTION DURING RUN-TIME WITHOUT
INSERTING ANY DESIGN TIME DETECTION MECHANISM
Using IoT-ED in a network without any design-time protec-
tion increases the chances of a successful HT-based attack
without detection. In this paper, the run-time detection has
been presumed that it does not need an extra circuit to be
inserted into the IoT-ED IC chips. This decreases the effort,
cost, design time, and time to market. Hence, this claim is
more in line with industrial practices.

D. DATA FUSION
Data fusion is a technique utilized by the data scientist to fuse
multiple data-sets in order to obtain more reliable informa-
tion [52], [53]. This helps in the classification problem of
machine learning, where some data-set leads to weak clas-
sification. Merging different weak classifying data-sets leads
to a data-set with strong classification. The fused data-set is
more informative than the original input data-sets [30], [31].

There are two types of data fusion, namely: 1) centralized
data fusion, and 2) decentralized data fusion. In centralized
data fusion, the IoT-ED sends the data to a coordinator. The
coordinator is responsible for fusing the data. In decentralized
data fusion, the IoT-ED takes complete responsibility for
fusing the data.

In Central Limit theorem, when independent random vari-
ables are fused, themerged data-set leads to a normal distribu-
tion even if the original variables are not normally distributed.
LetD1 andD2 denote two independent random data-sets with
noise variances σ 2

1 and σ 2
2 , respectively. To obtain data-set

D3 which is a combination (fusion) ofD1 andD2, the Central
Limit theorem has been applied;

D3 = σ
2
3 (
D1

σ 2
1

+
D2

σ 2
2

) (1)

where:

σ 2
3 =

1

1/σ 2
1 + 1/σ 2

2

(2)

is the variance of the fused data-set. The fused data-set is a
linear combination of the two data-sets (D1 andD2) weighted
by their respective noise variances (σ 2

1 and σ 2
2 ).

E. NETWORK TRAFFIC (NT)
The network traffic or message counting is the number of
messages in a period of time. Each application requires a cer-
tain amount of messages. The network operator gets security
benefit from proper network traffic analysis. A potential indi-
cation of an attack can be obtained from an unusual volume
of network traffic. Message counting is required when the
data communication needs to stay within a specific number
of messages per period of time. This is the case in HANwhen
the utility company requires one power consumption reading
per unit time [32].

TABLE 1. Possibilities of attacker and defender existence in HAN
network.

F. POWER PROFILING (PP)
IoT-ED consumes electric power for operation. Each type
of operation has a different power consumption requirement.
Differences in power consumption occur as the IoT-ED per-
forms various operations. It is a metric used for side-channel
analysis in which the power consumption of the IoT-EDs has
been studied [33]–[35].

G. MACHINE LEARNING TOOL (WEKA)
WEKA framework/tool is a combination of machine learning
algorithms for data mining jobs [36]. WEKA is used because
it is an open-source data mining package that contains tools
for data pre-processing, classification, regression, clustering,
and visualization. It is also well-suited for developing new
machine learning schemes.

IV. THREAT MODEL AND ATTACK SCENARIOS
In this section, the network model, threat model and attack
scenarios has been explained.

A. DETAILS OF THE STUDIED NETWORK AND THREAT
MODEL
A threat model for any IoT-based HAN network can have
three main players: 1) IoT-ED manufacturer, which includes
the semiconductor supply chain, 2) the network deployment
team, and 3) the network operation (monitoring) team. All of
them can be assumed as one of three roles, they can be: 1) an
attacker, 2) a defender or 3) an honest user (neither attacker
nor defender). These cases have been illustrated in Table 1.
The Threat Model I from Table 1 has been chosen with the
following rationale. As the IoT-ED manufacturer and most
of its components (i.e., IC manufacturer) are designed and
fabricated offshore, the probability of them to be attacked
or compromised is usually high. Therefore, the IoT-ED is
assumed to be manufactured in unsecured environments and
the attacker has access to the design cycle of ICs used in
IoT-ED. Also, the network implementation is presumed to
be performed under a controlled environment, hence they are
honest. The network operator is the one who has to closely
monitor the network as a last line of defense. They use the
network for transferring data from one node to another. Here
the network operator is the defender.
Home Area Network (HAN): consists of Smart Home

Appliances that contain an IoT-EDs and a Smart Meter (SM)
or IoT-GD (coordinator). The IoT-EDs are connected to the
IoT-GD through wireless communication technology. The
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FIGURE 2. Normal case and Attacks type in IoT-ED on HAN network.

IoT-GD acts as the organizer among all the IoT-EDs in the
HAN network. Also, it acts as an organizer between IoT-EDs
and the utility company. IoT-GD is connected to the utility
company through a high bandwidth connection that can be a
wired or wireless connection. The HAN network topology is
illustrated in Fig. 1. The IoT-GD has a higher computation,
higher bandwidth, and higher power budget compared to
IoT-EDs. This concept of the edge device and gateway device
is not specific to the HAN network alone, so the proposed
approach is scalable, flexible and can be applied to other
IoT-based networks as well.
Threat Model: IoT-EDs consist of several IC chips. In this

threat model the attacker can intrude the IC chips internally.
The attacker can change the internal IoT-ED chips’ structure.
The attacker is assumed to be capable of stealthily adding,
removing or manipulating the IC chips’ internal design. If
this manipulation is not detected by the IC supply chain
testing then it can lead to attacks during run time. The attacker
can design the HT in such a way that it can be triggered
when the attacker needs or under a very rare condition.
This behavior makes the HT hard to be detected in the
testing phase. In this threat model, the defender (network
operator) is assumed to have access to the NT and PP data
of the IoT-EDs. Threat model I from Table 1 is in line
with the scenarios that are mentioned in most of the recent
IoT systems.

B. ATTACK SCENARIOS
In this section, the attack scenarios have been explained on
the HAN that is studied in this paper.

1) NORMAL CASE
Under the normal case, the IoT-EDs report their power con-
sumption (PP) data (black line in Fig. 2) every five minutes to
the IoT-GD through a wireless connection. Then the IoT-ED
receives an ACK message from the IoT-GD (white line in
Fig. 2) to confirm the delivery of the message.

2) POWER DEPLETION ATTACK
A power depletion attack is an attack where HT consumes
extra power of the IoT-ED with some stealthy circuit. Fig. 2b
illustrates the power depletion attack on IoT-ED with HT
inside the device. The HT that is surrounded by the dotted
line results in producing extra computation. The IoT-ED has
a limited power budget, therefore, this extra computation
requirement increases the power consumption and may lead
to the shutdown of the IoT-ED. This attack poses very serious
concerns for IoT system security and availability. The mali-
cious HT that resides inside the IoT-ED tries to deplete the
IoT-ED’s power andmakes it unavailable for power consump-
tion data reporting to the IoT-GD or replay messages in case
of a multi-hub network topology. This attack is difficult to
detect by the traditional IDS and firewall as the HTs deplete
the IoT-ED’s power within the IC and hence such attacks are
not detectable through IDS or firewall.

3) IMPERSONATION ATTACK
An impersonation attack is when an HT infected device is
disguised as a legitimate IoT-ED. This can be implemented
by replacing the ID of the infected IoT-ED with a legitimate
device ID. By learning the legitimate ID by the attacker,
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HT can use the legitimate ID to inject false data into the HAN
network which can harm the receiver device by causing a
wrong decision, and consequently adversely affect the HAN
network. This attack is difficult to be detected by the tradi-
tional IDS and firewall as the IoT-ED sends its data under
the impersonate of a legitimate device ID which fools the
IDS and firewall. The attacker uses the legitimate ID to report
false power consumption data to the IoT-GD which wrongly
affects the power decision at the coordinator or utility com-
pany side. Fig. 2c illustrates the impersonation attack on an
IoT-ED, where the original IoT-ED ID is ‘‘XXYYZZ’’ but
the HT inside the IoT-ED (surrounded with the dotted lines
in Fig. 2c) changes it with a legitimate ID ‘‘OOPPQQ’’. In
this case, the network has two IoT-EDs with the same ID that
reports two different power consumption data to the IoT-GD.
The number of device IDs stays the same in the network as
there is no increment in the ID of the IoT-EDs but the amount
of the network traffic reporting to the IoT-GD increases.

4) DOS ATTACK
A DoS attack is an attack where the attacker tries to make
a machine or network resource unavailable to its expected
consumer(s) by accidentally or inconclusively disturbing ser-
vices. A DoS attack floods the targeted device with repeti-
tive unnecessary requests trying to overburden structures and
block some or all legitimate requests from being fulfilled.
Fig. 2d illustrates the DoS attack on IoT-ED in the HAN
network. The HT that is surrounded by the dotted line inside
the IoT-ED multiplies the original data and sends repetitive
data to the IoT-GD. The HT in the DoS attack starts to
flood the HAN network with a large number of repeated
messages. The compromised IoT-ED, instead of sending its
power consumption data at a reasonable rate, sends the power
consumption data more frequently.

5) ARQ ATTACK
The HT can maliciously affect the data transmission traffic
protocol, such as an Automatic Repeat reQuest (ARQ) pro-
tocol. ARQ is an error-control system for data transmission.
ARQutilizes acknowledgmentmessages (ACK) and timeouts
to achieve dependable data transmission over a problematic
communication connection. If the sender IoT-ED does not get
an acknowledgment before the timeout, then it continues to
re-transmit the data until the sender gets an acknowledgment
or exceeds a predefined number of re-transmissions which is
called a timeout. Fig. 2e illustrates a possible HT-based ARQ
attack on an IoT-ED. The HT in the IoT-ED (surrounded with
the dotted lines in Fig. 2e) blocks the ACK message that has
been sent back from the IoT-GD to the IoT-ED in response
to the reported data. This forces the IoT-ED to re-transmit
the data. Due to HT insertion, the IoT-ED may pass No
ACK signal instead of an ACK signal, hence the malicious
device sends multiple messages of the same type. Due to the
random nature of HT trigger, this results in the IoT-ED to
send a random number of the repeated power consumption
data to the IoT-GD in every reporting cycle. Finally, the

attacker IoT-ED accepts the ACK message at random then
stop sending any more data and waits for the next reporting
cycle. An ARQ attack is uniquely attributed to the HT-based
ICs. To the best of the authors’ knowledge, such attacks have
not been addressed in the literature other than a few handful
of researchers [35], [37]. Although the traditional IDS and
firewall can detect the ARQ and DoS attacks, they cannot
differentiate between them.

6) COVERT CHANNEL ATTACK
A covert channel attack or data leakage attack is a kind
of attack that generates an ability to transfer data between
devices through a hidden channel. This attack is hidden from
the security system as it does not utilize the legitimate data
transfer channel, and consequently cannot be identified by
the traditional network security systems. Fig. 2f illustrates the
covert channel attack in IoT-ED. The HT inside the IoT-ED,
that is surrounded with the dotted line, sends the same data
through more than one interface (where one of the interfaces
is monitored and the other one is not). In the covert channel
attack, the leaked data can be sent simultaneously with the
legitimate data or with a time lag. This data leakage can be
the duplication of the legitimate data of the IoT-ED or data
that may contain secret information such as an encryption or
decryption algorithm. It is not possible for traditional IDS nor
firewall to detect this type of attack as the covert channel may
not be monitored by the IDS system or firewall.

V. RANDOMIZATION OF HARDWARE ATTACKS
To emulate a realistic security scenario, randomness has been
introduced into the attack. For any attack scenario, the attack
on the HAN starts randomly, may last for a random duration
or may repeat itself in a completely random fashion.
Power Depletion Attack: For power depletion attack, the

IoT-ED gets disconnected from the HAN network at random
time intervals. At the beginning of the network operation, the
IoT-EDworks normally, but after a while, it gets disconnected
from theHANnetwork due to power depletion. The attack has
been implemented following Normal distribution as shown in
Fig. 3a with mean (µ)= 31.7917 and variance (σ 2)= 9.8109.
This randomness results in a different power shutdown dura-
tion in each cycle of the attack. The randomness comes from
a Normal distribution that is illustrated in Fig. 3a.
Impersonation Attack: In the case of the impersonation,

the attacker IoT-ED joins the HAN network in a random
time interval. The randomness of the impersonation attack
come from a Normal distribution that is illustrated in Fig. 3b
with µ = 28.6875 and σ 2

= 11.6439. In this case, the
attacker IoT-ED sneaks into the HAN network using an ID of
a legitimate IoT-ED. Because the ID is legitimate, the attacker
IoT-ED can pass the traditional security checkpoints.
DoS Attack: In the DoS attack, the duration for which the

attacker sends themessage and the starting of the attack is ran-
dom. After each reporting period, the attacker IoT-ED starts
a DoS attack, but the beginning of the attack and the duration
of the attack are random following a Normal distribution.
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FIGURE 3. Normal distribution of attacks by IoT-ED on HAN network.

For instance, in the first reporting period, the IoT-ED starts
the attack after 52 seconds and it lasts for 63 seconds. In
the second reporting period, the DoS attack starts after a
relatively longer time compared to the first attack. It starts
after 127 seconds and lasts for 31 seconds and continues on
in the subsequent reporting periods randomly. Figs. 3c and
3d illustrate the overall Normal distribution of the beginning
time instant of the attack and the duration of this attack. Theµ
and σ 2 for the random beginning of the attack in each cycle
are 74.0399 and 23.9390, respectively. Similarly, µ and σ 2

for the duration of the DoS attack in each reporting period
are 74.9479 and 25.3365, respectively.
ARQ Attack: After each reporting period, the HT inside

the IoT-ED blocks the ACK message that is received by
the IoT-ED from the IoT-GD. The HT maybe designed to
randomly block the number of ACK messages to increase its
stealthiness. The randomness comes from a Normal distri-
bution. For example, from the testbed, in the first reporting
period, the HT inside the IoT-ED drops 5 ACK messages
and in the second it drops 8. In the third reporting period,
the HT drops 13 ACK messages which leads to a resend
of 13 messages by the IoT-ED. Overall, the implementation
of the ARQ attack is shown in Fig. 3e, which illustrates the
Normal distribution of the number of messages to simulate
the ARQ attack with µ = 14.9097 and σ 2

= 5.1636.
Covert Channel Attack: For the covert channel attack, the

attacker IoT-ED sends the leaked message through covert

channel(s) at random time intervals. The randomness comes
from a Normal distribution. Fig. 3 illustrates the Normal
distribution of a covert channel attack of IoT-ED with µ =
149.0370 and σ 2

= 50.0567. For example, from the testbed,
in the first and second reporting period, the HT sends the
leaked data after around 3 minutes of the legitimate reporting
period, but in the third reporting period, the HT sends the data
after around 5 minutes, which means with almost the next
legitimate reporting data. In the fourth reporting period, the
HT sends the leaked data after around 4 minutes.

VI. ON-FIELD IOT-ED SECURITY AND PRIVACY
PRESERVATION DEFENSE AGAINST HT ATTACK
Traditionally most of the HT-based attack detection tech-
niques for IoT-ED require design time modification in the
IC [8], [9], [14]. However, it is possible that HT-infected
IoT-ED can go undetected during the IC-testing and deploy-
ment on the field. In order to detect the triggering of such
an attack, an on-field IoT-ED defense technique has been
proposed in this paper. To achieve this and based on the threat
model, the IoT-ED has been dealt with as a black box. In
other words, the defender (which is the network operator
as described in the threat model in Section IV-A) does not
have access to the internal elements and on-board IC chips
of the IoT-EDs. The argument in such a case is that one
can monitor the IoT-EDs through three ways: 1) monitor
individual communication interfaces of each IoT-ED like
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FIGURE 4. Phase I: Feature Extraction, Data cleaning, Data
pre-processing, Data fusion, Training, and Testing of Machine learning
model under a testbed environment for NT and PP data-sets.

wired serial interfaces, or wireless interfaces; 2) monitor the
network traffic (NT) data; 3) monitor the power profile (PP)
data of each IoT-ED. As monitoring each individual interface
gets impractical due to the enormous number of possibilities,
utilizing NT and PP data-sets are a more practical choice for
detecting HT-based attacks for on-field IoT-ED defense.

To implement FusIon methodology, an algorithm has been
developed, Algorithm 1. The algorithm has been divided into
two phases. Phase I is the data collection phase under a
testbed environment, which is from line 1 to 5 in Algorithm 1.
The second phase is under an on-field run-time environment,
where HT-based attacks may manifest at the physical or net-
work layer level in an IoT-based HAN network. The second
phase is executed from line 6 to 17 in Algorithm 1.

A. PHASE I - TESTBED ENVIRONMENT
In Phase I, first the NT and PP data have been collected
(line 1 of Algorithm 1). The processing of the collected data
is divided into five stages, as shown in Fig. 4 (illustrated
in Algorithm 1 in line 1 to 5). Three of these stages run in
parallel for both data-sets (NT and PP). The last two stages
are fusing the data-sets and then performmachine learning on
the fused data-set. The five processing stages are explained as
follows:

1) Feature Extraction: In Phase I - PP-stage 1 and
NT-stage 1 of the proposed scheme, feature extrac-
tion has been performed on the two collected data-
sets, NT and PP, which are collected and stored in
‘‘.csv’’ file format for each IoT-ED. It’s worthy to
mention here that the PP data is only related to the
controlling circuit of the SHA, which is referred to as
IoT-ED throughout this paper. As stated before, feature
extraction has been performed for both the data-sets
in parallel as shown in PP-stage 1 and NT-stage 1
of Fig. 4 (line 1 in Algorithm 1). Since this work
is to detect physical-layer level attacks the focus is
on extracting features related to power consumption,
like voltage, current, and power. Since voltage remains
almost constant, the focus is on extracting power con-
sumption only, which is effectively a function of cur-
rent consumption. On the other hand, message counting
has been chosen in NT among other readings. For

Algorithm 1 On-Field Hardware Trojan Attack Detection
Require: Testbed Environment
1: Collection and Features Extraction from NT & PP data-

set
2: Data Cleaning for NT & PP
3: Data Processing for NT & PP
4: Data Fusion (NT + PP)
5: Feed data to Machine Learning Model

Ensure: Build Classifier or the Machine Learning Model
On-Field
Require: Run-Time Environment
6: while Network Running do
7: Capture real time NT & PP Data
8: Feed the new data to Machine Learning Model
9: if Result = Normal then

10: No attack on the network
11: Action : Continue Monitoring
12: else if Result = Attack then
13: There is attack on the network
14: Action : Inform the Network Administrator
15: Action : Network Administrator remove the source

of the attack or do Network optimization
16: end if
17: end while
Ensure: Running IoT-EDs in HAN without security

breaches

NT-stage 1, there were several features stored in the
NT data-set, including number of messages per unit of
time, source and destination MAC addresses, source
and destination IP addresses, source and destination
port numbers, timing, etc. Since this work is to detect
HT and preserve the privacy of the IoT-ED, the focus of
the work is on the number of messages per unit of time.
The defender (which is the network operator) counts
the messages that have been sent by the IoT-ED to
report the SHA’s energy usage. Also, the NT data-set is
privacy-preserving, as there is no access to the contents
of the messages. The NT data sending is secure as
IoT-ED uses an end to end encryption algorithm.

2) Data Cleaning: Phase I - PP-stage 2 and NT-stage 2
of the proposed scheme, is the data cleaning pro-
cess (line 2 in Algorithm 1). For both the data-sets,
FusIon methodology retains the required information
and removes any redundant data from the ‘‘.csv’’ file.
The retained information in the testbed for the PP
data-set is the power consumption values and for the
NT data-set is the number of messages per unit of time,
as stated when describing the Feature Extraction stage.
Furthermore, in order to improve the robustness of the
methodology, both data-sets are divided into chunks of
two hour sub-data-sets; in total amount up to 48 hours
of experimental results for each scenario (total of six
scenarios, one normal and five attack scenarios).
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3) Data Processing: In Phase I - PP-stage 3 and
NT-stage 3, data processing occurs. The data collected
by the IoT-GD is formatted to the appropriate data types
and units then stored in a ‘‘.csv’’ file format (line 4 in
Algorithm 1). This is done at the IoT-GD. Then labeling
the data is performed according to the name of the
IoT-ED and mode of operation.

4) Data Fusion: Data fusion takes place in Phase
I - Stage 4. In data fusion, the two data-sets (NT and
PP) have been fused (line 4 in Algorithm 1). Since
the two data-sets are random and independent, combin-
ing them gives more reliable randomness to the data-
set, which follows Normal distribution [38]. Next, the
fused data is converted to a new format ‘‘.arff’’ for the
machine learning algorithm. The file conversion is a
requirement for the WEKA training tool [36].

5) Machine Learning Algorithm Used: In
Phase I - Stage 5, the machine learning model is
trained. The data-set results from the data fusion stage
have been split into two sets. One set is for train-
ing purposes and another is for testing. For training,
66% has been used and the rest of the data has been
used for cross-validation testing. This partitioning of
data-sets (into training and testing data-sets) leads to
a reduction in overfitting and improved generalization
on unseen data. The following machine learning algo-
rithms have been explored on the data-set 1) Support
Vector Machine (SVM), 2) Artificial Neural Network
(ANN), 3) Decision Tree, and 4) Random Forest. In
the experiments, Random Forest has been found to
provide the best results among all the above mentioned
techniques, Table 2 summarize the output result of all
machine learning algorithms. One reason of Random
Forest providing better results for a fused data-set
is that the Random Forest algorithm combines both
classification and regression techniques and is suitable
for the classification of a continuous data-set which is
also the case in the fused data-set [39].

B. PHASE II - ON-FIELD RUN-TIME ENVIRONMENT
In Phase II, an IoT-ED attack scenario has been randomly
chosen to mimic the on-field run-time environment. After
collecting the two data values, corresponding to NT and PP
data-sets, both data-sets have been fed into FusIon methodol-
ogy in real-time while the HAN network is operational (line 7
and 8 in Algorithm 1). Fig. 5 illustrates the collection process
of the NT and PP data from IoT-ED under the test. It also
shows the process of how these two data values are fed to the
trained machine learning model for classification in real-time
to detect HT-based attacks.

In the normal case scenario (Algorithm 1), the trained
machine learning model continues the monitoring pro-
cess and does not take any action (line 9, 10 and 11 in
Algorithm 1). If the IoT-ED is affected by any of the five
attacks and the trained machine learning model classifies it
as an attacker, then the FusIon methodology in Algorithm 1

FIGURE 5. Phase II: Real-time HT detection in an on-field real-time
environment, where IoT-ED is under the test.

flags an alarm and informs the defender (which is network
operator) to take action (line 12 to 15 in Algorithm 1).
The messages between IoT-ED and IoT-GD are encrypted

so the external attacker cannot decrypt the message and
access what it contains. Also, as the encryption and network
monitoring (defender) handles by two different applications
at the IoT-GD, the defender can only count the number of
messages and cannot access what it contains. FusIon method-
ology is privacy-preserving as the contents of the messages
stay unraveled for the external attacker and for the defender
inside the IoT-GD.

VII. EXPERIMENTAL SETUP AND RESULTS
The experimental setup and the results are explained in this
section.

A. EXPERIMENTAL SETUP
In this segment, the experimental setup has been explained.

1) TESTBED SETUP
As illustrated in Figs. 1 and 5, the testbed consist of multiple
IoT-EDs and an IoT-GD that every device is connected wire-
lessly to shape HAN network. The IoT-ED sends the read-
ing to the IoT-GD. A publicly available power consumption
data-set has been used for each home appliance to mimic
a real home power consumption scenario [40]. The IoT-GD
collects the power consumption data from each IoT-EDs peri-
odically. Then the IoT-GD aggregates the collected reading
and sends the aggregated data to the utility company at some
predefined time instances. The network topology is a star
topology, as shown in Fig. 1, where the IoT-GD is in the
middle and all other IoT-EDs are at the edges of the HAN
network.
Network Traffic (NT) or Message Counting: The IoT-ED

sends its power consumption data to the IoT-GD then waits
for the ACK signal from the IoT-GD to confirm the data
delivery to the destination. IoT-ED continues working with
this protocol at each predefined reporting period. A Python
script has been developed that gives the IoT-GD capability
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TABLE 2. Accuracy comparison among different machine learning
algorithms.

to listen to all IoT-EDs simultaneously and service all the
requests. Each IoT-ED sends its power consumption data to
the IoT-GD through a specific port number. These messages
between the sender and the receiver are encrypted with an
end-to-end encryption algorithm to prevent privacy breaching
and secure the connection. The defender (network operator)
counts the number of messages that have been sent by the
IoT-EDs per unit time. In the experiment, the defender counts
the number of messages every minute.
Power Profiling (PP): A current sensor INA219 [41] is

used for measuring the PP of each IoT-EDs. The IoT-ED
under test is connected to the power source through INA219.
The current sensor sends the consumed power by the IoT-ED
to the IoT-GD, using Python libraries once every second.
Another Python script has been developed that reads the
consumed power and sends the reading periodically to the
IoT-GD.

The testbed experiment is carried out for 96 days. All
IoT-EDs are configured using remote access through SSH
terminals in order to change the mode of operations of the
IoT-EDs on the fly. Two types of data that have been col-
lected, the power profiling (PP) of the IoT-ED and the output
communication messages (NT) from IoT-EDs’ interface. The
two data-sets (NT and PP) are fused then processed by the
IoT-GD which uses this data-set to train a machine learning
model (as shown in Fig. 4).

2) COMMUNICATION SETUP
TCP protocol has been used as a communication protocol
because of its reliability. The IoT-ED reads the SHA power
consumption and reports the reading to the IoT-GD through
TCP protocol. This reporting is periodically made every five
minutes. As mentioned earlier, this data is utilized to obtain
an NT data-set. To maintain privacy preservation, the actual
power consumption information of SHA is not accessed by
the defender (network operator). The INA219 current sen-
sor reads the consumed power by the IoT-ED and reports
the reading to the IoT-GD device as well. This reporting is
periodical at a rate of once per second.

3) DEVICE TYPE(S)
The testbed consists of eleven IoT-EDs of two different
models namely: four Raspberry Pi 3 Model B, and seven
Raspberry Pi Zero W. The Raspberry Pi 3 Model B is
the third generation of Raspberry Pi. Its specification is:
1) quad-core 1.2GHz Broadcom BCM2837 64bit CPU,

FIGURE 6. Six operation cases, each case of eight network topology
(48 scenarios) for chunk of 2 hours of NT and PP data-set collection.

2) 1GB RAM, 3) BCM43438 wireless LAN and Bluetooth
Low Energy (BLE) on board, and 4) 100 base Ethernet
interface. The Raspberry Pi Zero W extends the Raspberry
Pi Zero family. Its specification is: 1) 1GHz, single-core
CPU, 2) 512MB RAM, and 3) wireless LAN and Bluetooth
Low Energy (BLE) on board. These devices have been used
because they are one of the most commonly used platforms
in modern IoT-based network experiments [42]–[44].

4) EXPERIMENTAL SCENARIOS
For HAN network topology, six scenarios have been con-
sidered; 1) Normal, when all IoT-EDs run in normal mode,
2) Power depletion attack, 3) Impersonation attack, 4) DoS
attack, 5) ARQ attack, and 6) Covert channel attack. In all the
cases, one device has been considered to be under attack and
the rest are in normalmode. As shown in Fig. 6, eight different
experiments were performed for each of the above mentioned
six cases. The first scenario contains three IoT-ED and one
IoT-GD. Then the number of the IoT-ED increases in each
experiment by one until it reaches ten IoT-EDs in the HAN
network. Fig. 6 illustrates the experimental combination that
has been implemented in the testbed. In all, 48 experiments
accumulating data worth for 96 days of device operation
have been performed. The methodology runs each experi-
ment for 48 hours in a chunk of 2 hours. This is illustrated
as the dotted rectangle in Fig. 6. This chunk of 2 hours is to
implement random duration attacks for each experiment. For
each experiment, both NT and PP data values are collected,
these data values are used for training a machine learning
model. The NT has been counted every 1 minute and 138,240
data points have been collected. For the PP, 8,294,400 data
points have been obtained as the reporting time is once every
second.

As the collection of the PP data points (every one second)
is more frequent than the NT data points (every one minute)
to the IoT-GD, the data must be aligned for the data fusion
technique to be applied. The first approach can be taking the
average of the PP data and fusing it with NT data to produce
new fused data to be fed to the machine learning, but this
leads to the loss of some of the important information in the
PP data. The second approach is to replicate the NT data and
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FIGURE 7. Testbed experiment example - three Normal IoT-ED, one
attacker IoT-ED, and one IoT-GD.

align it with the PP data, which is the route that has been
taken in this work to preserve the valuable information in
the fine-grained PP data-set. This assumption can be justified
by the fact that in statistically overwhelming scenarios the
change in the NT data point between two consecutive samples
is limited to 20%. This approach provided us with a larger
data-set, which consequently helped in reducing the skewness
of the distribution that leads to better accuracy.

Fig. 7 shows one of the experiments in the testbed. This
experiment consists of four IoT-EDs and one IoT-GD. Three
of the IoT-EDs work normally and the other IoT-ED works
as an attacker. The four IoT-EDs send their data to the
IoT-GD through a wireless connection (dotted black line).
Their power consumption is collected by the INA219 and sent
to the IoT-GD (dotted blue line).

B. RESULTS
In some of our previously reported results [45] and [35],
we were able to detect the IoT-ED attacker, provided that the
attacks were predetermined. In this work, the attacks have
been taken to another level. The number of attacks on the
HAN network has been increased. Also, all the attacks on the
HAN network have been randomized i.e. the start, duration,
and end of the attacks on the HAN network are random-
ized. This randomness decreases the detection accuracy from
95.5% in [35] to be 67.73% using the PP data-set only. We
come up with the message counting (NT data-set) to detect
the hardware attacks and preserve privacy. But because of the
randomness in the attack, the accuracy for NT data-set only
is 57.89%, which means it is not better than the PP data-set.
By fusing the two data-sets (NT and PP) for the attacks with

TABLE 3. Result of hardware Trojan detection using NT, PP, and fused
data-sets in HAN network.

the randomness, the data fusion gives higher accuracy and
reaches 92.27%. Table 3 shows the result for the NT data-set,
PP data-set, and the fused data-set (NT + PP).
Table 3 summarizes the result for hardware Trojan detec-

tion using data fusion including all the attacks. The reason
for this increase in the classification accuracy comes from a
combination of different weak classifying data-sets. Fusing
two different weak classifying data-sets lead to a data-set
with strong classification and the fused data-set is more infor-
mative than the original input data-sets [30], [31]. Also, the
combination of the NT and PP data-sets lead to a reduction in
the false positive (FP) from 0.084 for the NT data-set only and
0.065 for the PP data-set only to 0.015 for the fused data-set.

Figs. 8 shows the distribution for all data-sets, which are
the NT data-set only, the PP data-set only, and the (NT + PP)
data-set, i.e. the fused data-set. A perfect normal distribu-
tion data-set has a skew and kurtosis of zero. Skewness is
defined as a measure of a data-set’s symmetry. A perfectly
symmetrical data-set has a skewness of zero. A data to be
normally distributed needs to have a skew of more than −2
and less than + 2 [54]. So, the skewness between −0.5 and
+0.5 means the data-set is fairly symmetrical. The skewness
between +0.5 and +1 or −0.5 and −1 means the data-set
is moderately skewed. But when the skewness is less than
−1 or greater than 1, the data-set is highly skewed. As stated
earlier, lower skew is desirable, as it makes the data-set more
random. Mathematically Skewness of Normal distribution is
defined as follows:

Skewness =
∑ (Xi − X̄ )3

ns3
(3)

where, n is the sample size, Xi is the ith value, X̄ is the mean
and s is the sample standard deviation. Fig. 8a shows that
the NT data-set distribution has a positive skew of + 1.74,
which means the NT data-set is highly left-skewed. Fig. 8b
shows that the PP data-set distribution has a negative skew of
−1.56, which means the PP data-set is highly right-skewed.
But when the data-sets are fused, the distribution of the fused
data-set approximates closer to Normal distribution with a
skewness of −0.05 (almost zero), the fused (NT + PP)
data-set is Normally distributed, as shown in Fig. 8c.

Another factor to measure the distribution of the data-sets
is kurtosis. Kurtosis is a measure of the combined weight of
the tails to the rest of the distribution [55].

Kurtosis =
∑ (Xi − X̄ )4

ns4
(4)

A positive kurtosis means there is more data at the tail than
the perfect Normal distribution and a negative kurtosis means
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FIGURE 8. Data Distribution for raw data-sets (NT and PP) and fused data-set in IoT-ED on HAN network.

TABLE 4. State-of-the-art comparison, possibilities of attacker existence in HAN network.

there is less data at the tail than Normal distribution. Fig. 8a
shows that the NT data-set distribution has a positive kurtosis
of + 2.8 and Fig. 8b shows that the PP data-set distribution
has a positive kurtosis of+ 1.53, which means both data-sets
have more data at the tail compared to perfect Normal distri-
bution, especially the NT data-set. But when both data-sets
are fused, the kurtosis for the fused data-set (NT + PP)
is reduced to + 0.35, which means it is nearer to Normal
distribution.

Hence, the above explanation shows that the fused-data
becomes more random. This is beneficial for machine learn-
ing algorithms. For example, the usual way to combine the
randomized models into a group for a machine learning algo-
rithm (e.g. Random Forest) is to average their predictions:

9D,θ1,...,θM (x) =
1
M

∑
φD,θm (x) (5)

where M is a number of models, φD,θm is the randomized
model (e.g. Random Forest), D is the data-set, θm is the
random seed, and 9D,θ1,...,θM is the new group model (e.g.
Random Forest after fusing the data-sets). So the expected
generalization error of the group is smaller compared to
the generation error of the individual randomized models.
The reason is that the average prediction is the prediction
that reduces the average squared error concerning the indi-
vidual predictions of the models. The average prediction is
the closest prediction concerning all individual predictions.
Creating a fused data-set always reduces the variance of the
class probability estimate, which results in a reduction of the
misclassification error in a randomized model [56].

TABLE 5. Result of feeding fused data to machine learning and individual
attack detection accuracy in HAN.

By fusing the two data-sets (NT and PP), the accuracy
increases and the false-positive decreases. Table 5 shows the
result of feeding fused data to machine learning. The hard-
ware Trojan detection accuracy is high for most of the attack,
but the machine learning model is not able to differentiate
among a power depletion attack, covert channel attack and
normal operation, as these three cases follow the same data
pattern reporting to the IoT-GD. This lead to a reduction in
the overall accuracy for all attacks to be 92.27% as shown in
Table 3. To increase the accuracy for these attacks, FusIon
methodology recommends comparing each individual attack
against the normal case operation.

Table 6 shows the accuracy for the trained machine learn-
ing model to differentiate between the normal case and one
attack case at a time. The trained machine learning model is
able to classify almost all the attacks with very high accuracy.
It can be clearly seen from Table 6 that FusIon technique
is providing better results, except for power depletion attack
compared to almost all the state-of-the-art literature. Regard-
ing power depletion attack, in [34] the authors only discussed
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TABLE 6. The accuracy for the trained machine learning model to
differentiate between the normal case and one attack case at a time in
HAN network.

a software/malware-based power depletion attack. While this
work is the first one that detects the hardware-based attack on
the field without presuming a design level modification in the
hardware.

Compared to other works in literature, the proposed tech-
nique can detect five attacks concurrently with high accuracy.
Table 4 compares the FusIon approach with other approaches
in the literature. In [34] & [46], the authors address the
power manipulation or power depletion attack inside the IoT
devices. The work [34] reports their accuracy as 98.6% for
only a power depletion attack. In [8] & [9], the authors
address the DoS attack and covert channel attack on IoT
devices. Work [21] addresses only the DoS attack on IoT
devices and their accuracy is 98% for a DoS attack. Authors
of [14], [15], & [17] address the covert channel attack on an
IoT device. The works [15] & [17] report their accuracy as
92% and 90% respectively for a covert channel attack only.

By fusing the NT and PP data-set, the proposed technique
can concurrently detect five attacks with an accuracy of
92.27% as reported in the last column of the Table 4. FusIon
methodology does the decision on the IoT-GD, i.e. the trained
machine learning model runs on the IoT-GD because it is
secure, better and faster compared to cloud-based services
[16]. Although cloud-based services provide the required
resources, data communication from IoT-EDs to cloud brings
up different challenges: security problems, power consump-
tion, time lag, and bandwidth limitation. To get over these
limitations, previous studies have suggested moving data
processing close to the edge of the network [16], [58], [59].

VIII. CONCLUSION
In this paper, the hardware Trojan attack and its effect on IoT
devices and the IoT-based HAN has been studied. This paper
investigates five types of HT-based attacks on HAN. The
network traffic and power profiling data-sets have been used
to train a machine learning model. With randomness intro-
duced in the five attacks, the detection accuracy decreases
for both data-sets. The proposed data fusion technique leads
to an increase in the detection accuracy and reduction in the
false positives. The proposed methodology results showmore
than 99% accuracy on the individual attack detection, which
is better than most of the state-of-the-art works [15], [17],
[21], and [34]. Moreover, this work is able to detect five types
of HT-based attacks concurrently, which is, to the best of
authors’ knowledge, a unique contribution.
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