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ABSTRACT This paper reports a flexible (or time-varying) multi-agent formation approach with average
trajectory tracking for second-order integral multi-agent networks with single virtual leaders. The approach
is developed by means of time-varying Olfati-Saber flocking algorithms, and sliding mode control (SMC)
in terms of the leader-average dynamics. More precisely, SMC-specifying average trajectory tracking is
combined with flexible multi-agent flocking driven by the Olfati-Saber flocking algorithms with time-
varying weighting norm. Existence conditions and properties of the suggested multi-agent formation are
examined rigorously, together with implementation formulas. It is shown that by designing the sliding surface
and the time-varying weighting matrix appropriately, flexible formation with finite-time trajectory tracking
can be achieved, free of control action chattering; moreover, the sliding mode control and formation control
can be designed separately. Numerical examples are given to illustrate the main results.

INDEX TERMS Multi-agent, flexible flocking formation, leader-average model, sliding mode control,
trajectory tracking.

I. INTRODUCTION
Miscellaneous systems can be modeled as multi-agent net-
works, while various control problems can be reformulated
as formation manipulation of the dynamics and behaviours of
the multi-agent networks. In the literature, multi-agent con-
trol theory and applications have been attacked intensively,
for example in [18], [30], [38], [42], [43], [45], [46], [49],
[55], [57]. In the latest score of years, fruitful results and
numerous expansions on multi-agent control are reported,
in which the controlled plants are modeled as self-driven
[7], [22], sampled-data [13], [17], time-delayed and nonlin-
ear ones with or without uncertainties/disturbances [5], [19],
[21], [32], [54]. As real world applications, multi-agent flock-
ing strategies are adopted in autonomous unmanned vehicles
as in [16], [48]; multi-agent collision control is exploited for
power swing reduction and frequency synchronism in large-
scale power systems [51], [60].

Formation control in networked systems is an inevitable
task in geographic data scanning, military surveillance, and
robots routing and task cooperating. As a matter of fact, there
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are numerous papers related to formation control, regard-
ing various types of networked plants [3], [7], [8], [11],
[14], [23]–[25], [33]–[35], [40], [41], [47], [52], [53], [58].
Formation control with targeting and/or trajectory tracking
is discussed in [26]. Eigen-structure assignment in forma-
tion control is considered by [29]. Formation control with
multi-agent orientation rolling and shaping is examined by
[20], [39]. Formation control under iterative learning can be
found in [4], [27], [28]. To achieve flexible or time-varying
multi-agent formation, interesting discussions are summa-
rized in [1], [9], [10], [15], [50].

In this study, the generalized flocking algorithms
of [31], [59] for the second-order integral multi-agent net-
works with single virtual leaders are further extended by
employing time-varying weighting matrices in position and
velocity metrics for flexible multi-agent formation control.
As the main results, existence and properties about the
flexible formation aspect under the suggested algorithms
are summarized. To address the trajectory-tracking aspect,
the navigation features of the leader-average dynamics are
exploited. More specifically, based on the sliding mode
control techniques [6], [12], [36], [37], [44], [56], [61], the
transient/steady-state average dynamics are manipulated for
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the leader-average state to slide on the sliding surface spec-
ified along the tracked trajectory, while the flexible forma-
tion is retained simultaneously. Advantages of the approach
include: (a) the control algorithms for flexible formation
and sliding mode can be designed separately; (b) the sliding
mode control for navigation keeps the trajectory tracking
from matched noise, while the average trajectory-tracking is
attainable in finite time; (c) the sliding mode is virtual, and
no chattering control actions are practically involved.

Outlines: Preliminaries to second-order integral multi-
agent networks are collected in Section II. Section III expli-
cates the flocking algorithms with time-varying weighting
parameters. Leader-average modeling and sliding mode con-
trol are explicated in Section IV. Trajectory-tracking forma-
tion control is formulated and addressed in Section V with
respect to the leader-average model. Illustrations are sketched
in Section VI, and Section VII is our conclusion.

Notations:R and C denote the sets of all real and complex
numbers, respectively. In denotes the n × n identity matrix.
(·)⊗ (∗) means the Kronecker product of the matrices (·) and
(∗). | · |means the absolute value of a scalar complex number,
the Euclidean vector norm and the induced matrix norm as
appropriately according to the context.

II. PRELIMINARIES TO MULTI-AGENT NETWORKS
Firstly, let us consider a multi-agent network consisting of
N agents, each of which is described by the second-order
continuous-time state-space equation

q̇i(t) = pi(t), ṗi(t) = ui(t), t ≥ 0 (1)

with i ∈ {1, · · · ,N } := N . In (1), qi(t), pi(t), ui(t) ∈ Rn are
the position, velocity and acceleration vectors, respectively,
of the agent i at time t . Throughout the paper, we write
˙(·) = d(·)/dt . The time variable t will be dropped.
For our latter usage, let us define the vectorization of
{qi}Ni=1, {pi}

N
i=1 and {ui}

N
i=1, respectively, as follows.{

q =: vec{qi} = [qT1 , q
T
2 , · · · , q

T
N ]

T
∈ RNn

p =: vec{pi} ∈ RNn, u =: vec{ui} ∈ RNn

Accordingly, the multi-agent network with the agents indi-
vidually defined by (1) can be re-written collectively as the
(Nn)-dimensional model (2).

q̇ = p, ṗ = u, t ≥ 0 (2)

Secondly, let Mt =: M (t) ∈ Rn×n be a time-varying
weighting matrix for inter-agent position difference metric in
the Euclidean norm sense of

|Mt1qij| = |Mt (qi − qj)|

Based on this, the γ -neighbor of the agent i is defined as

Ni,t =: {j ∈ N : if |Mt1qij| < γ }

where γ > 0 is the radius of the super-ball in Rn; Ni,t ⊆ N
for all t ≥ 0. By the definition, Ni,t is the subscript set of

all agents in the neighborhood of the agent i at t . The same
radius is meant in all neighborhoods.

Thirdly, let (i× j) be an undirected connection between the
agents i and j if both are in each other’s γ -neighborhood, and
thus their position and velocity data are available mutually.
The graph of the multi-agent network at t is

Gt = {(i× j) : j ∈ Ni,t , i 6= j,∀ i ∈ N } ⊂ N ×N (3)

That is, for each specific t ∈ [0,∞), Gt is a subgraph of
N × N = {(i × j) : ∀ i, j ∈ N , i 6= j}, which is a set of
all one-to-one connections in the multi-agent network.

III. FLEXIBLE MULTI-AGENT FORMATION CONTROL
Now we formulate the formation control: fix the control
actions {ui}Ni=1 such that distributed and localized feedbacks
are built and the following relationships hold.

0 < |Mt1qij| < γ, ∀ (i× j) ∈ Gt , i 6= j,
∀ t ∈ [0,∞)

lim
t→∞
|Mt1qij| = d, ∀ (i× j) ∈ G∞, i 6= j,

0 < d < γ

lim
t→∞

pi = p∗, ∀ i ∈ N , ∃p∗ 6= 0 ∈ Rn

Mt 6≡ 0, ∀t ∈ [0,∞)

(4)

where G∞ is the graph of the multi-agent network at t →∞.
In (4), the first relation reflects the agent behavior rules:
neither collision nor splitting all the time; the second and third
relations are to achieve the specified formation and velocity
consensus in the steady-state. Mt 6= 0 and 0 < d < γ are
assumed for the γ -neighborhood and the limit to be well-
defined. Also, p∗ 6= 0 ensures that velocity consensus is
rigorously meant in orientation and magnitude.

A. TIME-VARYING FLOCKING CONTROL
Build the time-varying generalized Olfati-Saber algorithm
based on [31], [59] as follows.

ui = −6j∈Ni,tφ(Mt (qj − qi))MT
t nij(Mt (qi − qj))

−6j∈Ni,taij(Mt (qj − qi))MT
t Mt (pi − pj)

− [8T8(qi − qr )+9(pi − pr )] (5)

where 8 ∈ Rn×n is non-singular and 0 < 9T
= 9 ∈ Rn×n.

The control action ui defined by (5) is determined by the time-
varying flocking control algorithm.

To explicate the algorithm, we write z =: qj − qi. About
the first term in (5), we use the following notations.

φ(Mtz) =:
ρ(|Mtz|σ /γσ , η)

2

·

[ (|Mtz|σ − dσ + c)(a+ b)√
1+ (|Mtz|σ − dσ + c)2

+ (a− b)
]

where a, b, c satisfy 0 < a ≤ b and c = |a −
b|/
√
4ab > 0. dσ = |d |σ = ε−1[

√
1+ εd2 − 1] and

γσ = |γ |σ = ε−1[
√
1+ εγ 2 − 1]. Since 0 < d < γ , it
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holds that 0 < dσ < γσ . Here, | · |σ is called the σ -norm

|Mtz|σ = ε−1
(√

1+ ε|Mtz|2 − 1
)
: Rn
→ R+0

where ε > 0 is a parameter and R+0 = {s ∈ R : s ≥ 0}.
The bump function ρ(·, ·) is a scalar mapping given by

ρ(|Mtz|σ /γσ , η) =



1, |Mtz|σ /γσ ∈ [0, η)
1
2
[1+ cos(π ·

|Mtz|σ /γσ − η
1− η

)],

|Mtz|σ /γσ ∈ [η, 1]
0, otherwise

with η ∈ (0, 1). For fixed η, ρ(z, η) ∈ [0, 1] is C1-smooth,
and ∂ρ(z, η)/∂z = 0 over z ∈ [1,∞).
Also about the first term of (5), for all i, j ∈ N , we have
nij(Mt (−z)) =

−Mtz√
1+ ε|Mtz|2

= −nji(Mtz) ∈ Rn

ϕ(Mtz) =:
∫
|Mt z|σ

dσ
φ(s)ds

To see the second term of (5), define the adjacent function

aij(Mt (qj − qi)) =:


0, ∀ i = j, or j 6∈ Ni,t

ρ(|Mt (qj − qi)|σ /γσ , η),
∀ i 6= j, j ∈ Ni,t

(6)

In what follows, we call

A(Mtq) =: {aij(Mt (qj − qi))} ∈ RN×N

the spatial adjacency matrix for the position vectorization q.
Here, Mt = IN ⊗ Mt ∈ RNn×Nn. Clearly, A(Mtq) is sym-
metrical with non-negative entries, whose scalar Laplacian
matrix and the multi-dimensional Laplacian matrix, denoted
by L(Mtq) and L(Mtq), are given by{

L(Mtq) = 1A(Mtq)− A(Mtq) ∈ RN×N

L(Mtq) = L(Mtq)⊗ In ∈ RNn×Nn (7)

where1(·) is the degree matrix of (·). Its diagonal entries are
the row-sums of (·) and non-diagonal ones are zeros.
To understand the third term of (5), we need the virtual

leader agent model

q̇r = pr , ṗr = ur , t ≥ 0 (8)

with qr , pr ∈ Rn. The leader agent provides navigation such
that additional objectives for the agents to track the leader
behavior and so on can be taken into account.
Remark 1: Since the leader is virtual, no leader agent

exists such that qr and pr are measured and informed to all
the agents. When implementing the protocol in the follower
agents, the leader agent is nothing but a navigation program
driven by qa and pa, which are the average position and
velocity that can be obtained by distributed measurements
and data exchanges in between the agents.

B. AVERAGE MODELING
To see existence and properties under the time-varying flock-
ing algorithm (5), we explain the average model for the
closed-loop multi-agent dynamics. Define the average posi-
tion and velocity vectors, respectively, by

qa = N−16N
i=1qi, pa = N−16N

i=1pi

Accordingly, by summing all individual equations in (1)
under the time-varying flocking algorithms (5) and multiply-
ing the sum equation with 1/N , it follows that

q̇a = pa, ṗa = −8T8(qa − qr )−9(pa − pr ) (9)

In deriving (9), we used 6N
i=1u1,i = 0 and 6N

i=1u2,i = 0.
Thirdly, let us introduce new position and velocity vectors

with respect to the average frame (qa, pa); that is

xi = qi − qa, vi = pi − pa

Correspondingly, xj − xi = qj − qi and vj − vi = pj − pi hold
true. If we further define

x =: vec{xi} ∈ RNn, v =: vec{vi} ∈ RNn

Eventually, the closed-loop multi-agent dynamics can be
reflected under the shifting frame (x, v) by the structural
dynamics model

ẋ = v,
v̇ = −MT

t V(Mtx)Mtx −MT
t L(Mtx)Mtv

−[8T8x +9v]

(10)

where V(Mtx) is similar to L(Mtx) but in terms of the Lya-
punov functional V (Mt , x) defined according to [59].
The closed-loop multi-agent network (10) is time-varying

and highly nonlinear, whose solution cannot be given explic-
itly. However, fortunately, its Hamiltonian equivalence can
help us in proving Theorem 1, though the details are omitted
due to space limitation and to avoid redundance.

C. EXISTENCE AND PROPERTIES OF FLEXIBLE
MULTI-AGENT FORMATION
Now we are ready to conclude Theorem 1 about flexible
flocking formation under the algorithm (5), which is a time-
varying version of Theorem 3.1 [59].
Theorem 1: Consider the multi-agent network with agents

individually defined by (1). To each agent, the time-varying
flocking algorithm (5) is imposed, in which Mt 6≡ 0 ∈ Rn×n,
|Mt | < κ over t ≥ 0 for some 0 < κ < ∞ and
MT
t Ṁt = ṀT

t Mt ≤ 0 for all t ≥ 0; in addition, 8 ∈
Rn×n is nonsingular and 0 < 9T

= 9 ∈ Rn×n. Let
K (v) = |v|2/2 and J (8, x) = |8x|2/2. If K (v)|t=0 <∞ and
J (8, x)|t=0 <∞, then we have
(i) The multi-agents remain cohesive along the average

trajectory qa; that is, a radius 0 < ϒ < ∞ uniformly
in t ≥ 0 exists such that |q− qa| ≤ ϒ over t ≥ 0.

(ii) |v(t)| → 0 as t → ∞ is always achievable; that
is, limt→∞ p1 = · · · = limt→∞ pN = p∗ with
p∗ = limt→∞ pa(t) ∈ RNn.
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(iii) Almost every solution x to (10) asymptotically con-
verges to an equilibrium, where V (Mt , x) + J (8, x) is
locally minimized.

(iv) If supt∈[0,∞) |Mt | is sufficiently small, then multi-agent
collision occurs ultimately as t → ∞ in the sense of
limt→∞ |qi − qj| = 0 for all i, j ∈ N .

Here, MT
t Ṁt = ṀT

t Mt ≤ 0 over t ≥ 0 means that MT
t Ṁt is

symmetric and negative semi-definite for each fixed t ≥ 0.
Remark 2: If Mt is differentiable almost everywhere (that

is, it is not differentiable only in a set of measure zero) and
MT
t Ṁt is symmetric, MT

t Ṁt = ṀT
t Mt ≤ 0 is satisfied when

one of the following conditions is true.
(A1). Mt is piecewise constant for all t ≥ 0;
(A2). Ṁt = −Mt for all t ≥ 0;
(A3). Mt = α(t)M, where M ∈ Rn×n is a constant matrix

and α(t) is a scalar function in t satisfying α(t)α̇(t) ≤ 0 for
all t ≥ 0.
Remark 3: The assertions (i)-(iii) of Theorem 1 say that

if Mt is moderate in the magnitude sense of |Mt |, flexible
formation almost always exists in the steady state. The asser-
tion (iv) says that multi-agent formation may not happen, if a
small-magnitude Mt is adopted so that rejecting forces are
not strong enough to keep away from each other.
Remark 4: According to [59], the proof arguments about

Theorem 1 are based on the structural dynamic model (10).
The model has nothing to do with qa, pa, qr and pr alge-
braically. In view of this, we conclude that Theorem 1 holds
true no matter what behaviors qa, pa, qr and pr possess;
or flexible formation is achievable independent of qa, pa, qr
and pr . This is the starting point for us to introduce sliding
mode control to manipulate qa, pa, qr and pr , while flexible
formation remains unchanged.

IV. LEADER-AVERAGE MODEL AND SLIDING MODE
CONTROL
A. LEADER-AVERAGE DYNAMICS AND STRUCTURAL
FEATURES
To understand the leader-average dynamics of the closed-
loop multi-agent network, let us re-express (8) and (9) with
the augmented vector [qTa , p

T
a | q

T
r , p

T
r ]
T
∈ R4n as follows.

q̇a
ṗa
q̇r
ṗr


︸ ︷︷ ︸

ξ̇

=


0 In 0 0

−8T8 −9 8T8 9

0 0 0 In
0 0 0 0


︸ ︷︷ ︸

A

·


qa
pa
qr
pr


︸ ︷︷ ︸

ξ

+


0
0
0
In


︸ ︷︷ ︸

B

ur (11)

which is termed the leader-average equation. Clearly,
the weighting matrix Mt is not in (11). Also we notice
• Firstly, since (11) is LTI, the multi-agent formation with
expected stead-state average features is meant in the

sense of t →∞. Hence to realize finite-time trajectory-
tracking formation under the control algorithms (5),
the sliding mode control is used.

• Secondly, the controllability matrix for (11) is

QC (s) =: [ sI4n − A B ] ∈ R4n×5n

Since 8T8 > 0, rank {QC (s)} = 4n for all s ∈ C.
The PBH criterion says that the leader-average dynam-
ics (11) are controllable if 8T8 > 0. This in turn
implies that by choosing the leader reference ur appro-
priately, the multi-agent average trajectories can be
specified.

B. SMC IN LEADER-AVERAGE DYNAMICS
In this subsection, we formulate and address leader-average
SMC for accommodating flexible formation with finite-time
average trajectory tracking.

We re-write the leader-average equation (11) as[
ξ̇1

ξ̇2

]
=

[
A11 A12
0 A22

] [
ξ1
ξ2

]
+

[
0
In

]
ur (12)

By the structural facts, the pairs (A,B) and (A11,A12) are
controllable under 8T8 > 0.

With respect to (12), let us define the switching function
s : R4n

×Rn
→ Rn:

s(ξ, µ) = Sξ + µ, ∀t ≥ 0

where S ∈ Rn×4n is constant and rank(S) = n; µ :
R4n
×R+0 → Rn is a shifting factor reflecting some expected

performances about the sliding surface

St (µ) = {ξ ∈ R4n
: s(ξ, µ) = 0}

Next, to explicate the sliding mode control ur , let us intro-
duce the following coordinates transformation to (12).[

ξ1
s(ξ, µ)

]
=

[
I3n 0
S1 S2

] [
ξ1
ξ2

]
+

[
0
µ

]
It follows that[

ξ̇1
ṡ(ξ, µ)

]
=

[
A11 A12
S1A11 S1A12 + S2A22

]
·

[
ξ1
ξ2

]
+

[
0

S2ur + µ̇

]
Note that s(ξ, µ) = S1ξ1 + S2ξ2 + µ. It follows that

ξ2 = S−12 [s(ξ, µ)− µ]− S−12 S1ξ1

This leads that[
ξ̇1

ṡ(ξ, µ)

]
=

[
301
302

]
+

[
0

S2ur + µ̇

]
where

301 = [A11 − A12S
−1
2 S1]ξ1

+A12S
−1
2 [s(ξ, µ)− µ]

302 = [S1A11 − (S1A12 + S2A22)S
−1
2 S1]ξ1

+ (S1A12 + S2A22)S
−1
2 [s(ξ, µ)− µ]
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In summary, the leader-average equation (12) is expressed
under the new coordinates as

ξ̇1 = 311ξ1 +312S
−1
2 [s(ξ, µ)− µ]

ṡ(ξ, µ) = S2321ξ1 + S2322S
−1
2 [s(ξ, µ)− µ]

+ S2ur + µ̇

(13)

where 
311 = A11 − A12S

−1
2 S1 ∈ R3n×3n

312 = A12 ∈ R3n×n

321 = S−12 S1311 − A22S
−1
2 S1 ∈ Rn×3n

322 = S−12 S1A12 + A22 ∈ Rn×n

Note that (A11,A12) is controllable. Then, we can always
prescribe a non-singular S2 ∈ Rn×n and S1 ∈ R3n×n such
that all eigenvalues of 311 = A11 − A12S

−1
2 S1 have negative

real parts via pole assignment. The eigenvalue assignment of
311 plays a key role in ensuring that the state solution of (13)
is at least ultimately bounded, which in turn guarantees that
the desired sliding mode will be maintained after reaching the
sliding surface [12].

C. EXISTENCE AND PROPERTIES FOR SMC
Now let us construct the sliding mode control ur by

ur = ur1 + ur2, t ≥ 0 (14)

where ur1=−321ξ1−322S
−1
2 [s(ξ, µ)−µ]+S−12 4s(ξ, µ)

ur2 = S−12

[
− µ̇− β

ϒs(ξ, µ)
||ϒs(ξ, µ)||

]
, s(ξ, µ) 6= 0

(15)

with 4 ∈ Rn×n, 0 < ϒT
= ϒ ∈ Rn×n being design

parameter matrices and β > 0 a scalar. Also, 4 is Hur-
witz and ϒ is the unique solution to the Lyapunov equation
4Tϒ+ϒ4 = −In. It must be stressed that ur2 is not defined
at s(ξ, µ) = 0. When s(ξ, µ) = 0, the state vector of (13)
is located on the sliding surface, where ur will be replaced
by some equivalent control ure defined soon. In addition,
to ensure that the control laws in (14) and (15) are imple-
mentable, bounded-ness of ξ1, ur1 and µ over t ∈ [0,∞) is
needed. This is guaranteed by the stable eigenvalues of 311.
As a final step for fixing ur , we specify the shifting factor

µ to be differentiable with respect to t , which is our standing
assumption in the discussion. Thus, µ is bounded if ξ1 is
bounded. The latter is ensured by stability of 311.
Now we are ready to claim existence and properties for the

leader-average equation (12) to run into the sliding surface
St (·) and remain there under the control laws (14) and (15).
The proof details for Theorem 2 are given in Appendix.
Theorem 2: Consider the leader-average equation (12).

Assume that the shifting factor µ in (15) is differentiable
with respect to t, and supt∈[0,∞) ||µ|| < ∞. If S = [S1, S2]
is taken such that S2 is non-singular and all eigenvalues of
311 = A11 − A12S

−1
2 S1 possess negative real parts, namely

max
i=1,··· ,3n

{Re(λi(311))} < 0 (16)

Then, the state vector of (12) will be driven into the sliding
surface St (µ) in finite time ts < ∞ by the control input ur
in (14) and (15) when s(ξ, µ) 6= 0, and remain there over
t ∈ [ts,∞) under the equivalent control

ure = −321ξ1 +322S
−1
2 µ− S−12 µ̇ (17)

when s(ξ, µ) = 0.
Several remarks about Theorem 2.
• A procedure for fixing S = [S1, S2] is: firstly, choose
K ∈ Rn×3n such that all eigenvalues of A11−A12K have
negative rear parts and thus max{Re(λ(311))} is fixed;
secondly, take S1 ∈ Rn×3n and nonsingular S2 ∈ Rn×n

such that S−12 S1 = K ; thirdly, write S ′1 = δS1 and S
′

2 =

δS2 for some sufficiently large δ > 0 as a scaling param-
eter so that maxi=1,··· ,3n{Re(λi(A11 − A12K ))} < 0;
fourthly, since (S ′2)

−1S ′1 = S−12 S1 = K , all assumptions
of Theorem 1 are satisfied with S = [δS1, δS2]. Clearly,
some trial-and-error is needed.

• Since the sliding mode control ur in (14), (15) contains
sign operations, chattering might be brought into the
flocking control algorithm (5). However, if we see that
ur is merely an indirect input to induce the desirable
average trajectory in terms of qr and pr . It is qr and
pr that bring the leader navigation into the the flocking
control algorithm (5). Clearly, qr and pr themselves
have no chattering, since the leader-average model acts
actually as a low-passing filter.

V. MULTI-AGENT FORMATION WITH FINITE-TIME
TRAJECTORY TRACKING UNDER SMC
A. PROBLEM FORMULATION AND SOLUTION
The problem is: determine possible control ur such that in
the leader-average model with the output relation (18), it is
satisfied that y = µ for all t ≥ ts within finite time ts < ∞.
Here, µ stands for the desired average trajectory.

[
ξ̇1

ξ̇2

]
=

[
A11 A12
0 A22

][
ξ1

ξ2

]
+

[
0

In

]
ur

y =
[
C1 C2

]
︸ ︷︷ ︸

C

[
ξ1

ξ2

]
(18)

To address the problem, let us define the switching function
and sliding surface as{

s(ξ, η) = −Cξ + µ
St (ξ ) = {ξ ∈ R4n

: −Cξ + µ = 0}

Then, we must answer: under what conditions does any SMC
control ur exist such that the leader-average output y will be
forced to the trajectoryµ (or the sliding surface St (·)) in finite
time and remain there thereafter?
Corollary 1: In the leader-average model with the output

relation in (18), assume that C = [C1, C2] ∈ Rn×4n with
C2 ∈ Rn×n being nonsingular such that A11 − A12C

−1
2 C1

is Hurwitz. Then, under the sliding mode control ur in (14)
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and (15) when s(ξ, µ) 6= 0, the output vector of (18) will
be driven to the sliding surface St (ξ ) in finite time ts < ∞
and thus y = µ for all t ≥ ts. The equivalent control for the
trajectory tracking when s(ξ, µ) = 0 is

ure = −321ξ1 −322C
−1
2 µ+ C−12 µ̇, t ≥ ts

In the above, µ is the desired average trajectory.
Proof of Corollary 1: It is straightforward to show that

all the conditions of Theorem 2 are satisfied. Therefore,
the results follow from Theorem 2 readily. Q.E.D

Several remarks about Corollary 1.
• The trajectory tracking is meant in the leader-average
dynamics, rather than the multi-agent ones. Main advan-
tages of the SMC technique include: firstly, the tracking
output reaches the desired trajectory in finite time; sec-
ondly, the reference tracking is totally free frommatched
uncertainties and robust to bounded unmatched uncer-
tainties; thirdly, no chattering control actions involved
in the flocking control.

• Different from the internal mode principle for trajec-
tory tracking, no trajectory modeling is involved. More-
over, the multi-agent formation control laws and the
control law to induce the sliding mode are designed
separately.

• The finite time ts < ∞ is in the sense of the out-
put vector of the leader-average dynamics. In other
words, we cannot claim any finite-time reaching to the
sliding surface for the individual agents themselves in
general.

B. IMPLEMENTING MULTI-AGENT FLOCKING CONTROL
WITH LEADER-AVERAGE SMC
Now we consider implementation of the time-varying flock-
ing algorithm (5) while the average dynamics are tracking a
specific trajectory via SMC, which is induced by ur defined
in (14), (15) and (17) as appropriately. Since the time-varying
flocking algorithm (5) consists of three terms, in which only
u3,i is related to the leader-average dynamics in terms of
qr and pr . In view of this, our discussion goes to how to
determine qr and pr .

Under the assumptions of Corollary 2, when the desired
trajectory µ is given, we write

E11 =: −321 −322C
−1
2 C1 + C

−1
2 4C1

E12 =: −322 + C
−1
2 4C2

Ere,1 =: −321

It follows that
ur = E11ξ1 + E12ξ2 − C

−1
2 4µ+ C−12 µ̇

+ γ
C−12 ϒ(µ− Cξ )

||ϒ(µ− Cξ )||
, µ− Cξ 6= 0

ure = Ere,1ξ1 −322C
−1
2 µ+ C−12 µ̇, µ− Cξ = 0

Substituting ur and ure for the closed-loop leader-average
equation, we obtain that

ξ̇ =

[
A11 A12
E11 A22 + E12

]
ξ +

[
0

In

]
C−12

· (−4µ+ µ̇+ β
ϒ(µ− Cξ )
||ϒ(µ− Cξ )||

),

µ− Cξ 6= 0

ξ̇ =

[
A11 A12
Ere,1 A22

]
ξ +

[
0

In

]
· (−322C

−1
2 µ+ C−12 µ̇), µ− Cξ = 0

(19)

VI. NUMERICAL ILLUSTRATIONS
Now we sketch numerical simulations about second-order
integral multi-agent networks to illustrate the main results.

Throughout the following figures, in the sub-figures cap-
tioned by (a), the dots represent the agent positions, and the
arrows stand for the agent velocities; the undirected lines
in between the dots reflect that the agents are within each
other’s γ -neighbourhood; the blue-dashed curve represents
the expected trajectory, while the red-solid curve is the multi-
agent average trajectory. In the sub-figures captioned by (b),
the control action vectors are plotted with respect to time t in
a per-dimension way.

A. TRAJECTORY-TRACKING FORMATION OF 2D
MULTI-AGENT NETWORK
Consider a 2-dimensional second-order integral multi-agent
network with 6 individuals. Initial position and veloc-
ity conditions of the multi-agents are randomly created
within [−10, 10]× [−10, 10] and [−5, 5]× [−5, 5], respec-
tively. The leader’s initial conditions are qr (0) = [0; 0],
pr (0) = [0; 0] and ur (0) = [0; 0].

According to Corollary 2 and its implementation formulas,
the algorithm parameters in (5) are: ε = 0.1, a = 5, b = 5,
η = 0.6, d = 12, γ = 1.2d = 14.4, and

8 =
√
0.2I2, 9 = 20I2

4 = −0.5, β = 3× 103

C = [−128.64, 0, −94.4, 0, 129.6, 0, 96, 0;
0, −128.64, 0, −94.4, 0, 129.6, 0, 96]

In the 2-dimensional case, the trajectory µ = [x, y]T is
defined as {

x(t) = 100 sin(2π t/100)
y(t) = 100 cos(2π t/100)

More precisely, Figure 1(a) gives the multi-agent
trajectory-tracking flocking in the time interval [0, 600]swith
fixed formation determined by the constant weighting matrix
Mt = 1.2I2. The multi-agent formations are plotted every
ten seconds during the first hundred seconds and every fifty-
four seconds during the other time in Figure 1(a). Figure 1(b)
illustrates the control actions during [0, 100]s, together with

36094 VOLUME 8, 2020



J. Zhou et al.: Multi-Agent Trajectory-Tracking Flexible Formation via Generalized Flocking and Leader-Average SMC

FIGURE 1. Fixed trajectory-tracking formation with SMC in the 2D case.

FIGURE 2. Flexible trajectory-tracking formation with SMC in the 2D case.

those over [0, 5]s and [50, 100]s. It is worth noticing that no
control action chattering is involved.

Figure 2 presents the results under the time-varying
weighting matrix Mt = (1 + |t−500|

500 )I2. In particular,

FIGURE 3. Fixed trajectory-tracking multi-agent formation with SMC in
the 3D case.

when ||Mt || decreases during t ∈ [0, 500), then the forma-
tion scales up gradually; when ||Mt || is increasing during
t ∈ [500, 600), then the formation scales down gradually.
This reveals that the formation scaling can be adjusted by
choosing the weighting matrix Mt as appropriately.

Clearly, in both cases the desired multi-agent formation
is yielded, and the formation average position runs into the
expected trajectory.

B. TRAJECTORY-TRACKING FORMATION OF 3D
MULTI-AGENT NETWORK
Consider a 3-dimensional multi-agent integral network with
3 individuals. Initial position and velocity conditions of
the multi-agents are randomly created within [−10, 10] ×
[−10, 10]×[−10, 10] and [−5, 5]×[−5, 5]×[−5, 5], respec-
tively. The leader’s initial conditions are qr (0) = [0; 0; 0],
pr (0) = [0; 0; 0] and ur (0) = [0; 0; 0].

According to Corollary 2 and its implementation formulas,
the algorithm parameters in (5) are: ε = 0.1, a = 5, b = 5,
η = 0.6, d = 60, γ = 1.2d = 72, and

8 =
√
0.2I3, 9 = 20I3

4 = −0.5, β = 3× 103

C = [−135.474, 0, 0, −99.415, 0, 0, 136.485, 0, 0,
101.1, 0, 0; 0, −135.474, 0, 0, −99.415, 0, 0,
136.485, 0, 0, 101.1, 0; 0, 0, −135.474, 0, 0,
−99.415, 0, 0, 136.485, 0, 0, 101.1]
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FIGURE 4. Flexible trajectory-tracking multi-agent formation with SMC in
the 3D case.

In the 3-dimensional case, the trajectory µ = [x, y, z]T is
given by

x(t) = (10+ 0.1t) sin(2π t/200)
y(t) = (10+ 0.1t) cos(2π t/200)− 40
z(t) = t

which is illustrated with the blue-dashed curve.
More precisely, Figure 3(a) gives the multi-agent

trajectory-tracking flocking with a fixed formation deter-
mined by the constant weighting matrix Mt = 1.2I3 during
the time interval [0, 1000]s. The multi-agent formations are
plotted every twenty seconds during the first two hundred
seconds and every hundred seconds during the other time
in Figure 3(a). Figure 3(b) illustrates the control actions dur-
ing [0, 100]s, together with those over [0, 5]s and [50, 100]s,
in which no control action chattering can be seen.

Figure 4(a) illustrates the results with a flexible for-
mation determined by the time-varying weighting matrix
Mt = (1 + |t−500|

500 )I3. Similar to the 2D case, when
||Mt || decreases with respect to t ∈ [0, 500), the formation
scales up gradually; when ||Mt || increases with respect to
t ∈ [500, 1000), the formation scales down gradually.

Obviously, in both cases the desired formation is yielded,
and the average position runs into the specified trajectory.

VII. CONCLUSION
This paper is devoted to trajectory-tracking flexible formation
control of second-order integral multi-agent networks with

single virtual leaders. In other words, theOlfati-Saber’s flock-
ing algorithms are modified into a class of generalized ones
with time-varying weighting parameters; then trajectory-
tracking control is worked out with sliding mode control in
the sense of the leader-average dynamics. This technique
provides us with more design freedoms for dealing with
multi-objectives and performances. General time-varying
multi-agent formation existence and properties are summa-
rized in Theorem 1, whereas SMC-specifying trajectory-
tracking formation design is explained by Theorem 2 and
Corollary 1, whose implementation is also summarized. The
proposed SMC-specification approach is inspiring and mean-
ingful for other multi-agent control issues such as collision
avoidance and route planning.

APPENDIX
PROOF OF THEOREM 2
The proof arguments are completed in two steps.

Step 1: It is shown that the state vector of (12) can be driven
into the sliding surface St (µ) in finite time ts <∞.

To this end, we construct the Lyapunov function
V (s) = 1

2 s
T (ξ, µ)ϒs(ξ, µ). When s(ξ, µ) 6= 0 (that is,

the concerned state vector has not reached the sliding sur-
face), its derivative with respect to t (t ≥ 0) along (13) can
be given by
V̇ (s) = sT (ξ, µ)ϒ ṡ(ξ, µ)

= sT (ξ, µ)ϒ
(
S2321ξ1

+ S2322S
−1
2 [s(ξ, µ)− µ]+ S2ur + µ̇

)
= sT (ξ, µ)ϒ

(
S2321ξ1 + S2322S

−1
2 [s(ξ, µ)− µ]

+ µ̇+ S2
[
S−12 [−S2321ξ1 − S2322S

−1
2

· [s(ξ, µ)− µ]+4s(ξ, µ)]
]

+ S2
[
S−12 [−µ̇− β

ϒs(ξ, µ)
||ϒs(ξ, µ)||

]
])

= sT (ξ, µ)ϒ4s(ξ, µ)− βsT (ξ, µ)
ϒ2s(ξ, µ)
||ϒs(ξ, µ)||

= −
1
2
sT (ξ, µ)s(ξ, µ)− βsT (ξ, µ)

ϒ2s(ξ, µ)
||ϒs(ξ, µ)||

= −
1
2
sT (ξ, µ)s(ξ, µ)− β||ϒs(ξ, µ)||

≤ −
1
2
sT (ξ, µ)s(ξ, µ)− β

√
2λmin(ϒ)V (s)

where the Rayleigh quotient principle (Lemma 8.4.3
[2, p. 467]) and ϒ = ZTZ = ZZT for some square-root
matrix ZT = Z ∈ Rn×n are used. Indeed, we have

||ϒs(ξ, µ)||2 = sT (ξ, µ)ϒTϒs(ξ, µ)

= (Zs(ξ, µ))T (ZZT )(Zs(ξ, µ))

= (Zs(ξ, µ))Tϒ(Zs(ξ, µ))

≥ λmin(ϒ)(ZsT (ξ, µ))T (Zs(ξ, µ))

= λmin(ϒ)sT (ξ, µ)ZTZs(ξ, µ))

= 2λmin(ϒ)V (s)
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The arguments, with sT (ξ, µ)s(ξ, µ) ≥ 0, lead that

V̇ (s) ≤ −β
√
2λmin(ϒ)V (s)

Integrating the above inequality in time implies that the time
for the system dynamics to reach the sliding surface St (µ),
denoted by ts, must satisfy

ts ≤ β−1
√
2 V (s0)/λmin(ϒ)

where s0 denotes the initial value of s(ξ, µ) at t = 0.
Step 2: It is shown that the state vector remains on the

sliding surface thereafter if some implementable control ur
over t ∈ [ts,∞) exists.

Clearly, when the state vector reaches the sliding surface
and remains there, it holds that s(ξ, µ) = 0 over t ∈ [ts,∞).
This is equivalent to saying that the leader-average dynamics
reduce to the following.

ξ̇1 = 311ξ1 −312S
−1
2 µ

ṡ(ξ, µ) = S2321ξ1 − S2322S
−1
2 µ+ S2ur + µ̇

t ∈ [ts,∞)

(20)

For the state vector remains on the sliding surface over
t ∈ [ts,∞), it is necessary to choose ur such that ṡ(ξ, µ) = 0
over t ∈ [ts,∞). The corresponding ur is called the equiva-
lent control, denoted by ure hereafter and given as in (17).
After reaching the sliding surface, if the control ur is

replaced with ure of (17), then the state vector remains on
the sliding surface, whenever ure is implementable in the
sense that ξ1, µ and µ̇ are all bounded. To this end, let
0 < ϒ ′ = ϒ ′

T
∈ R3n×3n be the unique solution to

the algebraic Lyapunov equation 3T
11ϒ
′
+ ϒ ′311 = −Q

with 0 < Q = QT ∈ R3n×3n. Consider the Lyapunov
candidate V (ξ1) = 1

2ξ
T
1 ϒ
′ξ1 for the first equation of (20).

Then, the time derivative of V (ξ1) along the first equation
of (20) gives

V̇ (ξ1) = ξT1 ϒ
′ξ̇1 = ξ

T
1 ϒ
′[311ξ1 −312S

−1
2 µ]

= ξT1 ϒ
′311ξ1 − ξ

T
1 ϒ
′312S

−1
2 µ

= −
1
2
ξT1 Qξ1 − ξ

T
1 ϒ
′312S

−1
2 µ

≤ −
1
2
ξT1 Qξ1 + ||ϒ

′312S
−1
2 ξ1|| · ||µ||

≤ −
1
2
λmin(Q) · ||ξ1||2

+λmax(ϒ ′)||312S
−1
2 ξ1|| · ||µ||

≤ −
1
2
λmin(Q) · ||ξ1||2

+λmax(ϒ ′)||312S
−1
2 || · ||ξ1|| · ||µ||

= −||ξ1||
[1
2
λmin(Q) · ||ξ1||

−λmax(ϒ ′)||312S
−1
2 || · ||µ||

]
= −||ξ1||

(
λmax(ϒ ′)||312S

−1
2 ||

)
·

[
K ||ξ1|| − ||µ||

]
(21)

where t ∈ [ts,∞) and we simply write

K =
λmin(Q)

2λmax(ϒ ′)||312S
−1
2 ||

The inequalities in (21) say that if

K ||ξ1|| > ||µ||, t ∈ [ts,∞) (22)

then V̇ (ξ1) < 0 over t ∈ [ts,∞) and thus the solutions to the
first equation of (20) are at least bounded. Bearing in mind
the above inequality, we see that if

K ||ξ1|| > sup
t≥0
||µ|| (23)

holds true, then the inequality (22) is true. To see under what
conditions about µ the inequality (23) can be ensured, we
consider two situations: µ = 0 and µ 6= 0.

On the one hand, when µ = 0, the inequality (22) holds in
form of

K > 0, ∀ξ1 ∈ R3n (24)

This is always possible by choosing S2. Indeed, in this situ-
ation the solution ξ = [ξT1 , ξ

T
2 ]

T is actually asymptotically
stable, and thus ultimately bounded.

On the other hand, when µ 6= 0 and supt≥0 ||µ|| > 0,
it is not possible to claim asymptotical stability; actually no
inequality independent of ||ξ1|| can be derived from (23).
To surmount this problem, let us return to the last inequality
of (21) and observe that

V̇ (ξ1)≤−||ξ1||
(
λmax(ϒ ′)||312S

−1
2 ||

)
·

[
K ||ξ1|| − sup

t≥0
||µ||

]
Without loss of generality, let us assume that K > 0. It fol-
lows that V̇ (ξ1) < 0 if

||ξ1|| > sup
t≥0
||µ||/K

Hence, for any ξ1 that does not satisfy the above inequality,
it will evolve into the set ultimately. Namely, ξ = [ξT1 , ξ

T
2 ]

T

is ultimately bounded when µ 6= 0.
In short, if (24) holds, then the solution ξ = [ξT1 , ξ

T
2 ]

T is
at least ultimately bounded so that the equivalent control ure
is implementable; or equivalently, the state vector is kept on
the sliding surface by ur = ure for all t ≥ ts.

To complete the proof in Step 2, let us note that (24) can
be re-written as

λmin(Q)

2λmax(ϒ ′)||312S
−1
2 ||

> 0

Now we consider the optimal choice of Q to maximize
λmin(Q)/λmax(ϒ ′). The optimal solution is given as follows
when Q = I3n.

max{λmin(Q)/λmax(ϒ ′)} = 1/λmax(ϒ ′)

≤ −2max{Reλ(311)}

Then, it follows that (24) holds true if

−2max{Reλ(311)}

2||312S
−1
2 ||

> 0
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which yields (16), noting that 311 = A11 − A12S
−1
2 S1 and

312 = A12.

REFERENCES
[1] L. Brinon-Arranz, A. Seuret, and C. Canudas-de-Wit, ‘‘Cooperative con-

trol design for time-varying formations of multi-agent systems,’’ IEEE
Trans. Autom. Control, vol. 59, no. 8, pp. 2283–2288, Aug. 2014.

[2] D. S. Bernstein,MatrixMathematics: Theory, Facts, and Formulas, 2nd ed.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[3] A. N. Bishop, M. Deghat, B. D. O. Anderson, and Y. Hong, ‘‘Distributed
formation control with relaxed motion requirements,’’ Int. J. Robust Non-
linear Control, vol. 25, no. 17, pp. 3210–3230, Oct. 2014.

[4] X. Bu, L. Cui, Z. Hou, andW. Qian, ‘‘Formation control for a class of non-
linear multiagent systems using model-free adaptive iterative learning,’’
Int. J. Robust Nonlinear Control, vol. 28, no. 4, pp. 1402–1412, Oct. 2017.

[5] X. Chen and F. Hao, ‘‘Event-triggered average consensus control for
discrete-time multi-agent systems,’’ IET Control Theory Appl., vol. 6,
no. 16, pp. 2493–2498, Nov. 2012.

[6] M. L. Corradini and G. Orlando, ‘‘Variable structure control of discretized
continuous-time systems,’’ IEEE Trans. Autom. Control, vol. 43, no. 9,
pp. 1329–1334, Sep. 1998.

[7] M. Deghat, B. D. O. Anderson, and Z. Lin, ‘‘Combined flocking and
distance-based shape control of multi-agent formations,’’ IEEE Trans.
Autom. Control, vol. 61, no. 7, pp. 1824–1837, Jul. 2016.

[8] X. Dong, Q. Li, Z. Ren, and Y. Zhong, ‘‘Formation-containment control
for high-order linear time-invariant multi-agent systems with time delays,’’
J. Franklin Inst., vol. 352, no. 9, pp. 3564–3584, Sep. 2015.

[9] X. Dong and G. Hu, ‘‘Time-varying formation control for general lin-
ear multi-agent systems with switching directed topologies,’’ Automatica,
vol. 73, pp. 47–55, Nov. 2016.

[10] X. Dong and G. Hu, ‘‘Time-varying formation tracking for linear multia-
gent systems with multiple leaders,’’ IEEE Trans. Autom. Control, vol. 62,
no. 7, pp. 3658–3664, Jul. 2017.

[11] H. Du, S. Li, and X. Lin, ‘‘Finite-time formation control of multiagent
systems via dynamic output feedback,’’ Int. J. Robust Nonlinear Control,
vol. 23, no. 14, pp. 1609–1628, Jun. 2012.

[12] C. Edwards and S. K. Spurgeon, Sliding Mode Control-Theory and Appli-
cations. New York, NY, USA: Taylor & Francis, 1998.

[13] Y. Gao, L. Wang, G. Xie, and B. Wu, ‘‘Consensus of multi-agent sys-
tems based on sampled-data control,’’ Int. J. Control, vol. 82, no. 12,
pp. 2193–2205, Oct. 2009.

[14] W. N. Gao, Z. P. Jiang, F. L. Lewis, and Y. B. Wang, ‘‘Leader-to-formation
stability of multiagent systems: An adaptive optimal control approach,’’
IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3581–3587, Oct. 2018.

[15] Q. Gong, C. Wang, Z. Qi, and Z. Ding, ‘‘Gradient-based collision avoid-
ance algorithm for second-order multi-agent formation control,’’ in Proc.
36th Chin. Control Conf. (CCC), Dalian, China, Jul. 2017, pp. 8183–8188.

[16] T.-T. Han and S. S. Ge, ‘‘Styled-velocity flocking of autonomous vehi-
cles: A systematic design,’’ IEEE Trans. Autom. Control, vol. 60, no. 8,
pp. 2015–2030, Aug. 2015.

[17] L. S. Hu, T. Bai, P. Shi, and Z.M.Wu, ‘‘Sampled-data control of networked
linear control systems,’’ Automatica, vol. 43, pp. 903–911, May 2007.

[18] A. Jadbabaie, J. Lin, and A. S. Morse, ‘‘Coordination of groups of mobile
autonomous agents using nearest neighbor rules,’’ IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[19] B. Jiang, M. Deghat, and B. D. O. Anderson, ‘‘Simultaneous velocity and
position estimation via distance-only measurements with application to
multi-agent system control,’’ IEEE Trans. Autom. Control, vol. 62, no. 2,
pp. 869–875, Feb. 2017.

[20] S.-M. Kang and H.-S. Ahn, ‘‘Shape and orientation control of moving
formation in multi-agent systems without global reference frame,’’ Auto-
matica, vol. 92, pp. 210–216, Jun. 2018.

[21] H. Li, X. Liao, T. Huang, and W. Zhu, ‘‘Event-triggering sampling based
leader-following consensus in second-order multi-agent systems,’’ IEEE
Trans. Autom. Control, vol. 60, no. 7, pp. 1998–2003, Jul. 2015.

[22] W. Li and G. Chen, ‘‘The designated convergence rate problem of consen-
sus or flocking of double-integrator agents with general non-equal velocity
and position couplings,’’ IEEE Trans. Autom. Control, vol. 62, no. 1,
pp. 412–418, Jan. 2017.

[23] D. Li, S. S. Ge,W. He, G.Ma, and L. Xie, ‘‘Multilayer formation control of
multi-agent systems,’’ Automatica, vol. 109, Nov. 2019, Art. no. 108558,
doi: 10.1016/j.automatica.2019.108558.

[24] X. Li and L. Xi, ‘‘Dynamic formation control over directed networks
using graphical Laplacian approach,’’ IEEE Trans. Autom. Control, vol. 63,
no. 11, pp. 3761–3774, Nov. 2018.

[25] Z. Lin, L. Wang, Z. Han, and M. Fu, ‘‘Distributed formation control
of multi-agent systems using complex laplacian,’’ IEEE Trans. Autom.
Control, vol. 59, no. 7, pp. 1765–1777, Jul. 2014.

[26] L. Liu, C. Luo, and F. Shen, ‘‘Multi-agent formation control with target
tracking and navigation,’’ in Proc. IEEE Int. Conf. Inf. Autom. (ICIA),
Macau, China, Jul. 2017, pp. 98–103.

[27] D. Meng and Y. Jia, ‘‘Formation control for multi-agent systems through
an iterative learning design approach,’’ Int. J. Robust Nonlinear Control,
vol. 24, no. 2, pp. 340–361, Aug. 2012.

[28] D. Meng, Y. Jia, J. Du, and J. Zhang, ‘‘On iterative learning algorithms
for the formation control of nonlinear multi-agent systems,’’ Automatica,
vol. 50, no. 1, pp. 291–295, Jan. 2014.

[29] T. Motoyama and K. Cai, ‘‘Top-down synthesis of multiagent formation
control: An eigenstructure assignment based approach,’’ IEEE Trans. Con-
trol Netw. Syst., vol. 6, no. 4, pp. 1404–1414, Dec. 2019.

[30] R. Olfati-Saber and R. M. Murray, ‘‘Consensus problems in networks of
agents with switching topology and time-delays,’’ IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[31] R. Olfati-Saber, ‘‘Flocking for multi-agent dynamic systems: Algorithms
and theory,’’ IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401–420,
Mar. 2006.

[32] C. Peng and Q.-L. Han, ‘‘On designing a novel self-triggered sampling
scheme for networked control systems with data losses and communica-
tion delays,’’ IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1239–1248,
Feb. 2016.

[33] J. Qin, G. Zhang, W. X. Zheng, and Y. Kang, ‘‘Adaptive sliding mode
consensus tracking for second-order nonlinear multiagent systems with
actuator faults,’’ IEEE Trans. Cybern., vol. 49, no. 5, pp. 1605–1615,
May 2019.

[34] W. Qin, Z. Liu, and Z. Chen, ‘‘Formation control for nonlinear multi-agent
systems with linear extended state observer,’’ IEEE/CAA J. Automatica
Sinica, vol. 1, no. 2, pp. 171–179, Apr. 2014.

[35] G. S. Seyboth, W. Ren, and F. Allgöwer, ‘‘Cooperative control
of linear multi-agent systems via distributed output regulation
and transient synchronization,’’ Automatica, vol. 68, pp. 132–139,
Jun. 2016.

[36] J. J. E. Slotine and S. S. Sastry, ‘‘Tracking control of nonlinear systems
using sliding surfaces with application to robot manipulators,’’ Int. J. Con-
trol, vol. 38, no. 2, pp. 465–492, 1983.

[37] S. K. Spurgeon, ‘‘Hyperplane design techniques for discrete-time variable
structure control systems,’’ Int. J. Control, vol. 55, no. 2, pp. 445–456,
Feb. 1992.

[38] H. Su, X. Wang, and W. Yang, ‘‘Flocking in multi-agent systems with
multiple virtual leaders,’’ Asian J. Control, vol. 10, no. 2, pp. 238–245,
2008.

[39] H. Su and G.-Y. Tang, ‘‘Rolling optimization formation control for multi-
agent systems under unknown prior desired shapes,’’ Inf. Sci., vol. 459,
pp. 255–264, Aug. 2018.

[40] X. Sun, Y. Peng, Q. Yin, and X. Liu, ‘‘Multi-agent formation con-
trol based on artificial force with exponential form,’’ in Proc. 11th
World Congr. Intell. Control Autom., Shenyang, China, Jun. 2014,
pp. 3128–3133.

[41] X. Sun and C. G. Cassandras, ‘‘Optimal dynamic formation control of
multi-agent systems in constrained environments,’’ Automatica, vol. 73,
pp. 169–179, Nov. 2016.

[42] H. G. Tanner, A. Jadbabaie, and G. J. Pappus, ‘‘Stable flocking of mobile
agents Part II: Dynamical topology,’’ in Proc. 42nd IEEE Conf. Decis.
Control, Dec. 2003, pp. 2016–2021.

[43] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, ‘‘Flocking in fixed
and switching networks,’’ IEEE Trans. Autom. Control, vol. 52, no. 5,
pp. 863–868, May 2007.

[44] A. Tesfaye and M. Tomizuka, ‘‘Robust control of discretized continuous
systems using the theory of sliding modes,’’ Int. J. Control, vol. 62, no. 1,
pp. 209–226, Feb. 2007.

[45] J. Toner and Y. Tu, ‘‘Flocks, herds, and schools: A quantitative theory of
flocking,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 58, no. 4, pp. 4828–4858, Oct. 1998.

[46] C. M. Topaz and A. L. Bertozzi, ‘‘Swarming patterns in a two-dimensional
kinematic model for biological groups,’’ SIAM J. Appl. Math., vol. 65,
no. 1, pp. 152–174, Jan. 2004.

36098 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.automatica.2019.108558


J. Zhou et al.: Multi-Agent Trajectory-Tracking Flexible Formation via Generalized Flocking and Leader-Average SMC

[47] M.H. Trinh, S. Zhao, Z. Sun, D. Zelazo, B. D. O. Anderson, andH.-S. Ahn,
‘‘Bearing-based formation control of a group of agents with leader-first fol-
lower structure,’’ IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 598–613,
Feb. 2019.

[48] D. Viegas, P. Batista, P. Oliveira, C. Silvestre, and C. L. P. Chen, ‘‘Dis-
tributed state estimation for linear multi-agent systems with time-varying
measurement topology,’’ Automatica, vol. 54, pp. 72–79, Apr. 2015.

[49] X. F. Wang and M. D. Lemmon, ‘‘Event-triggering in distriuted networked
control systems,’’ IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 586–601,
Mar. 2011.

[50] W. Rui, D. Xiwang, L. Qingdong, Z. Qilun, and R. Zhang, ‘‘Adaptive
time-varying formation control for high-order LTI multi-agent systems,’’
in Proc. 34th Chin. Control Conf. (CCC), Hangzhou, China, Jul. 2015,
pp. 6998–7003.

[51] C. Wang, J. Zhou, and Z. Duan, ‘‘Multi-agent collision approach for stabi-
lizing multi-machine power networks with distributed excitation systems,’’
IFAC J. Syst. Control, vol. 5, pp. 11–21, Sep. 2018.

[52] K. Xu and L. Qin, ‘‘Multi-agent formation control based on virtual
forces,’’ in Proc. 5th Int. Conf. Inf. Sci. Technol. (ICIST), Changsha, China,
Apr. 2015, pp. 284–291.

[53] D. Xue, J. Yao, J. Wang, Y. Guo, and X. Han, ‘‘Formation control
of multi-agent systems with stochastic switching topology and time-
varying communication delays,’’ IET Control Theory Appl., vol. 7, no. 13,
pp. 1689–1698, Sep. 2013.

[54] D. Yang, X. Liu, andW. Chen, ‘‘Periodic event/self-triggered consensus for
general continuous-time linear multi-agent systems under general directed
graphs,’’ IET Control Theory Appl., vol. 9, no. 3, pp. 428–440, Feb. 2015.

[55] W.Yu, G. Chen, andM. Cao, ‘‘Distributed leader–follower flocking control
for multi-agent dynamical systems with time-varying velocities,’’ Syst.
Control Lett., vol. 59, no. 9, pp. 543–552, Sep. 2010.

[56] S. Yu and X. Long, ‘‘Finite-time consensus for second-order multi-agent
systems with disturbances by integral sliding mode,’’ Automatica, vol. 54,
pp. 158–165, Apr. 2015.

[57] M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas, ‘‘Flocking while pre-
serving network connectivity,’’ in Proc. 46th IEEE Conf. Decis. Control,
Dec. 2007, pp. 2919–2924.

[58] B. Zheng and X. Mu, ‘‘Formation-containment control of second-order
multi-agent systems with only sampled position data,’’ Int. J. Syst. Sci.,
vol. 47, no. 15, pp. 3609–3618, Nov. 2015.

[59] J. Zhou, C. Wang, and H. M. Qian, ‘‘Existence, properties and trajectory
specification of generalised multi-agent flocking,’’ Int. J. Control, vol. 92,
no. 6, pp. 1434–1456, Nov. 2017.

[60] J. Zhou, X. Li, and H. Huang, ‘‘Manifold consensus of multi-machine
power networks by augmented multi-agent collision control and dis-
tributed implementation,’’ Int. J. Control, Aug. 2019, doi: 10.1080/
00207179.2019.1652766.

[61] J. Zhou and T. Hagiwara, ‘‘Existence conditions and applications of
shifting sliding mode control,’’ in Proc. 40th IEEE Conf. Decis. Control,
Orlando, Florida, USA, Dec. 2001, pp. 1415–1420.

JUN ZHOU (Member, IEEE) received the B.S.
degree from Sichuan University, China, in 1984,
the M.S. degree from Lanzhou University, China,
in 1987, and the Ph.D. degree from Kyoto
University, Japan, in 2002. He is currently a
Professor with the Department of Control Engi-
neering, School of Energy and Electrical Engi-
neering, Hohai University, China. His research
interests include nonlinear/hybrid systems and
control, robustness performance synthesis, neural

networks and learning control, multiagent and distributed sensor networks,
stabilization of multimachine power systems, and periodic systems and
control via harmonic analysis.

DEBIN ZENG received the B.Eng. degree from
the Department of Control Engineering, School
of Energy and Electrical Engineering, Hohai Uni-
versity, Nanjing, China, in 2019, where he is cur-
rently pursuing the master’s degree. His research
interests include multiagent system formation and
learning control.

XINBIAO LU received the B.E. degree in metallic
materials engineering from Shandong University,
China, in 1998, and the M.S. and Ph.D. degrees
in control theory and control engineering from
Shanghai Jiao Tong University, China, in 2004 and
2008, respectively. He is currently an Associate
Professor with the Department of Control Engi-
neering, School of Energy and Electrical Engi-
neering, Hohai University, China. His research
interests include but not limited to multiagent and

distributed sensor networks, and pinning control.

VOLUME 8, 2020 36099

http://dx.doi.org/10.1080/00207179.2019.1652766
http://dx.doi.org/10.1080/00207179.2019.1652766

	INTRODUCTION
	PRELIMINARIES TO MULTI-AGENT NETWORKS
	FLEXIBLE MULTI-AGENT FORMATION CONTROL
	TIME-VARYING FLOCKING CONTROL
	AVERAGE MODELING
	EXISTENCE AND PROPERTIES OF FLEXIBLE MULTI-AGENT FORMATION

	LEADER-AVERAGE MODEL AND SLIDING MODE CONTROL
	LEADER-AVERAGE DYNAMICS AND STRUCTURAL FEATURES
	SMC IN LEADER-AVERAGE DYNAMICS
	EXISTENCE AND PROPERTIES FOR SMC

	MULTI-AGENT FORMATION WITH FINITE-TIME TRAJECTORY TRACKING UNDER SMC
	PROBLEM FORMULATION AND SOLUTION
	IMPLEMENTING MULTI-AGENT FLOCKING CONTROL WITH LEADER-AVERAGE SMC

	NUMERICAL ILLUSTRATIONS
	TRAJECTORY-TRACKING FORMATION OF 2D MULTI-AGENT NETWORK
	TRAJECTORY-TRACKING FORMATION OF 3D MULTI-AGENT NETWORK

	CONCLUSION
	REFERENCES
	Biographies
	JUN ZHOU
	DEBIN ZENG
	XINBIAO LU


