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ABSTRACT For the purpose of addressing the multi-objective optimal reactive power dispatch (MORPD)
problem, a two-step approach is proposed in this paper. First of all, to ensure the economy and security
of the power system, the MORPD model aiming to minimize active power loss and voltage deviation is
formulated. And then the two-step approach integrating decision-making into optimization is proposed
to solve the model. Specifically speaking, the first step aims to seek the Pareto optimal solutions (POSs)
with good distribution by using a multi-objective optimization (MOO) algorithm named classification and
Pareto domination based multi-objective evolutionary algorithm (CPSMOEA). Furthermore, the reference
Pareto-optimal front is generated to validate the Pareto front obtained using CPSMOEA; in the second step,
integrated decision-making by combining fuzzy c-means algorithm (FCM) with grey relation projection
method (GRP) aims to extract the best compromise solutions which reflect the preferences of decision-
makers from the POSs. Based on the test results on the IEEE 30-bus and IEEE 118-bus test systems,
it is demonstrated that the proposed approach not only manages to address the MORPD issue but also
outperforms other commonly-used MOO algorithms including multi-objective particle swarm optimization
(MOPSO), preference-inspired coevolutionary algorithm (PICEAg) and the third evolution step of general-
ized differential evolution (GDE3).

INDEX TERMS Optimal reactive power dispatch, multi-objective evolutionary algorithm, integrated
decision-making, best compromise solution, fuzzy c-means algorithm, grey relation projection.

I. INTRODUCTION
Optimal reactive power dispatch (ORPD) of power systems
refers to adjusting the parameters of the control equipment
in the system to make the whole network at the optimal
operation, which is of great significance to the economic and
secure operation of the power system [1]. In recent years,
with the improvement of the operation level of the power
system, ORPD has evolved from a single-objective opti-
mization problem to a multi-objective optimization (MOO)
problem that comprehensively considers various operation
indicators [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Canbing Li .

So far, there have been a large number of studies carried
out to solve MOO issues. In some literature, the multi-
objective optimal reactive power dispatch (MORPD) problem
is transformed into a single-objective optimization prob-
lem by the scalarization reflecting the preference degree of
each objective in advance. The arguably common scalariza-
tion approach termed weighted sum technique is adopted
in [3], [4]. But the weight factors reflecting the decision-
makers’ preference are often difficult to determine in reality.
Moreover, the traditional optimization approach can find one
solution at most in a single simulation run, which makes the
computation cost heavier [5]. Taking this into account, multi-
objective evolutionary algorithms (MOEAs) have been used
to solve the MORPD model [6]. Although the Pareto optimal

38198 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4747-4601
https://orcid.org/0000-0002-6515-4567
https://orcid.org/0000-0001-9116-7487


M. Zhang, Y. Li: MORPD of Power Systems by Combining Classification-Based MOEA and Integrated Decision Making

solutions (POSs) can be obtained, it is difficult to
determine the best compromise solutions since different
decision-makers have different preferences for a given oper-
ational condition. Furthermore, the preference of the same
decision marker can vary with the changing operating
requirements of the system.

As we all know the objective functions are always conflict
and can’t be optimal at the same time, however, POSs which
make a compromise of conflict objectives can be obtained
after optimization. In [7] although the ORPD problem is
treated as the MOO problem, there is no decision analysis
regarding how to extract the best compromise solutions
(BCSs) from the obtained POSs. Different from [7] decision-
making step is considered in [5], however, there is only one
BCS determined by themin-max criterion, which can’t reflect
the preference of decision-makers. In terms of the POSs, how
to determine BCSs reflecting decision-makers’ preferences
is a significant and challenging problem. To address this
issue, in [8] a two-stage approach taken the preference of
decision-makers into consideration is put forward to over-
come the issue in combined heat and power economic emis-
sion dispatch. In [9] the same approach is applied to handle
hybrid AC/DC grids with voltage source converter based
high voltage direct current problem. A two-stage optimiza-
tion approach incorporating multi-objective optimization and
decision analysis was employed to deal with distributed
generation planning issues in distribution networks in [10].
In [11] a two-step approach is proposed to address a prac-
tical multi-objective dynamic optimal dispatch model for
isolated micro-grids. In this paper, the two-step approach
combiningMOEAs with integrated decision-making analysis
is proposed in this paper, where MOEAs have the ability to
find the POSs in one run and decision-making analysis can
determine the BCSs reflecting decision-makers’ preferences
from the POSs.

As for the MORPD issue, from the perspective of system
security and economy, it is hoped that the active power
loss will be minimized to reduce the investment and the
voltage stability will be maximized to guaranteed voltage
quality [12]. ORPD is a large-scale nonlinear mixed integer
programming problem with continuous and discrete vari-
ables while satisfying both equality and inequality con-
straints [13]. Due to the powerful ability of MOEAs to
find widely distributed POSs by only one simulation run,
MOEAs are widely used to solve the MORPD model. While
MOEAs include enormous algorithms such as water cycle
algorithm (NGBWC) [14], backtracking search optimizer
(BSO) [15], whale optimization algorithm (WOA) [16], and
grey wolf optimizer (GWO) [17], etc. Furthermore, for better
performance, some improvements have been made based
on the original algorithms. For example, in [18] a modi-
fied differential evolution algorithm (MDEA) is put forward
to solve the ORPD problem to decrease the active power
loss and voltage deviation. Similar to the approach in [18],
a fuzzy adaptive heterogeneous comprehensive learning par-
ticle swarm optimization (PSO) algorithm is presented to

address the MORPD problem through enhancing exploration
and exploitation processes in [19]. For the same model,
in [20] the improved gravitational search algorithm GSA-
CSS based on conditional selection strategies (IGSA-CSS)
improves the global search ability by using the memory
characteristics of PSO, considering the shortcomings of GSA
itself. In [21] an improved social spider optimization (ISSO)
was proposed, through improvement the strong search ability
was obtained due to the less value for control parameters.
It can be seen that generally, the improvements involve how to
enhance the global search ability, however, the improvements
about this are rarely reported. In MOEAs, it is arguable
that selection in evolutionary algorithms (EA) is essentially
a classification problem on account of selection operators
mainly based on objective values [22]. Following this idea,
the classification based pre-selection (CPS) strategy was
introduced into Pareto domination based MOEAs [22]. And
further improvements were made in [23]. In this paper,
a MOO algorithm named CPS base MOEA (CPSMOEA) is
introduced to solve the MORPD problem.

The main contributions of this work include the following
aspects:

(1) To coordinate the economy and security of power sys-
tems, the CPSMOEA is introduced for the first time to solve
the MORPD issue in this study.

(2) To determine the best comprise solutions from the
Pareto optimal solutions, integrated decision-making analysis
combining the fuzzy c-means algorithm (FCM) and grey
relation projection method (GRP) is successfully employed.

(3) The simulation results on the IEEE 30-bus test
system shown that the performance of the CPSMOEA is
superior to that of multi-objective particle swarm optimiza-
tion (MOPSO) and preference-inspired coevolutionary algo-
rithm (PICEAg) in terms of convergence and distribution.

The rest of this article is structured as follows: theMORPD
model is formulated in Section II. In section III, the model
is solved by the proposed two-step approach incorporating
the combination of FCM and GRP into the multi-objective
optimization procedure. The simulation results on the IEEE
30-bus test system are given in section IV. Finally, the con-
clusion is drawn in section V.

II. PROBLEM FORMULATION
As a typical MOO problem, the MORPD is formulated to
achieve the ideal settings of control variables to satisfy certain
objective functions, which can be described as:

minimize F(x, u) (1)

subject to

{
G(x, u) = 0
H (x, u) ≤ 0

(2)

where F(x, u) represents the objective function; G(x, u) and
H (x, u) are respectively the equality and inequality con-
straints; x and u are respectively the vectors of dependent
variables and control variables. In this study, the depen-
dent variables refer to load bus voltages, while the control
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variables consist of generator bus voltages, transformer tap
ratios and compensation capacity of shunt capacitor banks.

A. OBJECTIVE FUNCTIONS
In this work, there are two objective functions: the active
power loss and voltage deviation.

1) ACTIVE POWER LOSS
For the economic view, with the reform of the power market,
power suppliers always make the best use of the existing
transmission capacity and active power. Therefore, reduc-
ing the active power loss on transmission lines has become
an important issue concerned by the power department.
The transmission loss is regarded as an objective function,
as follows:

F1 = minPloss =
NL∑
k=1

gk
[
V 2
i + V

2
j − 2ViVj cos(δi − δj)

]
(3)

where NL is the number of transmission lines; Vi and Vj
are the voltage magnitudes at bus i and j; δi and δj are the
voltage angles at bus i and j, respectively; and gk is transfer
conductance between bus i and j.

2) VOLTAGE DEVIATIONS
Considering the secure operation of the modern power sys-
tem, voltage instability has become a critical issue that must
be confronted. The objective function expressed as voltage
deviation is used to evaluate voltage instability of the power
system by minimizing the sum of voltage deviation at each
load bus. It is defined as follows:

F2 = minVD =
NLoad∑
k=1

∣∣∣∣∣ Vk − V
ref
k

V upper − V lower

∣∣∣∣∣ (4)

whereNLoad is the number of load buses; V ref
k is the reference

voltage at the kth load bus which can be set to 1.0 p.u.;
V upper is the upper limit of load bus voltage; V lower is the
lower limit of load bus voltage.

B. EQUALITY CONSTRAINTS
For any operating condition of the power system, the follow-
ing two equality constraints containing active power balance
and reactive power balance should be met.

PGi = PLi + Ui
∑
j∈Ni

Uj(Gij cos θij + Bij sin θij) (5)

QGi = QLi + Ui
∑
j∈Ni

Uj(Gij sin θij − Bij cos θij) (6)

where PGi and QGi are active and reactive power generation
at the bus i respectively; PLi and QLi are the load active and
reactive power at the bus i, respectively; Gij and Bij are the
transfer conductance and susceptance between bus i and bus j,
respectively.

C. FILE FORMATS FOR GRAPHICS
1) GENERATOR CONSTRAINTS
The generator operating under any condition should be within
its upper and lower limits. The minimum and maximum
boundaries of voltage and reactive power output are given
below:

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, 2, · · · ,NG (7)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, 2, · · · ,NG (8)

where NG is the number of generators.

2) TRANSFORMER CONSTRAINTS
Transformer tap settings vary between the maximum value
and minimum value as follow:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, 2, · · · ,NT (9)

where NT is the number of transformers.

3) SHUNT CAPACITOR BANK CONSTRAINTS
The compensation capacity of shunt capacitor banks should
be restricted to the upper and lower boundaries as below:

Qmin
Ci ≤ QCi ≤ Q

max
Ci i = 1, 2, · · · ,NC (10)

where NC is the number of shunt capacitor banks.

4) LOAD VOLTAGE CONSTRAINTS
The load bus voltages should be maintained in a reasonable
range as follow:

Vmin
Li ≤ VLi ≤ V

max
Li i = 1, 2, · · · ,Nload (11)

where Nload is the number of loads.

5) SECURITY CONSTRAINTS
The apparent power flow on every transmission line should
be limited to its allowable range to avoid overload, which is
given below:

Sli ≤ Smax
li i = 1, 2, · · · ,Nline (12)

where Nline is the number of the transmission lines.

III. MODEL SOLUTION
A. SOLUTION FRAME
This section will primarily discuss the solution step of the
MORPDmodel. When solving the single-objective optimiza-
tion problem, a unique optimal solution is got. However,
POSs can be obtained to balance conflict objectives in solving
the MOO problem. Furthermore, for the decision-makers’
preference, a two-step approach that contains the decision
analysis is proposed. This approach is mainly divided into
two steps: one is the optimization step and the other is the
decision-making step.

Optimization step: A set of POSs can be obtained by
solving the MORPD model formulated in section II by the
MOO algorithm, i.e., CPSMOEA. Moreover, the reference
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Pareto-optimal front is obtained through multiple runs of
single objective optimization with the weighted sum of objec-
tives to validate the PF generated by the CPSMOEA. Here,
particle swarm optimization approach based on multiagent
systems (MAPSO) is adopted for performing single-objective
optimization.

Decision-making step: First in this step, the POSs are
divided into two clusters which represent the two different
preferences of decision-makers via FCM, and then BCSs are
respectively extracted from the two clusters via GRP.

The solution framework of the two-step approach is shown
in Fig.1.

FIGURE 1. Solution framework.

B. MULTI-OBJECTIVE OPTIMIZATION
1) MOEA
In EAs, the population is evaluated by the objective fitness
function that indicates their pros and cons [24]. For the
single-objective optimization problem, a unique objective
function is used to evaluate the pros and cons, however, in the
MOO problem the evaluation of the individual’s pros and
cons becomes a difficult issue due to the different objectives
existed simultaneously. Goldberg proposed a new idea com-
bining Pareto theory with EAs to solve the MOO problem,
which is of great significance for the subsequent research
on multi-objective evolutionary algorithms [25]. And fur-
ther MOEAs gradually developed an algorithm with good
practicability and robustness, which has received extensive
attention [26]. It can be said that the introduction of the Pareto
theory is the key to the wide application ofMOEAs [27], [28].

Furthermore, the POSs consist of a set of solutions illus-
trating the regularity in both objective and decision spaces.
Basing on Pareto domination, CPS is readily combined into
Pareto domination based on MOEAs. Motivated by this idea,
CPSMOEA is proposed to solve the MORPD problem.

2) CPS STRATEGY
In fact, CPS is essentially a classification problem. The pur-
pose of the classification study is to predict the class labels of
those unknown instances based on some known training data,

mainly to extract as much information as possible from the
known data. Unlike these existing methods which take classi-
fication as surrogate procedures, classification was employed
to pre-selection in this paper.

In terms of pre-selection, there are many different mean-
ings in MOEA [29]. In this paper, pre-selection refers to a
procedure in which the promising solutions are extracted after
the current solution generates candidate offspring solutions
by reproduction operators while the rest unpromising ones
are deserted. After the pre-selection procedure, the promising
ones which selected as the offspring population are chosen
into the next generation after environment selection. In this
paper, the specific procedure to implement CPS is mainly
divided into three parts: the labeling data set, the classifier
training, and the selection of promising offspring solutions.
The specific processes of these parts are given in detail as
follows:

a: LABELED POPULATION
Here, the current populations are first used as the training
data sets and separated them into two classes. One of the
two classes is in the external population P+ with label +1
denoting the ‘promising’ training dates. And the other is
in the external population P− with label −1 representing
the ‘unpromising’ training dates. Since the MOEA adopted
in this paper is based on Pareto domination, the sorting
scheme of Pareto domination can be naturally incorporated
into the data classification. In other words, if a solution is
non-dominated, the label of it is +1; otherwise, it’s label
is −1.
The expressionQ = NDS(P,N ) is denoted sorting scheme

of Pareto domination, it means that the best N solutions are
stored in Q finally [30]. First, the population P is sorted
into several parts that be ranked based on non-domination,
among which, the population with the lower (better) rank is
preferred. In each part, the population is non-dominated with
each other. And then the individuals in each part are ordered
by calculating the crowding distance, where the solution
located in a lesser crowded region is preferred. For each indi-
vidual, there are two attributes termed non-dmination rank
(irank ) and crowding distance (idistance), respectively. They are
given as follows:

i ≺n j, if (irank < jrank )

or((irank = jrank )

and(idistance > jdistance)) (13)

where≺n called crowded-comparison represent the selection
process.

According to the fitness values expressed as {F(x1 ), · · · ,
F(xi), · · · ,F(xN )}, the population expressed as P =

{x1 , · · · , xi, · · · , xN } is separated into two classes, i.e.,
‘promising’ populations which stored in P+ and ‘unpromis-
ing’ populations which stored in P−.
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b: CLASSIFIER TRAINING
The classifier based on the sorted training data, respec-
tively, expressed as P+ =

{
x1, · · · , xi, · · · , xN

2

}
and

P− =
{
x1, · · · , xi, · · · , xN

2

}
is established in this pro-

cedure. Among which xi represents an individual with a
multi-dimensional control vector. For each individual xi, there
is a label l ∈ {+1,−1} corresponding to it. The training clas-
sifier aims to establish a connection between an individual xi
and the label of it.

In this paper, K-Nearest Neighbor (KNN) is used to deter-
mine the label of the individual xi, which is given by

l =

+1, if
K∑
i=1

C(xi ) ≥ 0

−1, otherwise
(14)

where K represents the number of neighbors taken into
account in determining the class, xi denotes the ith closest
control vector, C(xi) is the real relationship of xi.

c: OFFSPRING SELECTION
Offspring selection is essentially to choose the ‘promising’
offspring solutions with good quality from all offspring can-
didates by evaluating the fitness value. Furthermore, how to
produce candidate offspring solutions is an important com-
ponent of this procedure. Herein, differential evolution (DE)
reproduction operator is used to solve this problem. DE algo-
rithm is an efficient population-based heuristic algorithm.
DE reproduction operator generates candidate offspring solu-
tions by mutation, crossover, and selection operation. The
three operations are described as follow:

Mutation operation: In terms of each individual, there is
a vector P =

{
x1 , · · · , xi, · · · , xN

}
named target vector and

the mutation operation produces a corresponding vector V =
[ν1, · · · νi, · · · , νN ] termed donor vector. The basic idea of
the mutation operation base on the DE is to add a difference
vector to the base vector. The original mutation operation is
given by

νi = xr1 + F × (xr2 − xr3 ) (15)

where vi ∈ V ; N is the number of the individuals of the
population; r1, r2 and r3 are not equal to i, and they are
random different integers in the interval [1N ]; the mutation
control parameter F is a positive number and usually limited
to the interval [01].

Crossover operation: Crossover operation generates off-
spring individuals by performing discrete recombination on
target vector and donor vector, that is, U = [u1, · · · ,
ui, · · · , uN ] termed trial vector. The basic idea of crossover
operation is that donor vector and target vector exchange
elements with each other to improve the population diversity.
The specific implementation of crossover operation is as
shown in Eq. (16):

ui,j =

{
νi,j, if (rand(0, 1) ≤ Cr)or(j = sn)
xi,j, otherwise

(16)

where ui,j represents the jth dimension element value meeting
ui,j ∈ ui = [ui,1 · · · , ui,j, · · · ui,N ]; sn is a random integer sat-
isfying sn ∈ [1, 2, · · ·N ]; the crossover control parameter Cr
is a positive number and usually limited to the interval [01].

Selection Operation: The selection operation determines
the evolution direction of the whole population, and the
greedy choice is applied in this process. In terms of the parent
individual xi, if the corresponding offspring individual ui is
worse than it, then the xi is selected for the next generation.
Otherwise, the ui is selected and the selection process is as
shown in Eq. (17):

x t+1i =

{
uti , if f (uti ) ≤ x

t
i

x ti , otherwise
(17)

where x t+1i represent parent individual in the next generation.
In pre-selection, the qualities of these candidate solutions

are evaluated by means of CPS, and the promising one will
be selected for the real function evaluation.

C. APPLICATION OF CPSMOEA IN MORPD PROBLEM
Regarding the application of the CPSMOEA in solving
MORPD problem, the main solution processes are as follows:
Step 1: Initialization of the system. Enter the following ini-

tial variables: 1) system parameters such as the data of buses,
branches, loads and generators; 2) algorithm parameters such
as the population size, the number of objectives and variables,
and so on; 3) the boundaries and steps of related variables.
Step 2: Initialize individual vectors. The position of the

individual in search space corresponds to the control vari-
ables. The continuous control variables are generator bus
voltage VG; while the discrete control variables comprise the
transformer tap ratios T and the compensation capacity QC
of shunt capacitor banks. The dimension of each individ-
ual vector is determined by the number of control variables
expressed asVG,1, · · · ,VG,NG ∣∣T1, · · · ,TNT ∣∣QC,1, · · · ,QC,NC︸ ︷︷ ︸

N


.

Step 3: Calculation of objective functions. For each indi-
vidual, calculate the Ploss and VD according to equations (1)
and (2).
Step 4: Classification of pre-selected data. Pareto domi-

nation is used to label the current population, and then the
current population is sorted according to the rank crowd-
ing distance. The promising individuals with label +1 were
stored in P+ and the rest unpromising with label −1 were
stored in P−.
Step 5: The model of the classifier. Based on the

pre-selected data in P+ and P−, KNN was used to find the
relationship between each individual and the related label.
Step 6: Generate offspring solutions. First, the DE repro-

duction operator is used to generate the candidate offspring
solution; and then select those with the label +1 as the
offspring solution by the classifier.
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Step 7: Environmental selection. The objective functions
of the offspring population are calculated and the individual
with higher fitness value was selected for the next iteration
while the external population was updated, simultaneously.

The flow chart of the CPSMOEA algorithm is shown
in Fig. 2.

FIGURE 2. Flow chart of the CPSMOEA.

D. DECISION SUPPORT
The Pareto optimal solution has a large scale, and the control
vector contains different information. This paper proposes
an auxiliary decision-making method combining FCM and
GRP. It is convenient for the decision-makers to choose the
compromise solution.

1) FUZZY C-MEANS CLUSTERING
FCM is an unsupervised clustering algorithm and its mathe-
matical model is as follows:

min Jn(S,M ,C) =
Np∑
p=1

Nclu∑
q=1

ηnp,q

∥∥sp − cq∥∥2
s.t.

Nclu∑
q=1

ηp,q = 1

(18)

where Jn is a loss function; S =
{
s1, s2, · · · , sp, · · · , sNp

}
is the vector of POSs; Np is the number of solutions
in this vector; M =

{
m1,m2, · · · ,mNclu

}
and C ={

c1, c2, · · · , cq, · · · , cNclu
}
are respectively the membership

degree matrix and cluster centers; Nclu is a pre-given number
of clusters; ηp,q(ηp,q ∈ [0, 1]) is membership degree repre-
senting the Sp belongs to the Cq; n(n ∈ [1,∞]) is the fuzzy
degree parameter.

Since two objectives are considered in this paper, the num-
ber of clusters is set to 2 for reflecting the different prefer-
ences of decision-makers over security and economy.

2) GREY CORRELATION PROJECTION
As an effective tool for handling various multiple attribute
decision-making issues containing grey information, grey
Correlation Projection (GRP) has been successfully used in
many engineering areas [23], [24]. The projection of a scheme
onto the ideal reference scheme is as follow:

pr+(−)l =

t∑
k=1

gr+(−)lk
λ2k√
t∑

k=1
λ2k

(19)

where the superscript ′′+′′ indicates the ideal solution; and the
superscript ′′−′′ indicates the negative ideal solution; t is the
total number of indicators; gr+(−)lk is the grey correlation coef-
ficient of the kth indicator of the lth scheme; λk is the weight
of each indicator of the scheme. In this paper, the weights
corresponding to the two objectives are set to the same value,
however, the decision-makers can adjust it according to the
actual working condition or personal experience. The pro-
jection pl of each decision scheme on the ideal scheme is
expressed as below:

pl =
pr+l

pr+l + pr
−

l

0 ≤ pl ≤ 1 (20)

where pl is the priority membership of scheme l [8]. The
scheme with the highest priority membership will be chosen
as the BCSs.

E. METRIC INDICATOR
For a variety of different algorithms, how to compare and
measure their performance has become a meaningful topic.
Many metric indicators are proposed to deal with the prob-
lem, the current mainstream metric indicators are mainly
divided into three categories:

(1) Evaluate the degree of convergence of the POSs;
(2) Evaluate the distribution of the solutions over the

whole Pareto front (PF), mainly considering uniformity and
diversity.

(3) Evaluates the convergence and distribution of the solu-
tions comprehensively.

Only using the pure index, the whole performers of the
algorithm can’t be reflected. However, the comprehensive
index alone can’t reflect the quality of the algorithm in a
certain aspect, so this paper uses the above three metric
indicators for comprehensive evaluation.
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1) GENERATIONAL DISTANCE
Generational Distance (GD) is a credible metric indicator to
evaluate the convergence of solutions by calculating the sum
of solutions’ adjacent distances [31]. It is defined as shown
in Eq. (21).

GD =

∑
x∈P∗ dist(x, S

∗)
|P∗|

(21)

where x is an element in P∗ that represents the approximate
solution set; S∗ is the set of targeted points; dist(x, S∗) is the
Euclidean distance between x and the nearest individual that
belongs to S∗. If the GD of the algorithm has a smaller value,
it indicates that the algorithm has stronger convergence.

2) SPREAD
Spread is a pure metric indicator of distribution. In terms of
distribution, it can assess both diversity and uniformity. The
spread is defined as shown in Eq. (22).

spread =

distDf + distDl +
N−1∑
i=1

∣∣distDi − distD∣∣
distDf + distDl + (N − 1)distD

(22)

where distdf is the euclidean distance of extreme solutions;
distDl is the Euclidean distance of the boundary solu-
tions [30]; distD is the average value of all distance distDi =
(1, 2, · · · ,N−1);N is the number of the final non-dominated
points. And the smaller the value of spread, the better the
distribution of obtained PF [8].

3) INVERTED GENERATIONAL DISTANCE
Considering both convergence and distribution, inverted gen-
erational distance (IGD) is used to estimate the performance
of the algorithm. IGD is widely used in theMOOproblem due
to its high computational efficiency. It is defined as shown in
eq. (23).

IGD =
1
S∗
∑

η∈S∗
min

{
dist(η,P∗)

}
(23)

where η is an element in S∗ that represents the set of targeted
points; P∗ is the approximate solution set; dist(x, y) is the
nearest distance from η to P∗. It is noteworthy that the final
obtained solution set with smaller values of IGD has better
diversity and convergence [32].

IV. NUMERICAL RESULTS
The proposed approach has been implemented to address
the MORPD issue on IEEE 30-bus and IEEE 118-bus test
systems.

A. IEEE 30-BUS TEST SYSTEM
As a widely-used test system in the ORPD field, the well-
known IEEE 30-bus test system is adopted in this paper to
examine the effectiveness and superiority of the proposed
approach [18]–[20]. The single-line diagram of this test sys-
tem is shown in Fig. 3.

FIGURE 3. IEEE 30-bus test system.

As shown in Fig. 3, the system has 41 branches, 6 gen-
erators, and 22 loads [21]. The voltage amplitude of each
generator is within the interval [0.9, 1.1], and the amplitude of
each load bus voltage is within the interval [0.95, 1.05]. The
four branches 6-9, 6-10, 4-12, and 27-28 are equipped with
under-load tap-changing transformers which their taps vary in
the range [0.9,1.1], and the step is 0.01 p.u. Shunt capacitor
banks are installed on buses 3, 10 and 24. The number of shunt
capacitor banks is 20, and the compensation capacity of each
bank is 1 Mvar.

1) PARAMETER SETTINGS
In this paper, the control variables are encoded in a hybrid
coding scheme. Specifically, the continuous control variables
including generator bus voltage are real coded and the dis-
crete variables comprised of the transformer tap ratio and
compensation capacity of shunt capacitor banks are integer
coded.

The relevant parameters of the CPSMOEA are given
in Table 1

TABLE 1. Parament setting.

2) OPTIMIZATION RESULTS
In order to appropriately estimating the performance of the
CPSMOEA, the PICEAg and MOPSO are introduced as the
comparison algorithms. To further verify the effectiveness of
the CPSMOEA, the reference Pareto-optimal front is gener-
ated by multiple runs of single objective optimization using
the MAPSO. If the solutions obtained using an algorithm are
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close to the reference Pareto-optimal front, the algorithm is
said to be good [6]. In this paper, the reference Pareto-optimal
front consists of 100 non-dominated solutions obtained from
100 independent runs. As shown in Fig. 4, the reference
Pareto-optimal front and the PFs obtained by CPSMOEA,
PICEAg and MOPSO are respectively given.

FIGURE 4. Reference Pareto-optimal front and the obtained PFs of
CPSMOEA, PICEAg and MOPSO on IEEE 30-bus test system.

From Fig. 4, it can be easily found that the PF of
the CPSMOEA dominates those of PICEAg and MOPSO,
embodying that the curve obtained by the optimization
of the CPSMOEA is closest to the two coordinate axes.
Meanwhile, the PF obtained by the CPSMOEA is approach-
ing the reference Pareto-optimal front more closely than that
obtained by the PICEAg and MOPSO. This confirms the
effectiveness and superiority of the presentedmethod in terms
of the optimization ability in the first step.

Moreover, it can be clearly seen that a more uniform PF
can be obtained via the optimization of CPSMOEA. Hence a
conclusion can be drawn that the optimization ability of the
CPSMOEA in terms of distribution is better than those of the
PICEAg and MOPSO.

To further examine the performance of the CPSMOEA,
three different metric indicators GD, spread, and IGD are
put forward. In view of the randomness of MOEAs [33],
the proposed approach has been independently performed
30 times. After 30 independently simulation runs, the specific
values of the three metric indicators are given in Table 2.

From Table 2, regarding the GD metric indicator, the aver-
age value of the CPSMOEA is 0.012 lower than that of
the PICEAg, 0.053 lower than that of the MOPSO and
0.002 lower than that of the GDE3; the best value of the
CPSMOEA is 0.001 lower than that of PICEAg, 0.012 lower
than that of the MOPSO and 0.001 lower than that of the
GDE3; the worst value of the CPSMOEA is 0.098 lower than
that of the PICEAg, 0.140 lower than that of the MOPSO
and 0.003 lower than that of the GDE3. GD is a metric
indicator for evaluating convergence and the smaller the
value of GD, the better the convergence of the algorithm.

TABLE 2. The value of metric indicators GD, spread, and IGD.

Consequently, it is demonstrated the optimization ability of
the CPSMOEA in convergence performance is superior to
that of the PICEAg, MOPSO, and GDE3.

In terms of the spread metric indicator, the average value
of the CPSMOEA is equal to that of the PICEAg, 0.012 less
than that of the MOPSO and 0.007 less than that of the
GDE3; the best value of the CPSMOEA is 0.001 less than
that of the PICEAg, 0.014 less than that of the MOPSO
and 0.001 less than that of the GDE3; the worst value is
0.193 less than that of the PICEAg, 0.04 less than that of the
MOPSO and 0.014 less than that of the GDE3. This proves
that the distribution of PF obtained through the CPSMOEA
is superior to those of PF obtained through three comparison
algorithms.

Regarding the IGD metric indicator, compared with the
PICEAg, MOPSO and GDE3 algorithms, the average value
of the CPSMOEA is respectively decreased by 0.043,
0.214 and 0.004; the best value of the CPSMOEA is respec-
tively decreased by 0.027, 0.091 and 0.03; the worst value of
the CPSMOEA is respectively decreased by 0.12, 0.468 and
0.006. IGD is a metric indicator that considers convergence
and distribution together. Thus, the above analysis demon-
strates that in terms of convergence and distribution the
CPSMOEA performs better than the PICEAg, MOPSO, and
GDE3.

3) DECISION-MAKING ANALYSIS
In the first step of the proposed approach, the CPSMOEA is
used to solve the formulated MORPD model. Fig. 5 shows
the PF obtained by the CPSMOEA.

From Fig. 5 it can be clearly seen that as the active
power loss decreases, the voltage deviation index increases
simultaneously. Since the two objectives, i.e. active power
loss and voltage deviation are conflicting, it cannot be opti-
mal at the same time. However taking the different prefer-
ences of decision-makers’’ into account, it is not enough to
obtain the POSs which simply reflecting the compromise.
Thus, in the decision-making step of the proposed approach,
integrated decision-making combining FCM and GRP is
used to deal with this issue. After the second step, i.e., the
decision-making step, the result is given in Fig. 6.

VOLUME 8, 2020 38205



M. Zhang, Y. Li: MORPD of Power Systems by Combining Classification-Based MOEA and Integrated Decision Making

FIGURE 5. PF distribution of the CPSMOEA before clustering.

FIGURE 6. PF distribution of the CPSMOEA after clustering.

As shown in Fig. 6, the obtained POSs are divided into two
clusters through the FMC, in this way, the different prefer-
ences of decision-makers are fully considered. And then, two
BCSs are respectively chosen from each cluster via GRP in
the decision-making step.

In order to properly evaluate the performance of inte-
grated decision making, the BCSs obtained using the pro-
posedmethod and the other comparison algorithms are shown
in Table 3. Note that here, the BCSs obtained by the other
three algorithms only use the GRP (without consideration of
FCM) in the decision making step.

TABLE 3. BCSs of different algorithms on IEEE 30-Bus system.

In Table 3, BCS 1 and BCS 2 are obtained from two
separate clusters after clustering, respectively. In terms of
the preference on the economy, BCS 1 of the CPSMOEA is
respectively decreased by 0.22 MV, 0.28 MV, 0.54 MV and
0.3 MV compare with the BCSs of CPSMOEA, PICEAg,
MOPSO and GDE3; while its voltage deviation index is
respectively increased by 0.68 p.u., 0.56 p.u., 0.05 p.u. and
0.44 p.u.. As far as the preference on the security is con-
cerned, comparedwith the BCSs of the CPSMOEA, PICEAg,
MOPSO and GDE3, BCS 2 of the proposed approach is
respectively decreased by 1.49 p.u., 1.61 p.u. 2.12 p.u. and
1.73p.u.; while its power loss is increased by 0.81 MV,
0.75 MV, 0.49 MV and 0.73 MV. Furthermore, through the
analysis of the specific data in TABLE 3, it can be drawn
that the BCSs obtained by GRP fully consider the preferences
of decision-makers and provides more choices for decision-
makers.

From the above analysis, the BCSs can be obtained through
GRP. In the process of extracting BCSs, the GRP is first used
to calculate the priority membership of the POSs, and then
the solution with the highest priority membership is selected
as BCS. In order to reasonably evaluate the optimization
performances of the presented approach, a comparison test
between the CPSMOEA and seven other algorithms, i.e.,
VaEA, NSGAIII, tDEA, IBEA, BiGE, MOPSO, and KnEA,
has been performed. Here, the priority memberships of these
algorithms are calculated by using the GRP. The comparison
results are shown in Fig. 7.

FIGURE 7. Box plot of priority membership.

Fig.7 shows the data distribution of the priority member-
ship in a box plot. As mentioned in section III, a greater
value of priority membership signifies a better schemewill be
obtained. Regarding the median of the priority membership,
the value of CPSMOEA is maximum and the overall data
distribution is superior to the other seven algorithms except
the extreme solutions. Hence, a conclusion may be safely
drawn based on the evidence that high-quality solutions can
obtain via CPSMOEA to provide decision-makers with better
choice of the BCSs point.
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4) DISCUSSIONS OF BEST COMPARISON SOLUTIONS
To verify the availability of the proposed two-step approach,
three different cases are taken into account. Before optimiza-
tion, a unique solution can acquire corresponding to active
power loss and voltage deviation on the basis of the original
variables. After an independent simulation run, 100 Pareto
optimal solutions and the corresponding individuals can be
obtained, among which the comparison results of three dif-
ferent representative solutions are shown in Table 4.

TABLE 4. Comparative results of three different solutions.

Initial solution – before optimization, a solution can be
obtained.

BCS 1 – after optimization the best compromise solution 1
reflects the decision-makers’ preferences on the economy.

BCS 2 – after optimization the best compromise solution 2
reflects the preferences of decision-makers on the security.

Through the two-step approach, the three different solu-
tions are employed as the reference solutions, and the equiv-
alent control variables are listed in Table 4.

Table 4 shows that the proposed two-step approach can
offer a reasonable solution scheme to the decision-makers
according to their different preferences. Specifically speak-
ing, Ploss in BCS 1 through optimization is 7.4% lower
than that in initial solution before optimization, meanwhile,
Ploss in BCS 2 after optimization is 1.5% lower than that in
initial solution before optimization. The cause of this result
is that the Ploss of the two BCSs is both reduced through the
optimization of the proposed approach while the reduction
of Ploss in BCS1 is greater due to the preferences on the
economy. Similarly, VD in BCS 2 after optimization is far
less than that in initial solution before optimization (72.4%)
and VD in BCS 1 after optimization is less than that in initial
solution before optimization (38.4%). It can be clearly seen
from the above data analysis that the security of the power
system has been improved after optimization. Furthermore,
the value ofVD in BCS 2 has fallen still further, as BCS 2 pays
particular attention to the security of the power system. As a
result, a conclusion can bemade that the distribution of power
flow has a more reasonable trend.

5) COMPUTATIONAL EFFICIENCY ANALYSIS
To properly evaluate the efficiency of the CPSMOEA,
the comparison tests between the CPSMOEA and three other
algorithms PICEAg, MOPSO and GDE3 have been carried
out. Accordingly, the test results are showed in Table 5. Note
that, considering the randomness of intelligent optimization
algorithms, the average computational time of each algorithm
in 30 independent runs is used as the computational time in
the table.

TABLE 5. Computational times of the algorithms.

As can be seen in Table 5, the computational efficiency of
the CPSMOEA is superior to that of the others. Moreover,
the calculating efficiency of our approach can be further
improved by using more advanced computer hardware and
optimized code. As a result, ones can see that, in terms of
computational efficiency, our method is able to meet the
real-time requirements in practical applications, and that it
precedes the other alternatives used in this study.

B. IEEE 118-BUS TEST SYSTEM
To further establish the superiority of the proposed approach,
IEEE 118-bus test system is adopted for an in-depth inves-
tigation. IEEE 118-bus test system consists of 54 genera-
tors, 9 transformers, 186 branches and 15 shunt capacitor
banks [2], [21]. And the shunt capacitor banks are installed
on 15 buses, respectively. Hence, the total number of control
variables is 78. The upper and lower limits of the control
variables on IEEE 118-bus test system are the same as those
on IEEE 30-bus test system.

1) OPTIMIZATION RESULTS
After optimization, the reference Pareto-optimal front, the
results of the CPSMOEA and two comparison algorithms are
plotted in Fig. 8, respectively.

From Fig. 8, it can be seen the PF obtained by the
CPSMOEA is closer to the reference Pareto-optimal front
than that obtained by the two comparison algorithms. And the
PF obtained using the CPSMOEA dominates those obtained
via the PICEAg andMOPSO. This shows that the CPSMOEA
still outperforms the other two algorithms on IEEE 118-bus
test system.

To make this result more convincing, three indicators con-
sist of GD, spread and IGD are adopted for the comparison
between the CPSMOEA and the other three algorithms. The
average value, the best value and the worst value of the three
metric indicators are detailed in Table 6.
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FIGURE 8. Reference Pareto-optimal Front and the obtained PFs of
CPSMOEA, PICEAg and MOPSO on IEEE 118-bus test system.

TABLE 6. The value of metric indicators GD, spread, and IGD.

It can be clearly seen from Table 6, the average value, the
best value and the worst value of all the metric indicators of
the CPSMOEA are minimum. This suggests that the three
metric indicators of the CPSMOEA are all better than those of
the PICEAg,MOPSO andGDE3. Overall, this further reveals
the superiority of the CPSMOEA in terms of convergence and
distribution.

2) DECISION-MAKING ANALYSIS
After the integrated decision-making analysis, two BCSs will
eventually be obtained, as shown in TABLE 7.

TABLE 7. BCSs of different algorithms on IEEE 118-Bus system.

From TABLE 7, it can be seen the two BCSs can
be obtained after the integrated decision-making analysis.
Moreover, the active power loss of BCS 1 and the voltage
deviation of BCS 2 are superior to those of the BCS obtained
by the CPSMOEA without integrated decision-making
analysis. This fully takes the different preferences of

decision-makers into account concerning economy and secu-
rity. At the same time, it can also be seen from TABLE 7,
without the integrated decision-making analysis, both active
power loss and voltage deviation of BCS obtained by the
CPSMOEA are less than those of the PICEAg, MOPSO,
and GDE3, which further verifies the superiority of the
CPSMOEA.

3) COMPUTATIONAL EFFICIENCY ANALYSIS
After 30 independent runs, the average computational times
of these algorithms are listed in TABLE 8.

TABLE 8. Computational times of the algorithms.

According to the statistical results in TABLE 8, the compu-
tational efficiency of the proposed CPSMOEA outperforms
those of the PICEAg, MOPSO, and GDE3.

V. CONCLUSION
This paper comprehensively considers the economics and
security of the power system and establishes a model based
on the active power loss and voltage deviation. A two-step
approach containing a novel algorithm named CPSMOEA
in its optimization step was first applied to the MORPD
field. In the decision-making step of the proposed approach,
the BCSs are selected from the POSs by means of the
combination of the FCM and GRP, which fully consid-
ered the decision-makers’ preference and can provide more
schemes for the decision-maker. Based on the simulation
results, it can be seen that the CPSMOEA can obtain a
well-distributed Pareto front after introducing the CPS, and
its convergence and distribution characteristics are better than
the commonly-used multi-objective optimization algorithms
such as PICEAg, MOPSO, and GDE3.

Our future work will focus on considering a dynamic
index, like short-term voltage stability margin, as the objec-
tive function to handle dynamic security problems of the
system. In addition, Another interesting topic is to extend
this work to potential applications in multi-objective opti-
mal operation of a microgrid/integrated energy system with
uncertain renewable generations [36], [37].

REFERENCES
[1] P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga,

‘‘Optimal reactive power dispatch with uncertainties in load demand and
renewable energy sources adopting scenario-based approach,’’ Appl. Soft
Comput., vol. 75, pp. 616–632, Feb. 2019.

[2] M. Basu, ‘‘Quasi-oppositional differential evolution for optimal reactive
power dispatch,’’ Int. J. Electr. Power Energy Syst., vol. 78, pp. 29–40,
Jun. 2016.

[3] H. Singh and L. Srivastava, ‘‘Modified differential evolution algorithm
for multi-objective VAR management,’’ Int. J. Electr. Power Energy Syst.,
vol. 55, pp. 731–740, Feb. 2014.

38208 VOLUME 8, 2020



M. Zhang, Y. Li: MORPD of Power Systems by Combining Classification-Based MOEA and Integrated Decision Making

[4] L. Srivastava and H. Singh, ‘‘Hybrid multi-swarm particle swarm optimi-
sation based multi-objective reactive power dispatch,’’ IET Gener., Trans-
miss. Distrib., vol. 9, no. 8, pp. 727–739, May 2015.

[5] Y. Li, P. Wang, H. B. Gooi, J. Ye, and L. Wu, ‘‘Multi-objective optimal
dispatch of microgrid under uncertainties via interval optimization,’’ IEEE
Trans. Smart Grid, vol. 10, no. 2, pp. 2046–2058, Mar. 2019.

[6] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[7] K. Nuaekaew, P. Artrit, N. Pholdee, and S. Bureerat, ‘‘Optimal reactive
power dispatch problem using a two-archive multi-objective grey wolf
optimizer,’’ Expert Syst. Appl., vol. 87, pp. 79–89, Nov. 2017.

[8] Y. Li, J. Wang, D. Zhao, G. Li, and C. Chen, ‘‘A two-stage approach for
combined heat and power economic emission dispatch: Combining multi-
objective optimization with integrated decision making,’’ Energy, vol. 162,
pp. 237–254, Nov. 2018.

[9] Y. Li, Y. Li, G. Li, D. Zhao, and C. Chen, ‘‘Two-stage multi-objective OPF
for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into
optimization process,’’ Energy, vol. 147, pp. 286–296, Mar. 2018.

[10] Y. Li, B. Feng, G. Li, J. Qi, D. Zhao, and Y. Mu, ‘‘Optimal distributed
generation planning in active distribution networks considering integration
of energy storage,’’ Appl. Energy, vol. 210, pp. 1073–1081, Jan. 2018.

[11] Y. Li, Z. Yang, D. Zhao, H. Lei, B. Cui, and S. Li, ‘‘Incorporating energy
storage and user experience in isolated microgrid dispatch using a multi-
objective model,’’ IET Renew. Power Gener., vol. 13, no. 6, pp. 973–981,
Apr. 2019.

[12] R. He, G. A. Taylor, and Y. H. Song, ‘‘Multi-objective optimal reactive
power flow including voltage security and demand profile classification,’’
Int. J. Electr. Power Energy Syst., vol. 30, no. 5, pp. 327–336, Jun. 2008.

[13] S. M. Mohseni-Bonab, A. Rabiee, and B. Mohammadi-Ivatloo, ‘‘Volt-
age stability constrained multi-objective optimal reactive power dispatch
under load and wind power uncertainties: A stochastic approach,’’ Renew.
Energy, vol. 85, pp. 598–609, Jan. 2016.

[14] A. A. Heidari, R. Ali Abbaspour, and A. Rezaee Jordehi, ‘‘Gaussian bare-
bones water cycle algorithm for optimal reactive power dispatch in electri-
cal power systems,’’ Appl. Soft Comput., vol. 57, pp. 657–671, Aug. 2017.

[15] A.M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, ‘‘Integrated strategies
of backtracking search optimizer for solving reactive power dispatch prob-
lem,’’ IEEE Syst. J., vol. 12, no. 1, pp. 424–433, Mar. 2018.

[16] K. B. O. Medani, S. Sayah, and A. Bekrar, ‘‘Whale optimization algorithm
based optimal reactive power dispatch: A case study of the algerian power
system,’’ Electric Power Syst. Res., vol. 163, pp. 696–705, Oct. 2018.

[17] I. B. M. Taha and E. E. Elattar, ‘‘Optimal reactive power resources sizing
for power system operations enhancement based on improved grey wolf
optimiser,’’ IETGener., Transmiss. Distrib., vol. 12, no. 14, pp. 3421–3434,
Aug. 2018.

[18] W. S. Sakr, R. A. EL-Sehiemy, and A. M. Azmy, ‘‘Adaptive differential
evolution algorithm for efficient reactive power management,’’ Appl. Soft
Comput., vol. 53, pp. 336–351, Apr. 2017.

[19] E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, ‘‘A novel fuzzy
adaptive configuration of particle swarm optimization to solve large-
scale optimal reactive power dispatch,’’ Appl. Soft Comput., vol. 53,
pp. 441–456, Apr. 2017.

[20] G. Chen, L. Liu, Z. Zhang, and S. Huang, ‘‘Optimal reactive power dis-
patch by improved GSA-based algorithm with the novel strategies to
handle constraints,’’ Appl. Soft Comput., vol. 50, pp. 58–70, Jan. 2017.

[21] T. T. Nguyen and D. N. Vo, ‘‘Improved social spider optimization algo-
rithm for optimal reactive power dispatch problem with different objec-
tives,’’ Neural Comput. Appl., pp. 1–32, Feb. 2019.

[22] J. Zhang, A. Zhou, and G. Zhang, ‘‘A classification and Pareto domination
based multiobjective evolutionary algorithm,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), May 2015, pp. 2883–2890.

[23] J. Zhang, A. Zhou, K. Tang, and G. Zhang, ‘‘Preselection via classifica-
tion: A case study on evolutionary multiobjective optimization,’’ Inf. Sci.,
vol. 465, pp. 388–403, Oct. 2018.

[24] A. Santiago, B. Dorronsoro, A. J. Nebro, J. J. Durillo, O. Castillo, and
H. J. Fraire, ‘‘A novel multi-objective evolutionary algorithm with fuzzy
logic based adaptive selection of operators: FAME,’’ Inf. Sci., vol. 471,
pp. 233–251, Jan. 2019.

[25] G. Chen, J. Qian, Z. Zhang, and Z. Sun, ‘‘Applications of novel hybrid bat
algorithm with constrained Pareto fuzzy dominant rule on multi-objective
optimal power flow problems,’’ IEEE Access, vol. 7, pp. 52060–52084,
2019.

[26] P. C. Roy, K. Deb, and M. M. Islam, ‘‘An efficient nondominated sorting
algorithm for large number of fronts,’’ IEEE Trans. Cybern., vol. 49, no. 3,
pp. 859–869, Mar. 2019.

[27] Z. He, J. Zhou, L. Mo, H. Qin, X. Xiao, B. Jia, and C. Wang, ‘‘Multi-
objective reservoir operation optimization using improved multiobjective
dynamic programming based on reference lines,’’ IEEE Access, vol. 7,
pp. 103473–103484, 2019.

[28] Z. A. Khan, A. Khalid, N. Javaid, A. Haseeb, T. Saba, and M. Shafiq,
‘‘Exploiting Nature-Inspired-Based artificial intelligence techniques for
coordinated day-ahead scheduling to efficiently manage energy in smart
grid,’’ IEEE Access, vol. 7, pp. 140102–140125, 2019.

[29] S. W. Mahfoud, ‘‘Crowding and preselection revisited,’’ Parallel Problem
Solving Nature, vol. 2, pp. 27–36, Apr. 1992.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist multi-
objective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput., vol. 6,
no. 2, pp. 182–197, Apr. 2002.

[31] Y. Liu, J. Wei, X. Li, and M. Li, ‘‘Generational distance indicator-based
evolutionary algorithm with an improved niching method for many-
objective optimization problems,’’ IEEE Access, vol. 7, pp. 63881–63891,
2019.

[32] Y. Sun, G. G. Yen, and Z. Yi, ‘‘IGD indicator-based evolutionary algorithm
for many-objective optimization problems,’’ IEEE Trans. Evol. Comput.,
vol. 23, no. 2, pp. 173–187, Apr. 2019.

[33] T. Han, Y. Chen, J. Ma, Y. Zhao, and Y.-Y. Chi, ‘‘Surrogate modeling-
based multi-objective dynamic VAR planning considering short-term volt-
age stability and transient stability,’’ IEEE Trans. Power Syst., vol. 33,
no. 1, pp. 622–633, Jan. 2018.

[34] B. Zhou, K. W. Chan, T. Yu, H. Wei, and J. Tang, ‘‘Strength Pareto
multigroup search optimizer for multiobjective optimal reactive power
dispatch,’’ IEEE Trans Ind. Informat., vol. 10, no. 2, pp. 1012–1022,
May 2014.

[35] S. Ramesh, S. Kannan, and S. Baskar, ‘‘An improved generalized differen-
tial evolution algorithm for multi-objective reactive power dispatch,’’ Eng.
Optim., vol. 44, no. 4, pp. 391–405, Apr. 2012.

[36] Y. Li, Z. Yang, G. Li, D. Zhao, and W. Tian, ‘‘Optimal scheduling of an
isolated microgrid with battery storage considering load and renewable
generation uncertainties,’’ IEEE Trans. Ind. Electron., vol. 66, no. 2,
pp. 1565–1575, Feb. 2019.

[37] Y. Li, C. Wang, G. Li, J. Wang, D. Zhao, and C. Chen, ‘‘Improving oper-
ational flexibility of integrated energy system with uncertain renewable
generations considering thermal inertia of buildings,’’ Energy Convers.
Manage., vol. 207, Mar. 2020, Art. no. 112526.

MENG ZHANG received the B.E. degree in
automation engineering from Northeast Electric
Power University, Jilin, China, in 2018, where she
is currently pursuing the M.S. degree with the
School of Electrical Engineering.

Her research interest includes the optimal oper-
ation and control of power systems.

YANG LI (Senior Member, IEEE) was born in
Nanyang, China. He received the Ph.D. degree
in electrical engineering from North China Elec-
tric Power University (NCEPU), Beijing, China,
in 2014.

From January 2017 to February 2019, he held a
postdoctoral position funded by the China Schol-
arship Council (CSC) with the Argonne National
Laboratory, Lemont, USA. He is currently an
Associate Professor with the School of Electrical

Engineering, Northeast Electric Power University, Jilin, China. His research
interests include power system stability and control, renewable energy inte-
gration, and smart grids. He serves as an Associate Editor for the IEEE
ACCESS and IET Renewable Power Generation.

VOLUME 8, 2020 38209


	INTRODUCTION
	PROBLEM FORMULATION
	OBJECTIVE FUNCTIONS
	ACTIVE POWER LOSS
	VOLTAGE DEVIATIONS

	EQUALITY CONSTRAINTS
	FILE FORMATS FOR GRAPHICS
	GENERATOR CONSTRAINTS
	TRANSFORMER CONSTRAINTS
	SHUNT CAPACITOR BANK CONSTRAINTS
	LOAD VOLTAGE CONSTRAINTS
	SECURITY CONSTRAINTS


	MODEL SOLUTION
	SOLUTION FRAME
	MULTI-OBJECTIVE OPTIMIZATION
	MOEA
	CPS STRATEGY

	APPLICATION OF CPSMOEA IN MORPD PROBLEM
	DECISION SUPPORT
	FUZZY C-MEANS CLUSTERING
	GREY CORRELATION PROJECTION

	METRIC INDICATOR
	GENERATIONAL DISTANCE
	SPREAD
	INVERTED GENERATIONAL DISTANCE


	NUMERICAL RESULTS
	IEEE 30-BUS TEST SYSTEM
	PARAMETER SETTINGS
	OPTIMIZATION RESULTS
	DECISION-MAKING ANALYSIS
	DISCUSSIONS OF BEST COMPARISON SOLUTIONS
	COMPUTATIONAL EFFICIENCY ANALYSIS

	IEEE 118-BUS TEST SYSTEM
	OPTIMIZATION RESULTS
	DECISION-MAKING ANALYSIS
	COMPUTATIONAL EFFICIENCY ANALYSIS


	CONCLUSION
	REFERENCES
	Biographies
	MENG ZHANG
	YANG LI


