SPECIAL SECTION ON INTEGRATIVE COMPUTER
VISION AND MULTIMEDIA ANALYTICS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 2, 2020, accepted February 16, 2020, date of publication February 19, 2020, date of current version February 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975067

A Comprehensive Survey on
Geometric Deep Learning

WENMING CAOQ"'123, (Member, IEEE), ZHIYUE YAN"!-2, ZHIQUAN HE 2,
AND ZHIHAI HE"“3, (Fellow, IEEE)

The Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China
2Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen 518060, China
3Video Processing and Communication Laboratory, Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA

Corresponding author: Zhihai He (hezhi @missouri.edu)

This work was supported in part by the National Natural Science Foundation of China under Grant 61771322, Grant 61871186, and
Grant 61971290.

ABSTRACT Deep learning methods have achieved great success in analyzing traditional data such as texts,
sounds, images and videos. More and more research works are carrying out to extend standard deep learning
technologies to geometric data such as point cloud or voxel grid of 3D objects, real life networks such as
social and citation network. Many methods have been proposed in the research area. In this work, we aim
to provide a comprehensive survey of geometric deep learning and related methods. First, we introduce the
relevant knowledge and history of geometric deep learning field as well as the theoretical background. In
the method part, we review different graph network models for graphs and manifold data. Besides, practical
applications of these methods, datasets currently available in different research area and the problems and

challenges are also summarized.

INDEX TERMS Convolutional neural networks, geometric deep learning, graph, manifold.

I. INTRODUCTION

A. INTRODUCTION

The deep Learning [1] technologies, for example, the con-
volutional neural networks [2], have achieved unprecedented
good results in some machine learning applications such
as object detection [3]-[5], image classification [6], speech
recognition [7], and machine translation [8]. Different from
traditional neural networks, the deep neural networks, espe-
cially convolutional neural networks, make use of the basic
statistical characteristics of data including local stationarity
and multi-scale component structure to capture deeper local
information and features. Although deep learning technology
is very successful in processing traditional signals such as
image, sound, video or text, the current research on deep
learning still mainly focuses on the data mentioned above
which are defined in the Euclidean domain, namely grid-like
data. With the emergence of larger data scale and more pow-
erful GPU computing ability, people begin to be more and
more interested in processing data in non-Euclidean domain,
such as graphs and manifolds. This type of data is ubiquitous

The associate editor coordinating the review of this manuscript and

approving it for publication was Guitao Cao

VOLUME 8, 2020

in real life. It is of great significance to study deep learning
techniques in non-Euclidean domains. This is called geomet-
ric deep learning.

The geometric deep learning mainly study graph and man-
ifold data. The graph is composed of nodes and edges of the
network structure data. For instance, in social network, each
node represent a person’s information and the edge represent
the relationship between people. The edges can be directed or
undirected depending on the relationship of the connecting
vertices. The Manifold data are usually used to describe
geometric shapes, such as surface of objects returned by radar
scanning. These geometric data are irregularly arranged and
randomly distributed, which makes it difficult for people to
find out the underlying pattern. Specifically, it is difficult to
find the neighbor nodes of a certain point in the data, or the
number of a node’s neighbor is different in [9]. This makes
it difficult to define convolution operations like those on
images. On the other hand, data like images in the Euclidean
domain can be regarded as a special graph data, with vertices
arranged in a regular way. Another issue is that non-Euclidean
data usually has extraordinarily large scale. For example,
molecular graph can have hundreds of millions of nodes. For
this case, it is unlikely to use the traditional deep learning

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 35929

https://orcid.org/0000-0002-8174-6167
https://orcid.org/0000-0003-0207-1294
https://orcid.org/0000-0003-2255-4293
https://orcid.org/0000-0002-2647-8286
https://orcid.org/0000-0002-4059-4806

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

technology to carry out analysis and prediction tasks. This is
why deep learning is so important in the field of geometric
data.

The purpose of this survey is to review and summarize the
geometric deep learning frameworks and algorithms devel-
oped on graphs and manifolds data, and to introduce the
practical difficulties and development directions in this new
rising field.

B. BRIEF HISTORY

The history of geometric deep learning filed is not very long.
Although it seems that this area is in its infancy, the deep
learning behind its development has a long history. The rapid
development of deep learning technologies such as convolu-
tional neural network greatly pushes the progress of geomet-
ric deep learning. After all, studying geometric deep learning
is to study how to define the non-Euclidean world mathe-
matically, and how to transplant the existing frameworks and
algorithms of deep learning to handle graphs and manifolds
data effectively. In general, geometric deep learning can be
mainly divided into two major research directions, one is for
processing graph data (i.e. graph networks or grid-like data);
the other is for processing manifold data (i.e. generally for
processing 3D point cloud data). Among them, graph data
processing is more popular, and people aim to extend the deep
learning technologies to non-Euclidean structural data.

As early as in 2005, M. Gori et al. first proposed a graph
neural network (GNN) to process graph data [10] such as
directed graphs, undirected graphs, labeled graphs, and recur-
rent graphs. The work of [11] published by Scarselli et al.
in 2009 brought back the graph neural network model to the
public’s horizon, defined a function that can map graph and
any node to a dimensional Euclidean space, and proposed an
algorithm to estimate the neural network model parameter
with supervised learning. In the work of [12] proposed spec-
tral convolutional neural networks on graphs. Work of [13]
extended the spectral network by combining a graph estima-
tion process. diffusion convolutional neural network (DCNN)
was next proposed in [14] to learning diffusion based repre-
sentation from graph data for node classification. The work
of [9], similar to image based convolutional network operat-
ing on the input locally connected region, proposed a gen-
eral method to extract the locally connected region from the
graph. In 2016, M. Defferrard et al. proposed ChebNet [15],
and then a simplified version GCN (graph convolutional
network) was proposed [16]. One year later, CayleyNet was
proposed by Levie et al. [17]. All the above research results
were based on the idea of convolutional network. Besides
graph convolution model, there are other similar studies con-
ducted in parallel, such as graph attention networks, graph
generative networks, and graph auto-encoders that will be
seen in section III.

At the same time, research of deep learning theory on
manifold data are also carried out. There have been two
traditional research methods on manifolds, one is to fill
3D shapes with many voxel grids (cube blocks), and each

35930

voxel can be processed by 3D CNN opreation, called
3D volumetric CNN. The other is to take photos of 3D
objects from multiple angles to increase the data source of
the same object, which is called multi-view CNN. In 2015,
J. Masci et al. proposed the framework of Geodesic
CNN [18], which is the promotion of convolutional neu-
ral network (CNN) paradigm on non-Euclidean manifold.
Later on, in the work [19], the authors proposed Anisotropic
CNN framework in the study of intrinsic dense correspon-
dences between deformable shapes on the experiment of
the results over [18]. This method generalized convolutional
neural networks to the non-Euclidean domain by replacing
the traditional convolution operations by projections on a
set of oriented anisotropic diffusion kernels. Related work
is [20], which proposed SyncSpecCNN network, where the
kernel is parameterized in the spectral domain spanned by the
Laplacian feature basis. D. Boscaini et al. proposed Local-
ized Spectral CNN (LSCNN) in [21], in which the model
structure is based on local frequency analysis with a win-
dowed Fourie transform to manifold data. This method can be
used for deformable shapes. A new framework called FMNet
was introduced to learn the dense correspondence between
deformable 3D shapes [22].

Many works have been conducted to find better approach
to generalize convolution-like operations of convolution neu-
ral networks to the non-Euclidean domain. For example,
the work [23] proposed a unified CNN framework MoNet
and declared that the previous various CNN models can be
unified within the framework. In addition, many researchers
have tried to apply the above methods to a wide range of prac-
tical problems, from biochemistry [24] and skeleton-based
human motion recognition task [25] to the recommender
systems [26].

C. ORGANIZATION OF THIS SURVEY

The rest of this survey is organized in the following. Section II
gives some basic background knowledge and conceptions
of geometric deep learning. Section III overviews the typ-
ical deep learning approaches on graphs and manifolds;
Section IV presents a gallery of applications across vari-
ous tasks and introduces some common datasets. Section V
discusses the current challenges and future directions and
section VI summaries this work.

D. RELATED SURVEYS AND OUR CONTRIBUTIONS

There has been some existing professional reviews in the
geometric deep learning field. Bronstein et al. gave an
overview of deep learning methods in the non-Euclidean
domain, including processing methods on graphs and man-
ifolds [27]. In addition, this review also provided a complete
mathematical derivation and various formulas in the field of
geometric deep learning, which serves a good reference for
new starters. However, the research of graph deep learning
is going fast. After this survey, may new research results
have been achieved, including graph attention networks,
graph auto-encoders and other architectures, and some new

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

benchmarks. The work of [28], [29] put forward a most up-
to-date survey on deep learning for graphs, which partially
updated the work in [27]. Still, it did not cover those studies
on graph generative and graph attention networks and meth-
ods on manifolds. Most recently, based on the above two sur-
veys, Wu et al. put forward the current network structures on
graphs, including spatio-temporal networks [30]. However,
the background knowledge part was only simply mentioned
based on the previous theoretical introductions, which is not
friendly for new readers.

This work serves as a comprehensive survey that covers the
latest deep learning methods for graphs and manifolds data,
and the related applications. In the introduction part, we try
our best to use plain language and some simple mathematical
derivations to explain the theory of geometric deep learning.
In the method part, we summary the network architectures
and methods for graph and manifold data, as well as the
spatial and spectral-based methods. We also include many
latest existing research results, such as the hot point cloud
technology in the recent two years. In the end part of this
review, we point out some limitations of existing algorithms
and the possible development directions of this field in the
future. We believe that readers, especially new beginners, will
have a comprehensive and clear understanding of geometric
deep learning after reading this review.

Il. BACKGROUND
In this section, we give a basic background introduction on
graph and manifold theories.

A. GRAPH AND LAPLACIAN MATRIX

The definition of graph is G = (V, E) where V is the set of
vertices or nodes, E is the set of edges. Let v; € V represent
anode and ¢;; = (v;, vj) € E to represent an edge between v;
and v;. Let N = |V] to denote the total number of nodes and
M = |E| to denote the total number of edges. The adjacency
matrix A is an N x N matrix of edge weights where:

Agjzaij>0ife,-jeE (1)
Ajj =0if ¢ ¢ E 2)

The edges in an undirected graph are all undirected, i.e. an
undirected graph’s edges are all undirected, any two nodes
are just connected without direction. For an undirected graph,
A = Aj;; = 1. A directed graph has edges going from one
node to another. For a directed graph, A;; # Aj;.

The Laplacian matrix of a graph is definedas L = D — A,
where D is the degree matrix, which is diagonal. The diagonal
elements are the degrees of nodes, which is defined as the
number of connecting edges, namely, D;; = Zj Ajj). The
common Laplacian matrix usually has the following three
forms, Combinatorial Laplacian:

L=D-A 3)
Symmetric Normalized Laplacian:

Lsym — D—l/2LD—l/2 — I _ D_l/zAD_l/2 (4)

VOLUME 8, 2020

FIGURE 1. Example graph network of Cora dataset. Marker fill color
represents the predicted class, marker outline color represents the
ground truth class. Cited from [23].

and Random Walk Normalized Laplacian:
L =D 'L=1-D"'A (5)

For an undirected graph G, the Laplacian matrix L is
symmetric and positive-semidefinite. The dimension of the
eigenspace is N.

Since we assumed that G is a simple graph, its adjacency
matrix A only contains 1s or Os and its diagonal elements are
all Os. So the elements of L are given by:

deg(v;) ifi =},
Lij=1-1 if i # j and v; is adjacent to vj, (6)
0 otherwise.

where deg(v;) is the degree of the vertex i. The elements
of L™ are given by:

1 if i = j and deg(v;) # O,
Lo — —1

L T) Afdeg(viddeg(vy)

0 otherwise.

if i#j and v; is adjacent to v;, (7)

where the eigenvalues (known as the spectrum of the nor-
malized Laplacian) of the normalized symmetric Laplacian
satisfy 0 < A9 < --- < Any—1 < 2. Next the elements
of L' are given by:

1 if i = j and deg(v;) # 0,

LY = ﬁ(lv,) if i # jand v; is adjacent tov;, (8)

ij
0 otherwise.
It is important to note that the Laplacian matrix of different
forms above is nothing more than using degree matrix with
different normalization strategies.

35931

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

B. FOURIER TRANSFORM ON GRAPHS

The key of graph convolutional network based on spec-
tral method is the eigen-decomposition of Laplacian matrix,
so Laplacian matrix plays a very important role. The normal-
ized Laplacian matrix is a semi-positive definite symmetric
matrix, it has N linearly independent and mutually orthog-
onal eigenvectors, and N non-negative eigenvalues. There-
fore, Laplacian matrix can be decomposed into the following
formula:

L =UAU"!)

where U = [ug, ug, --- ,uy_;] € R¥*V is a matrix com-
posed of corresponding eigenvectors sorted by eigenvalues.
We know that U is an orthogonal matrix and has U~! = UT,
these eigenvectors form an orthogonal space; A is a diagonal
matrix of eigenvalues and has A;; = X;, 0 = A < A1 <
< An—1. In the N-dimensional space determined by
graph, the smaller eigenvalue A; means the corresponding
eigenvector u; has less importance, and can be even ignored.
The Laplacian eigen-decomposition can also be written as:

L =UAU" (10)

Since the Laplacian matrix is a discrete Laplacian operator,
it is natural to use the Laplacian matrix and its eigenvectors to
define the Fourier transform of the graph in spectral method.
In order to transfer the traditional Fourier transform and con-
volution operation to graph, the core work is to transform the
eigenfunction (basis function) e’ of the Laplacian operator
into the eigenvector of the corresponding Laplacian matrix
on the graph. The relevant work [31] has made outstanding
contributions and adequate explanations about this theory. In
graph signal processing, a graph signal x € R is a feature
vector of the nodes of a graph where X; is the value of the i
node. So the graph Fourier transform to a signal x is defined
as X = UTx and the inverse graph Fourier transform is defined
as x = UX, where X represents the resulting signal from graph
Fourier transform. The graph Fourier transform projects the
input graph signal to the orthonormal space where the basis
is formed by eigenvectors of the normalized graph Laplacian.

C. CONVOLUTION ON GRAPHS

The convolution theorem states that the Fourier transform of
convolution is the product of Fourier transforms, by analogy
to the graph and puts in the definition of the Fourier transform
on graph. Now the graph convolution of the input signal x
with a filter g € RY is defined as:

xig=U ((UTX) o) (UTg)) (11)

where © denotes the Hadamard product, in which the
two elements from the sample location are multiplied.
Use gy = diag (UTg) to denote as a filter in spectral domain,
then the graph convolution is simplified as:

xigo = U gy (UTx) (12)

35932

P _

e

FIGURE 2. Top: tangent space and tangent vectors on a two-dimensional
manifold (surface). Bottom: Examples of isometric deformations. Cited
from [27].

The Spectral-based graph convolutional networks all follow
this definition, and the most critical difference is the selection
of filter gg.

D. MANIFOLD

1) MANIFOLD BASICS

From the wikipeida, a manifold is a topological space that
locally resembles Euclidean space near each point. More
precisely, each point of an n-dimensional manifold has a
neighborhood that is homeomorphic to the Euclidean space
of dimension n. Globally, it may be not homeomorphic to
Euclidean space. The surface of a sphere is such an example.
Formally speaking, let X be a d-dimensional differentiable
manifold with a boundary 9X. Around a point x € X, there is
a neighborhood that is topologically equivalent (homeomor-
phic) to a d-dimensional Euclidean space referred to as the
tangent space and denoted by 7, X. On each tangent space,
an inner product (-, -}y x : TxX x T»X — R depending
smoothly on x is called the Riemannian metric in differen-
tial geometry and allows performing local measurements of
angles, distances, and volumes. A manifold equipped with a
metric is called a Riemannian manifold, which is completely
abstract. In shape analysis, two-dimensional manifolds (sur-
faces) embedded into R> are used in computer graphics and
vision to describe the boundary surfaces of 3D objects, com-
monly known as “3D shapes”. This term is a bit misleading,
because ‘3D’ here refers to the dimensionality of the embed-
ding space, not the dimensionality of the manifold. Figure 2
below provides a visual explanation.

2) CALCULUS ON MANIFOLD
In this subsection, we consider functions defined on mani-
folds, starting with a smooth real function defined in scalar

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

field f : X — R; then we introduce a mapping function
F : X — TX defined in the tangent vector domain that
associates a tangent vector F(x) € T,X with a point x.
The tangent vector field is used to formalize the concept of
infinitesimal displacement on manifold. We use L2(X) and
L*(T'X) to represent Hilbert Spaces of scalar field and vector
field on manifold respectively, and define their inner product
operation as follows:

(. 20 = /X fgeods (13)

(F.G)r2erxy = fx (F(x), G(x))1,xdx (14)

where dx denotes an area element (d-dimensional) induced
by the Riemannian metric.

Define the differential of f as the operator acting on the
tangent vector field df : TX — R. In order to model a small
displacement near the point x, at each point x, the differential
operation is defined as df(x) = (Vf(x), -)7,x applied to the
tangent vector F(x) € T,X. So we can apply this definition
of differentiation to the tangent vector, that is dfix)F(x) =
(Vfix), F(x))t,x, and get the change in function value due to
a small displacement around point x, where Vf : L*(X) —
L*(TX) is called intrinsic gradient. As we can see that it
is similar to the classical notion of a gradient, because it
defines the direction of the tangent vector that changes most
dramatically at a local given point in a function.

After having a definition of gradients, we also need
to define the divergence operation as the intrinsics diver-
gence operation, which acts on the tangent vector field
div : L2(TX) — LZ(X), adjoint to the gradient operator:

(F. V) 20 = (— divF. 2 (15)

Finally, we can obtain Laplacian (or Laplace-Beltrami
operator in differential geometry) acting on scalar fields,
that is, the divergence of gradient can be taken as negative.
A : L*(X) — L*(X) is an operator defined as follows:

Af = — div(Vf) (16)

combine the equations (14) with (12), it can be concluded that
Laplacian is symmetric:

(V. Vﬂﬁ(z‘x) = (— diV(Vf)af)LZ(x) = <Aﬁf>L2(x) (I7)
= M (18)

The summary is that we can think of Laplacian as the dif-
ference between the average of a function on an infinitesimal
sphere around point x and the value of the function on x. The
Laplace-Beltrami operator (LBO) is intrinsic, i.e. expressible
entirely in terms of the Riemannian metric. As a result,
it is invariant to isometric (metric-preserving) deformations
of the manifold. On a compact manifold, LBO admits the
same rules of spectral analysis on graphs. According to the
background knowledge in the previous part, it can be seen
that Laplacian plays a crucial role in signal processing and
learning in the non-Euclidean domain, helping to generalize

VOLUME 8, 2020

the classical Fourier transform and spectral analysis on graph
and manifold data.

3) DISCRETE MANIFOLDS

In computer graphics, two-dimensional manifolds are com-
monly used to model 3D shapes and and it is difficult to
reconstruct a correct discretization of a manifold from point
cloud. The common way to discrete a manifold is to sample
the manifold by N points with coordinates xi, --- , Xy and
build a graph on this poind cloud in which the points are
vertices and the edges with weights represent the local con-
nectivity in the manifold. However, this simple discretization
method cannot directly obtain the geometry of the bottom
continuous manifold when the sampling density increases
and the Laplacian operator of the graph does not converge to
the continuous Laplacian operator of the manifold. Another
way is that in the discrete setting, the points on surface X are
constructed by a triangular mesh (V, E, F) with vertices V =
{1,---, N}, the triangular faces ijk and ijh € F have edges
{(i.j)), (i,k), (,k)} € E. The collection of faces represents
the underlying continuous manifold as a polyhedral surface
consisting of small triangles glued together. To be a correct
discretization of a manifold (a manifold mesh), every edge
must be shared by exactly two triangular faces. If the manifold
has a boundary, any boundary edge must belong to exactly
one triangle. On a triangular mesh, the simplest discretization
of the Riemannian metric is given by assigning each edge
a length /;; > 0, which must additionally satisfy the trian-
gle inequality in every triangular face. If [;; = ”xi — xj} 5
the mesh Lapalcian is given as the cotangent weights
wij = 5 (cotay; + cot B).

E. CONVOLUTIONAL NEURAL NETWORKS

In the Euclidean domain, the convolution operation can be
considered as passing a template at each point in the domain
and recording the correlation between the template and the
function at that point due to shift invariance. With image
filtering operation in mind, this is equivalent to taking a
block of pixels (usually a square block), multiplying its
elements by using a template, summing up the result, and
sliding the window to the next position. Figure 3 shows the
process. The shift invariance here means that the operation
of extracting patch in each location is always the same.
CNN techniques [32]-[34] allows to learn task-specific fea-
tures from examples and achieves a breakthrough in per-
formance in a wide range of applications such as image
classification [6], [35], [36], segmentation [37], detection and
localization [38], [39] and annotation [40].

lll. METHODS

With the background knowledge introduced, we now
come to focus on the questions of constructing CNNs
on non-Euclidean domains. At present, the two typical
non-Euclidean geometric data in research are graphs and
manifolds. Graphs refer to network structure data composed
of nodes and edges, such as social network. Manifolds are

35933

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

(4x0)
{0x0)
Center element of the kemel is placed over the ©
x0)
source pixel. The source pixel is then replaced 0 x 0)
with a weighted sum of itself and nearby pixels :0 x1)
0x1)
0x0Q
Source pixel :U x |;
0 +(-4%2)
1 -8
1
2
= ”o/ﬂ
y.2 4 o
s 0 @ &
1 o O

Convolution kernel
(emboss)

New pixel value (destination pixel)

FIGURE 3. Convolutional layer in traditional CNN.

often used to describe 3D geometric shapes, such as spatial
coordinates on the surface of an object returned by a LIDAR
scan. In this section, we will introduce various methods and
network architectures used to deal with graphs and manifolds.

A. METHODS ON GRAPHS

Graph has been a common structure of data in the real world.
There are lots of tasks that can be described as problems on
the graphs, such as social network, protein structure network,
traffic network, and knowledge graph, and even some regular
data like grid structural data (such as images, video, etc.) are
also a special form of graph data. In recent years, driven by
the development of social networks and knowledge graphs
and inspired by the great success of deep learning techniques
in computer vision field, many researchers have imitated and
designed the deep neural network architectures in graph data
by referring to the original Convolutional Neural Network
(CNN), Long Short-Term Memory network (LSTM), Atten-
tion mechanism and Auto-encoder (AE).

However, it is important to note that graph data are different
from images due to its irregularity. Each node in the graph
may have different number of neighbors. Convolution opera-
tions on images may not be applied to graph data. On the other
hand, the nodes in a graph are related to each other which
may conflict the data independence assumption in common
machine learning algorithms. Another aspect is the data size.
A graph may have a large number of nodes, which pose a
huge challenge to existing machine algorithms.

In this section, we will focus on the major spectral-based
and spatial-based graph neural networks (GNN) that have
been developed recently and extend to Graph Attention Net-
works (GANSs), Graph Generative Networks (GGNs) and
Graph Auto-encoders (GAESs).

The researchers aim to generalize the traditional convolu-
tion operation from images or grids to the graphs, the key
of this generalization process is to learn a function f which
has ability to aggregate the node v;’s features X; and features

35934

from neighbors v;’s features X to create a new representa-
tion of node v;. Generally speaking, the graph convolutional
networks can be divided into two categories. One is graph
convolution based on spectral graph theory which is inspired
by graph signal processing techniques [31]. The researchers
define graph convolution operation by introducing Fourier
transform on graph, which can also be interpreted as an oper-
ation to remove noise from graph signal, then combine with
deep learning techniques. The other one is spatial domain
convolution, which directly carries out convolution operation
on the graphs. This kind of GCN approach represents graph
convolution as the combination of feature information from
neighbor nodes.

1) SPECTRAL-BASED GRAPH CONVOLUTIONAL NETWORKS
The initial core idea of this kind of methods is to define
non-Euclidean convolution and its relation with frequency
domain by analogy. This method first uses Fourier transform
to multiply in frequency domain, then do inverse transforma-
tion. After a few years of development, Fourier transform is
not needed any more, graph Laplacian is applied directly. The
major differences between the different frameworks lie in the
design of filters in convolutional layer.

Spectral CNN (SCNN) [12]: Inspired by the definition
of the Fourier transform on graph, J. bruna et al. proposed
the first graph convolutional neural network (Spectral CNN).
For irregular graph data, we can use the Fourier transform
formula of the graph to take the product of the input in Fourier
domain first, and then take the inverse Fourier transform,
which is equivalent to directly applying the convolution in
the original space. In [12], the filters are defined as:

01
gy =0= (19)
On

where gy is an N x N diagonal matrix of spectral multipliers
representing a learnable filter in the frequency domain, and
the parameter # € RY is a vector of Fourier coefficients.
A signal x filtered by go can be written as:

Youtpur = X*Gg9 =0 (U (gg (UTX))>
0
=0 |U 1 - U'x (20)
On

where U is an N x N matrix of Laplacian eigenvectors,
and o is a non-linearity function (e.g. ReLU) applied on
the vertex-wise function values. The pooling operation in
traditional CNN framework is replace by graph coarsening
procedure in this SCNN model, that is, input a graph with
N vertices, and then produces a graph with N'<N vertices
and transfers signals from the vertices of the fine graph to
those of the coarse one. The coarsening operation can also
be regarded as the resolution change. The commonly used
coarsening algorithm is Graclus.

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

Despite SCNNs has groundbreaking theoretical contri-
butions, the network has several major drawbacks. First,
the computation of the forward and inverse graph Fourier
transform incurs intensive multiplications. Second, the spec-
tral filter coefficients are based on the basis and the Laplacian
of each graph is different, therefore, the model of the spec-
tral CNN cannot achieve good portability. Third, the model
does not have a good spatial localization. Unlike traditional
convolution neural network where the convolutional oper-
ation only sees a fraction of the field each time, spectral
CNN considers every single node with each convolution
process. Fourth, because the non-linear functions in (20) are
applied to the spatial domain, graph Laplacian eigenvectors at
each resolution must be recalculated in practice and applied
directly after each pooling step, which caused a lot of trouble
with the calculation.

Smooth Spectral CNN (Smooth SCNN) [13]: In later
work, Henaff er al. found that it is necessary to restrict
the class of spectral multipliers to those corresponding to
localized filters. They expressed the spatial localization of
filters in the frequency domain and considered that smooth
spectral filter coefficients can constitute a spatial localized
filters. Using only the first K eigenvectors in (20) sets a cutoff
frequency. In general, K < N, since only the first K Laplacian
eigenvectors describing the smooth structure of the graph are
useful in practice. This reduces the number of parameters to
learn. Thus, the parametric filters are defined as the following
form:

where B € RV*K s a fixed interpolation kernel (e.g. B can
be the cubic B-spline basis) and the parameter § € RX is a
vector of interpolation coefficients.

Chebyshev Spectral CNN (ChebNet) [15]: Mathemat-
ically, it is known that any polynomial of order k can
be expanded by wusing the Chebyshev polynomial.
Defferrard et al. proposed ChebNet framwork by using the
Chebyshev polynomial basis to represent the spectral CNN’s
filters. The Chebyshev polynomial in recursive form can be
written as:

To(x) =1,
() = A,
T (A) = 20T ;(X) — Ti2(X). (22)

Therefore, after combining the recursive form of Chebyshev
polynomial, the filters can be parametrized as the truncated
expansion of order K — 1:

K-1
go(A) =) OTi(A) (23)
k=0

where the parameter # € RX is a vector of Chebyshev coef-
ficients and A is a diagonal matrix composed of Laplacian
eigenvalues. Ti(A) € RV*N is the Chebyshev polynomial of

VOLUME 8, 2020

order k evaluated at A = 2A /Amax — Ly, aiming to reduce
the size of the eigenvalues from [0, Ax] to [—1, 1], since the
Chebyshev polynomial form an orthonormal basis that lies
in [—1, 1]. Therefore, the ChebNet’s filtering operation can
be written as:

Yourpur = X;;80 = O (U <g9 (UTX))>

K—1
=0 (Z eka(L)x> (24)

k=0

where o is a non-linear function and Tk(I:) e RV*N is the
Chebyshev polynomial of order k evaluated at the scaled
Laplacian L = 2L /Amax — In. In addition, the property
UAXUT = L* of Laplacian matrix eigen-decomposition is
also used in formula (24). In short, the essence of ChebNet
is that every graph newly generated by coarsening algorithm
(Graclus, built on Metis) has its own Laplacian matrix L. All
that the model needs to do is to select several L from them and
generate the convolutional layer filter to process the graph.

We can clearly see that 6; is the learnable parameter and
consistent with Tk(I:), which corresponds to the order k neigh-
bor. This means that parameters are shared on neighborhood
of the same order, but not shared on neighborhood of different
orders. As the result of Ty(L) is L’s polynomial of order k,
which only considers the K-hop neighborhood. Therefore,
Ti(L)x can operate locally on each node, which means that
the filters of ChebNet is localized in spatial domain. However,
because there are only K parameters, it is difficult for the
model to allocate different weights for different nodes in the
same order neighborhood.

Graph Convolutional Networks (GCNs) [16]: GCN sim-
plifies ChebNets architecture by using filters operating on
1-hop neighborhoods of the graph. Kipf and Welling et al.
introduced one simplified version, namely, first-order
approximation of ChebNet [15]. The innovations can be
summarized in two points:

o let K=1, Amax=2, that is, each layer of convolution only
considers the direct neighborhood, which is similar to
the 3 x 3 kernel in CNN

« deepen the network and reduce the width of the model,
which is widely used in conventional deep learning for
images.

Under this condition, the output of convolution operation is:
Youpur = ngg =0 (Box + 01 (L — Iy) x)
= o (fx - HiD"2AD"3) (25)
where the derivation process of formula applies the normal-
1 1 1 1
ized Laplacian L = D"2(D — A)D"2 = Iy — D 2AD™ 2.
In order to prevent the occurrence of overfitting due to the

excessive number of parameters, a unified hypothesis is used
0 = 6y = 6. Then the definition of GCN becomes:

1 1
Youpu = X589 = & (9 (IN + DTADT) x) (26)

35935

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

In order to fuse multi-dimensional input graph signals and
satisfy multi-channel convolution, the graph convolutional
layer is proposed by modifying equation (26):

XM = AXf@ (27)

where A = Iy + D-2AD"7; X € RV<C, @ e RC*F,
Xkt e RVXF among which N, C and F represent the number
of nodes, channels and convolution kernel respectively.

CGN is spatially localized, bridging the gap between
spectral-based and spatial-based methods. Each row of output
matrix is calculated by weighted aggregation of a node itself
and its neighboring nodes, which represent the hidden repre-
sentation of a node. However, the disadvantages of this model
lie in: 1) the weights assigned to different neighbors in the
same order neighborhood are exactly the same, which limits
the ability of the model to capture the correlation of spatial
information. This problem was solved by Zhang et al. ’s
work [41], which greatly improved the characterization abil-
ity of spatial correlation in the graph datasets with a small
scale. So arbitrary weight coefficients can be assigned to
arbitrary neighbors. 2) during batch training of GCN, the cal-
culation consumption increases exponentially as the number
of model layers increases.

Adaptive Graph Convolution Networks (AGCNs) [42],
[43]: Li et al. proposed graph adaptive convolutional net-
work (AGCN), which applies a so-called residual graph in
graph augmentation process in which residual graph is con-
structed by computing the pairwise distance between nodes.
AGCN can capture complement relational information and
hidden structural relations unspecified by the graph Laplacian
matrix.

GCN with Complex Rational Spectral Filters
(CayleyNets) [17]: The core component of this proposed
network model is the new Cayley polynomial (parametric
rational complex function). Based on this, an efficient spec-
tral filtering scheme is constructed, which has the advan-
tages of edge positioning and linear complexity similar to
Chebysheyv filter. But one of the main disadvantages of the
Chebyshev filter is that it is difficult to generate some desired
narrow-band filters because such filters require a high order K
to support. Therefore, the main advantage of Cayley filters
over Chebyshev filters is that they can detect important
narrow bands in the training process, and can locate these
bands well on the graph, allowing effective calculation for
the interested bands. The Cayley filters are positioned in
space in a linear relation to the size of the input data for
the sparsely connected graph and are capable of handling
different structures of the Laplacian operator. Experiments
show that CayleyNets have greater flexibility and perform
better than ChebNets on a wide range of graph learning
problems.

The Cayley polynomial of order K is defined as a
real-valued function form as follows:

K—-1
Ten(h) = co+2Re {Z cx(hr — D (h + i)_k} (28)
k=0

35936

where ¢ = (cg, -+, cg—1) is a vector of real coefficients,
and h> 0 is the spectral zoom parameter. By adjusting the
spectral zoom parameter h, different parts of the spectrum
can be “zoomed” to produce filters specifically for different
frequency bands. Therefore, the Cayley filter g is a spectral
filter defined on real signals f by:

gof = Ten(Af

K—1
= cof + 2Re Z cr(hA — iDF(hA + iI)_kf} (29)
k=0

where the parameters ¢ and 4 are optimized during training.
It is also observed that the filtering operation gpf eliminates
the actor eigen-decompostion process of the Laplacian oper-
ator, which significantly reduces the operational costs. The
Cayley filters are special cases of ARMA filters which are
based on general rational functions of the Laplacian.

In general, the CayleyNet architecture is a new class of
complex rational Cayley filters that are localized in space,
can represent any smooth spectral transfer function, and are
highly regular.

2) SPATIAL-BASED GRAPH CONVOLUTIONAL NETWORKS
Spatial convolution is the direct execution of convolution
operations on graph. As the size of traditional convolution
kernel is fixed, if we apply traditional convolution on graph,
we need select a neighborhood of a fixed size for convolution.
However, unlike with data of regular grid structure, the nodes
in the graph usually have different number of neighborhoods.
Convolution operation on graph imitates the convolution
operations on images and is defined based on spatial relations
of nodes. Similar to the center pixel in the traditional CNN
3 x 3 filters, the representation of a center node is also based
on the aggregation result of its neighbor node.

Graph Neural Networks (GNNs) [11]: The basic idea
of GNN is recursively updating the hidden representation of
nodes until convergence. Therefore, GNN is also referred
to as recurrent-based spatial GCN, which uses the same
graph convolution layer to update the hidden representation.
From diffusion process perspective, each node exchanges
information with its neighbors until reaching the equilibrium
state. To process the heterogeneous graph, the spatial graph
convolution of such GNN is defined as:

= £ (X0, Xeolv], B, X [v]) (30)

where X, denotes the label attribute of node v, X, [v] repre-
sents the label attribute of the edge corresponding to node v,
Xn[v] represents the label attribute of the neighbor node
of node v, hf\/?v]) represents the hidden representation of the
neighbor nodes of node v at time step k, f(-) is a recursive
function, and the goal is to make sure that the final result
converges. GNN adopts almeida-pineda algorithm [44], [45]
to train its model and its key idea is to run the forward
propagation and back propagation until convergence.
GraphSage [46]: GraphSage introduces aggregation func-
tion to define the convolution in the spatial domain on graph

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

and learns the embedding of each node in an inductive way.
The aggregation function is essentially the aggregation of the
neighborhood information of the nodes, and its output should
be invariant to the order of nodes. That is, the input order
will not affect the output result of the aggregation function,
such as mean, sum and max function. In this way, each node
is represented by the aggregate result of its neighborhood.
Different graph convolution layers are used to update the hid-
den representation of these spatial-based GCNs. The graph
convolution operation is defined as:

) = AGGREGATE, ({hi", vu e N})
b = o (W coneaT (L)) 6D

where k € [1, K] is the number of iterations, and all nodes
v € V are updated during each iteration by formula (31),
o is a non-linear activation function, AGGREGATE; rep-
resents the differentiable aggregator function, N(v) is the
neighboring nodes of node v, hﬁ denotes the hidden vector
representation of node v when the model updating iteration
comes to k times, WX is a weight matrix. Instead of updating
status on all nodes at a time, GraphSage proposes a batch
learning algorithm that improves scalability for large scale
graphs. Basically, GraphSage’s learning process consists of
three steps:

1) sample the local k-hop neighborhood of nodes at a fixed

size.

2) obtain the final state of the center node by aggregating

the neighbor feature information of the center node.

3) use the final state of the center node for prediction and

back propagation of errors.

Diffusion CNN (DCNN) [14]: Atwood and Towsley pro-
posed a spatial-based graph CNN architecture applying a
diffusion (random walk) process on the graph. The transi-
tion probability of a random walk on a graph is given by
P, = DflAt, where A, D are adjacency matrix and degree
matrix respectively and ¢ is the time index.

DCNN is mainly used in node classification or graph
classification. For each task, the object (node or graph) is
transformed to a diffusion-convolutional representation Z;,
which is a K x F real matrix defined by K hops of graph
diffusion over F features.

For the node classification task, the convolution formula is
defined as:

Ny
Zig=o [Wir-) Py Xy (32)

j=1
where the ¢ th graph is described by an N; x F feature matrix
X;, X represents the fth feature of jth node, f € [I, F],
N, denotes the number of nodes of G;, P} is an N; x K x N,
tensor, P}, i = P’t‘lf denotes the probability of G;’s node v;
reaching node v; after k hops, Pf denotes the k hops transfer
matrix for graph Gy, k € [1, K], W is a K x F real-valued
weight matrix, which is the learnable parameters of con-
volution kernels, o is a non-linear differentiable activation

VOLUME 8, 2020

function. Here, the diffusion-convolutional representation of
G, Z;1s a N; x K x F tensor. So the formula (32) is expressed
as a tensor in the form of Z; = o (W ®© (P;‘X;)).

For the task of graph classification, the convolution for-
mula is defined as:

Z, =0 (Wo IPX/N,) (33)

where 1y, is an N; x 1 vector of ones, and the
diffusion-convolutional representation of G; here, Z;, is a
K x F matrix. DCNNs are learned via stochastic minibatch
gradient descent on back-propagated error.

PATCHY-SAN [9]: In this method, the graph structural
data are transformed into grid structural data through graph
labeling procedure, and uses traditional CNN to solve graph
classification tasks, so as to maintain shift-invariance proper-
ties. The graph labeling procedure is essentially to sort each
node in graph according to the node’s degree, centrality and
etc. The core idea of PATCHY-SAN can be divided into three
steps:

1) determine fixed number of nodes for each graph by
using graph labeling procedure.

2) choose and sort a fixed number of neighbor nodes for
each node according to the results in the first step, so as
to generate grid-structured data of fixed size.

3) use the traditional CNN to learn graph’s hidden repre-
sentation. However, the shift-invariance nature depends
on the sorting function, and underlying graph labeling
procedure only considers the structure of graph and
ignores feature information of nodes.

Large-scale Graph Convolution Networks (LGCN)
[47]: To solve the problem faced by PATCHY-SAN, LGCN
proposed a sorting method based on node feature informa-
tion. PATCHY-SAN has a complex preprocess step in graph
labeling procedure and the graph structures only consider
shallow layers, With a sorting method based on node fea-
ture information proposed, LGCN is more efficient and can
provide deep expression. In addition, LGCN also proposed
a subgraph training strategy to adapt the network model to
handle large-scale graph data, which is to take the sampled
small subgraph as mini-batch for training.

LGCN first uses traditional CNN to generate the node-level
output. Secondly, for each node, LGCN assembles a feature
matrix of its neighbor node, and sorts the matrix along each
column. The first k rows of the matrix serve as the input
grid data of the target node. Finally, LGCN uses 1D CNN
to process the output of the previous step to obtain the hidden
representation of the target node.

Mixture Model Networks (MoNet) [23]: In this work,
the authors proposed a unified framework that can extend
the CNN structure to non-Euclidean domains (graphs and
manifolds), and can learn local, stationary and combinatorial
specific task characteristics. Meanwhile, it also claimed that
various non-Euclidean CNN methods proposed in previous
literatures can be regarded as a special case of MoNet. See
MoNet in detail in subsection ITI-A.2.

35937

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

3) COMPARISON BETWEEN THE SPECTRAL AND SPATIAL
CONVOLUTION APPROACHES

The differences between the spectral and spatial convolu-
tional approaches will be introduced next.

Firstly, the efficiency of spectral-based models is higher
than that of spatial-based models. The computation cost of
spectral-based models changes with the size of graphs, which
makes it difficult for them to parallelize or scale to large
graphs. Moreover, the operation of eigen-decomposition is
required for the spectrorization-based method, which makes
the computational cost and time cost increase greatly. How-
ever, spatial-based approaches enable the models to handle
large-scale graph and achieve the localization by clustering
neighboring nodes and performing convolution operations
directly on graph.

Secondly, spectral-based model usually focuses on a fixed
graph, which makes it difficult to extend the application to
other graphs, because the nature of each graph and Laplacian
is unique. But the spatial-based model partially performs
graph convolution on each node, so parameter sharing can
easily be realized between different positions and structures.
This makes the spatial-based model more general than the
spectral-based model.

Finally, it is the biggest problem with the spectral-based
model that the model is only able to deal with undirected
graph, and the only way to apply the model to the directed
graph is to convert it to undirected graph, and the spatial
based model can deal with multi-source inputs, such as edge
features and edge directions, in a more flexible manner.
Therefore, in recent years, spatial-based models are still the
main research direction and have received more and more
attention.

4) BEYOND GRAPH CONVOLUTIONAL NETWORK
ARCHITECTURES

In this part, we will summarize other graph neural networks,
including graph attention neural networks, graph generative
networks and graph auto-encoders.

Graph Attention Networks (GANSs): The attention mech-
anism has been widely used in sequential tasks [48].
In many applications, such as machine translation and nat-
ural language understanding, the effectiveness of attention
mechanism has been proved. Its advantage is that it can
focus on the most important part of the target. Graph neural
networks can also use attention mechanism in the aggrega-
tion process, integrate the output of multiple models, and
generate importance-oriented random walk. The graph atten-
tion networks (GATs) proposed in [49] is a spatial-based
graph convolution network in which attention mechanism
is used to determine the importance of each neighbor node
to the center node when the neighbor information of nodes
is aggregated, i.e. weights. The work of [50] proposed
a recursive neural network model in order to solve the
graph classification problem, and the information-rich part
of graph is processed by adaptive access to important node
sequences.

35938

Graph Generative Networks (GGNs): The graph gener-
ative networks (GGNs) generate a new graph with a given
set of observed under the premise of the graph. At present,
most methods of graph generation are directly related to a
specific field, for example, in natural language processing,
semantic graph or knowledge graph is generated under the
condition of a given sentence [S1], [52]. About generating
method, it is easy to be associated with the ideas of generative
adversarial networks such as NetGAN model combined with
LSTM and Wasserstein GAN, which uses the generator and
discriminator to generate or differentiate fake random walks
as best as possible [53]. The co-occurrence matrix of the node
in the random walks collection is trained to achieve normal-
ization, so as to obtain the new graph. And some of the other
methods regard the entire generation process as alternating
nodes and edges, such as [54]. GraphRNN model proposed in
this work uses two recurrent neural networks, i.e. graph-level
and edge-level. The former network adds a new node to the
sequence of nodes each time, and the latter network generates
a binary sequence that represents the connection between the
newly added node and the previously generated node in the
sequence.

Graph Auto-encoder (GAEs): Graph auto-encoders is
also called graph embedding or graph representation learn-
ing. A typical approach is to use multilayer perceptron as
an encoder to obtain embedding results of nodes, and then
the decoder restructures the neighborhood statistics of nodes
accordingly. The goal is to use neural network architecture
to express the network vertices transformation in low dimen-
sional vector space.

Recently, Kipf et al. integrated GCN models [16] into
graph auto-encoder framework and defined the encoder as
Z = GCN(X,A) and the decoder as X = o (ZZ") [55].
The adversarially regularized graph auto-encoders (ARGASs)
proposed in [56] can be thought of as a combination of GCN
and GAN where the generative adversarial network training
scheme was used to train the generator and discriminator.
In this work, the encoder uses the features of the graph
nodes to encode its structural information into the hidden
representation of GCN, and the decoder reconstructs the
adjacency matrix from the encoder’s output. In the AGRA
model, the encoder can be regarded as a generator to gen-
erate the ‘““fake samples” as real as possible, the decoder
can be regarded as a discriminator to identify “‘fake sam-
ples” from the real samples as much as possible, that is,
to identify the hidden representation of all nodes as much as
possible.

In addition, the structural deep network embedding
(SDNE) [57] uses the stacked auto-encoders approach,
while preserving first-order and second-order proximity of
nodes. The deep recursive network embedding (DRNE) [58]
reconstructs the hidden state of nodes without choosing
to reconstruct the entire graph’s statistical information,
and LSTM is used as encoder as aggregation function
where the neighbors’ sequence is ordered by their node
degree.

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

FIGURE 4. lllustration of the difference between extrinsic (left) and
intrinsic (right) deep learning methods on geometric data. Intrinsic
methods work on the manifold rather than its Euclidean realization and
are isometry-invariant by construction.

B. METHODS ON MANIFOLDS

Manifold is often used to describe 3D shapes, in which the
shape descriptors play an important role. Generally speaking,
a local feature descriptor assigns a vector to each point on the
shape in a multi-dimensional descriptor space, representing
the local structure of the shape around that point [59], [60] and
a global feature descriptor is constructed by aggregating local
descriptors to describe the whole shape’s geometric proper-
ties, e.g. using the bag-of-features paradigm [61]. Descriptor
construction depends on specific application tasks. There are
two fundamental questions needed to be considered when we
construct or choose a descriptor: which shape features do the
descriptors have to capture; and to which transformations of
the shape shall it remain invariant or insensitive.

In past ten years, we have witnessed the emergence of
learning-based approaches in 3D shape analysis tasks. All
this progress, of course, is due to the emergence of convo-
lutional neural network (CNN) techniques which allow to
learn task-specific features [6]. Currently, almost all the meth-
ods in deep learning field dealing with 3D shape are basi-
cally applied under CNN paradigm. Methods like [62], [63]
directly use the standard (Euclidean) CNN architectures
in neural networks which is applied to volumetric 2D
multi-view shape representations. The shape descriptors in
these methods are based on extrinsic structures that are
invariant under Euclidean transformations, making them
unsuitable for dealing with deformable shapes. While other
methods [18], [19], [21], [23], [64] design a new framework
by imitating the CNN feature extraction pattern to explore
the intrinsic versions of CNNs that would allow dealing with
shape deformations. However it is difficult to formulate due
to the lack of shift invariance on Riemannian manifolds.
These methods can be classified into two categories, i.e.
extrinsic and intrinsic.

Extrinsic Deep Learning:

Many previous machine learning techniques have tried
to use a standard framework to process images as if they
were actually being processed directly on 3D data. However,
the biggest disadvantage of these methods is that they still
treat geometric data as Euclidean data. The extrinsic data
representation does not perform well with the change of
the object position or shape. Moreover, such methods need
complex models and a lot of training to support the task of

VOLUME 8, 2020

h Y

/
! AN
'l
/

U

mesh binary voxel

FIGURE 5. Architecture of 3D ShapeNets model. Cited from [62].

realizing the invariance of shape deformation, which is very
difficult in practice.

1) VOXEL-BASED REPRESENTATION METHOD

Voxel data is one of the data representation of 3D data,
in which a voxel is a smallest data unit in 3D space. Therefor,
the entire 3D object can be divided into a 3D grid. Similar to
2D image, voxelization is carried out at a certain a resolution,
i.e. the size of each grid cell. The finer the 3D space is
divided, the smaller each grid is, and the greater the resolution
is.

3D ShapeNets (3DSN) [62]: This work proposed a typical
network architecture to process voxel data for 3D objects.
Wau et al. applied CAD data as training data, constructed 3D
ShapeNets by designing Convolutional Deep Belief Network
(CDBN). The 3D ShapeNets learned the joint distribution of
input voxel data x and object category label y, and identified
the target and restored the full 3D shape using the 2.5D depth
map obtained by Kinect sensors. The core of this method
is stereoscopic voxelizing based on 3D data, and the 3D
data of object is represented as a voxel with the size of
30 x 30 x 30. In addition, the author also designed a next-
best-view-prediction system to allow observers to observe
objects from another perspective. When the recognition fails,
we can greatly reduce the uncertainty of recognition from the
first perspective. Given the current view, the model is able to
predict which next view would be optimal for discriminating
the object category. In order to reduce the effect on the shape,
the author does not add pooling operation layer. Figure 5
shows the architecture composition and usage instructions of
the 3D ShapeNets model, respectively.

The problem of such an approach is the large memory
consumption and long computation time during training.
In future work, there are three directions to improve volumet-
ric CNNs:

1) Design of new network structures. The first network
reduces overfitting by introducing auxiliary learning
tasks, which help to scrutinize details of 3D objects
more deeply by using partial subvolumes to predict
the categories of objects. The second network imitates
multi-view CNNSs. As they are strong in 3D shape clas-
sification tasks, but the data are not ““shot’ through by a
different path and multiple angle of view 2D rendering,

35939

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

= -) bathtub]

5 by cha

) L 1= as
J) » L/\/ L) L i pooling N K
B g : . :

/ " 1 : d toilet]

uuuuu iti-view CNN architecture output class
predictions

FIGURE 6. Procedure of Multi-view CNN model. Cited from [63].

but the 3D shape data through a long and anisotropic
probing convolution kernel. 3D data are projected
onto 2D data, and then 2D images are processed by
2D CNNs to achieve the image classification task.

2) Data augmentation. By augmenting the training data
with different azimuth and elevation rotations to
improve model performance.

3) Feature pooling. The two new network structures men-
tioned above all capture different kinds of information
in different directions, so we can add a orientation pool-
ing stage that aggregates information from marketers
orientations.

2) MULTIVIEW-BASED CNNS METHOD

This is different from the method that converts 3D shape
representation to voxel grid representation. The central idea
of multi-view neural network in the classification and seg-
mentation of 3D shapes is to extract the surface features
of 3D shapes with multiple 2D images from different angles.
Then, 2D CNN technology is used to directly process the
corresponding 2D images to identify and detect 3D objects.
In this way, the mature CNN technology on 2D images can
be directly used.

Multi-view CNN (MVCNN) [63]: Similar to the human
eye to recognize 3D objects, if you cannot distinguish them
from one angle, you can try to distinguish them from different
angles. Multi-perspective analytical 3D model technology
also takes advantage of this. The multi-view CNN architec-
ture learns to predict 3D shapes from views of the shapes
using image-based CNNs but in the context of other views via
a view-pooling layer. As a result, information from multiple
views is effectively accumulated into a single, compact shape
descriptor. This multi-view representation is constructed in
three steps:

1) a 3D shape is rendered into multiple images using
varying camera extrinsics;
2) image features are extracted for each view using feature
extractors like VGG or AlexNet)
3) the features are combined across views through a pool-
ing layer, followed by fully connected layers.
The whole process of MVCNN is shown in the figure 6 below.
MVCNN can be effectively used in 3D model reconstruc-
tion, 3D object classification as well 3D object retrieval.
However, the disadvantage of this method is that the object
itself is blocked and the light intensity and pitch angle are

35940

different. Some surface information will be lost when taking
different views, and the angle selection usually has artificial
marks.

3) COMPARISON BETWEEN THE VOLUMETRIC CNN AND
MULTI-VIEW CNN

The volumetric representation encodes a 3D shape as a
3D tensor of binary or real values. The multi-view repre-
sentation encodes a 3D shape as a collection of renderings
from multiple viewpoints. Intuitively, it seems that volumet-
ric representation should be able to encode more feature
information of 3D shapes than multi-view representation.
However, the author in [65] reproduced the experiments of 3D
ShapeNets (using a 30 x 30 x 30 voxel grid) and multi-view
CNNs (down-sampling each rendered view to 227 x 227) on
ModelNet40 dataset [66].

Based on the results, classification accuracy under the
standard framework of the two methods shows that the per-
formance of volumetric CNN based on voxel occupancy is
7.3% worse than that of multi-view CNN. There are at least
two possible reasons for this, namely, the resolution of the
input data and the network architecture difference [65]. How-
ever, after data containing similar level of detail is input into
the two networks, the classification accuracy of multi-view
CNNs is much higher (89.5%) than that of 3D ShapeNets
(84.7%). Notice that in this experiment, data of multi-view
CNNs are used with renderings of the 30 x 30 x 30 occupancy
grid using sphere rendering, i.e. for each occupied voxel,
a ball is placed at its center, with radius equal to the edge
length of a voxel. Even with reduced details (resolution) of
input data, the multi-view CNN is still much higher than 3D
ShapeNets in classification accuracy. This indicates that the
volumetric CNNs architecture has a lot of room to improve.

Intrinsic Deep Learning:

Different from the extrinsic methods, the intrinsic deep
learning aims to promote the tradition operations to the
non-Euclidean data, and use learning methods to deal with
the geometric data. In the intrinsic representation, the filters
are applied to 3D shape surface itself. So it will not affected
by structural deformation.

4) SPATIAL-BASED METHOD
As we have seen, the inherent disadvantage of defining con-
volution in the spectral domain is that it does not fit across
different domains. As a result, we need another kind of gen-
eralization in the spatial domain using convolution method to
overcome this drawback. Traditional CNNss are able to exploit
the shift-invariance and local connectivity of image data.
However, to apply the CNN paradigm to the non-Euclidean
domain, the lack of shift invariance is the main problem,
which means the patch operator becomes position dependent.
Geodesic CNN (GCNN) [18]: Masci et al. proposed the
first intrinsic version of convolutional neural networks on
manifolds, and this approach was introduced as a general-
ization of CNN to triangular meshes based on geodesic local
patches represented in geodesic polar coordinates. GCNN can

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

be interpreted as a generalization of previous popular
descriptors, such as HKS [67], WKS [68], optimal spectral
descriptors [59], and intrinsic shape context [69].

GCNN constructs the patch operator as:

D@E)NH(p,) = '/va,g (x, X') f(x) dx’ (34)

The patch operator can map the value of function fnear point
x € X to the local polar coordinates (p,), where v, (x, x’)
represents the radial interpolation weights which is a Gaus-
sian of the geodesic distance from x, centered around p,
Vg (x, X) represents the angular weights which is constructed
as a set of geodesics emanating from x in direction 6, dx’
represents the area element caused by Riemannian metric,
V.0 (x, X) is a weighting function localized around p, 6.
D(x)f can be regarded as a “patch’ on the manifold and use
it to define the key work, named geodesic convolution (GC):

27 Pmax
(f*gx) = Mrél[gﬁn)fo /O g(p, 0 + AO)
(D)N(p, O)dpdd (35)

where g(p, 6 + A0) is the filter acting on patch, the geodesic
convolution is used to define an analogy of a classical
convolutional layer in GCNN. Although GCNN has pro-
duced impressive results on some of the shape matching
and retrieval benchmarks, but it also has some obvious
drawbacks. First of all, the charting method relies on a
fast marching-like procedure requiring a triangular mesh,
secondly, there is no guarantee that charts will always be
topological.

Anisotropic CNN (ACNN) [19]: Boscaini ef al. used
anisotropic heat kernels as spatial weighting functions allow-
ing to extract a local intrinsic repersentation of a function
defined on the manifold which is an alternative way of
extracting intrinsic patches. They presented Anisotropic Con-
volutional Neural Networks (ACNN) is a generic convolu-
tional neural network architecture that can be used to handle
different tasks. The construction of the ‘““patch operator” is
much simpler, does not depend on the injectivity radius of
the manifold, and is not limited to triangular meshes.

ACNN interprets heat kernels as local weighting functions
and constructs the patch operator as:

Jx has, (x, x’)f(x’) dx’
Jx has, (x, X') dx’

for some anisotropy level a>1 (here >0 is a parameter
controlling the degree of anisotropy and the situation of @ = 1
corresponds to the claasical isotropic case). The values of f
around point x are mapped to a local system of coordinates
(6, 1) that behaves like a polar system (here ¢ denotes the scale
of the heat kernel and 6 is its orientation), and /g, (x, X) is
the anisotropic heat kernel which represents the amount of
heat that is transferred from point x to point x at time z. Thus,
the intrinsic convolution is defined as:

(Fx g (x) = fg(O, 1) (Do (0)) (0, 1) drd 37)

D)) (0, 1) = (36)

VOLUME 8, 2020

Unlike the arbitrarily oriented geodesic patches in GCNN,
ACNN’s construction mainly uses the principal curvature
direction as the reference & = 0. The most promising future
work direction is applying ACNN to learning on graphs. Both
the GCNN and ACNN methods operate in spatial domains,
avoid the inherent drawbacks of standardizing the spectral
methods with different domains, and have proved to be
more adept at looking for deformable shapes than traditional
hand-crafted methods.

Mixture model network (MoNet) [23]: In [23], the author
proposed an unified framework that can extend CNN struc-
ture to non-Euclidean domains (graphs and manifolds).
Because some spatial-based methods ignore the relative posi-
tions between nodes and their neighbors when integrating
information of neighbor nodes. Therefore, MoNet introduces
pseudo-coordinate system and weight function, so that the
weight of node neighbors depends on the relative position of
node and its neighbor nodes. MoNet can learn local, station-
ary and combinatorial specific task characteristics, which also
indicates that various non-Euclidean CNN methods proposed
in previous literatures can be regarded as a special case
of MoNet.

MoNet framework uses x to denote a point on a manifold
or a vertex of a graph, and consider points X' € N(x) in
the neighborhood of x. For each x, correlate a d-dimensional
vector of pseudo-coordinates u (x, x’). MoNet constructs the
patch operator as the following general form:

Dixf= Y wi(u(xx))f), j=1--.0 (38
xXeN(x)

where We(u) = (wi(u),---,wy(u)) is a weighting func-

tion (kernel) parametrized by learnable parameters O,

and each Gaussian kernel is defined as w;jm) =

exp (—% (u — [Lj)T Zj_l (u — [Lj)) in which parameters d x
d covariance matrix) ;,---, > ; and d x 1 mean vectors
Mg, -,y are learnable and J represents the dimensionality
of the extracted patch. Thus, the generalization form of the
spatial convolution on non-Euclidean domains is given by

using a template-matching process:

J
() =Y gDjx)f (39)

j=1
The two key choices in this construction are the
pseudo-coordinates u and the weight functions Wg (u).
Different definition of u and Wg (u) produces different
deep learning methods, including the classical CNN on
Euclidean domains, GCN on graphs, and GCNN and ACNN
on manifolds. For example, GCNN and ACNN use Gaussian
kernels for local polar geodesic coordinates on maniflod,
and GCN applies triangular kernel on the degree of the
graph vertices’ pseudo-coordinates. This shows that all the
non-Euclidean CNN methods proposed in previous literatures

can be regarded as a special case of MoNet.

Structured Prediction Model (FMNet) [22]: Litany et al.
proposed dense shape correspondence based on neural

35941

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

ACNN MoNet

FIGURE 7. Left: intrinsic local polar coordinates p, § on manifold around
a point marked in white. Right: patch operator weighting functions

w;j(p, 0) used in different generalizations of convolution on the manifold.
Cited from [23].

network, which is a task-driven approach for descriptor learn-
ing, by including the computation of the correspondence
directly as part of the learning procedure. This is a sharp
contrast to the former descriptor learning technique, which
does not consider post-processing during training.

Existing learning-based methods take 3D shape correspon-
dence as a mapping problem, in which each point of the query
shape receives a label that identifies a point in a reference
shape. Then, the correspondence is the a posteriori by predict-
ing the labels of the two input shapes. The authors used deep
residual networks to model the learning process to process
dense descriptors fields defined on the two shapes to provide
compact representation of the correspondence.

5) COMBINED SPECTRAL / SPATIAL METHOD

The fourth construction of convolution-like operation on
non-Euclidean domains is jointly in spatial-frequency
domain.

Localized Spectral CNN (LSCNN) [21]: In the field of
classical signal processing, the exploration of space local-
ization has been a major defect of classical Fourier analy-
sis. However, this problem can be well solved by frequency
analysis on Windows, that is, Fourier transform of Win-
dows [70] (WFT, also known as short-time Fourier transform
or spectrogram in signal processing). In [21], Boscaini et al.
proposed an intrinsic CNN construction (local spectral CNN)
based on the Fourier transform of Windows, extended WFT
to manifold and point cloud data, and extracted the local
behavior of some dense intrinsic descriptors, roughly acting
as an analogy to patches in images. The local frequencies
can be obtained by constructing patch operator in geometric
data and applying learnable filters to such patches, and the
subsequent work is similar to that in CNN, that is, the coeffi-
cients of the filter are constantly updated by minimizing the
cost function. It should be noted that the weights, windows
coefficients and filters of all layers are all variables discov-
ered through supervised learning. This method is an extension
of the existing graph-based spectral CNN [12], and allows
learning class-specific shape descriptors.

LSCNN’s fully connected layer produces Q-dimensional
outputs as weighted (wg, as coefficients) sums of the
P-dimensional inputs, followed by a non-linear ReL.U activa-
tion function. Theoretically, we can use any intrinsics spectral
descriptor as the input to this layer.

LSCNN’s convolutional layer applies the WFT to extract
the local structure of the Q-dimensional input around each

35942

point. Since each input dimension might contain features of
different scale, we employ different window for each input
dimension. The family of Q windows is parametrized in some
fixed interpolation basis in the frequency domain where the
O x M matrix by, of weights defines the windows. The WFTs
are then passed through a bank of filters applied in frequency
domain, producing the outputs used as the R-dimensional
final LSCNN descriptor.

The LSCNN is a parametric hierarchical system producing
a R-dimensional descriptor at each point x. Its loss function
aims to estimate the optimal task-specific parameters of the
descriptor minimizing the aggregate loss. The parameters to
learn include wgp, by, and ag;.

One of the main advantages of LSCNN is that the same
framework can be applied to different shape representations,
especially grids and point clouds. However, one disadvantage
of this approach is the large memory usage and intensive com-
putation, since each window needs to be explicitly generated.

6) POINT-BASED METHOD

Point based method can directly use point cloud data as input
without converting to voxel, mesh and other 3D represen-
tations, where a point cloud is a set of unordered vectors.
Unlike voxel-based and multi-view-based methods, methods
using point cloud directly process the spatial coordinates of
the original 3D graphics surface and must be invariant to
the number of data points and the data order or permutation.
The first work is the PointNet [64] framework released by
Charles R. Qi of Stanford university in 2017. Then at the end
of 2017, the author proposed the PointNet++ [71] frame-
work by imitating the hierarchical feature extraction idea of
CNN in the original framework, which further improved the
accuracy of classification and segmentation tasks.

PointNet [64]: PointNet is the first deep neural network
that can directly process the 3D point cloud. The basic idea
of PointNet is to learn the corresponding spatial coding of
each point in the input point cloud, and then use the features
of all points to get a point cloud’s global feature. In this
work, the author takes the max-pooling layer as a symmetric
function to aggregate information from all the points to deal
with the disordered nature of the point cloud model, that is
to say, no matter how the input order is, the output will be
the same by max-pooling. It is easy to find that sum-pooling,
average-pooling operation can achieve the same results.

The input is n sample points, each with x, y, z coordinates.
After several steps of MLP (multi-layer perceptron), at each
point, features of 1024 dimensions are obtained, and then a
symmetric operation which is max pooling is used to produce
the global feature of 1024 dimensions. The author designed
two “T-net” networks and used a rotation matrix to deal
with rotation invariance of the model. The input transform
in first T-net is to adjust the point cloud in the space. The
feature transform in second T-net is to align the extracted
64 dimensional features, that is, to transform the point cloud
at the feature level. For classification task, the global features
is passed through MLP to generate the softmax classification

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

probability, and for segmentation task, the global features are
concatenated with the features from individual points before
input into the MLP for the final classification of each data
point.

PointNet++- [71]: The author proposed an improved ver-
sion of PointNet++ to solve two problems faced by PointNet,
namely, how to carry out local division of point cloud and
how to carry out local feature extraction of point cloud.
Its core idea is similar to the convolutional neural network.
PointNet++- is essentially a hierarchical version of PointNet.
Feature extraction of each subpoint set in the hierarchical
point cloud consists of three parts:

1) Sampling layer: the sampling layer selects a series of
points from the input point cloud, from which centroid
points for the local region are defined, and the sampling
algorithm uses iterative farthest point sampling (FPS)
method;

2) Grouping layer: the grouping layer aims to construct
local regions and then extract features, i.e., multiple
subpoint clouds are created by using neighboring points
around centroid points (within a given radius), and
neighborhood ball rather than KNN is used in this paper
because a fixed region scale can be guaranteed;

3) PointNet layer: to extract local features of point cloud,
the original PointNet can be used. So in PointNet++,
the original PointNet network becomes a sub-network
in PointNet++ network, hierarchical iteration extrac-
tion features.

In 3D scanning, it is very likely that the sampling den-
sity of points are not uniformly distributed due to factors
like perspective effects, radial density variations, motions
etc, which poses a significant challenge for feature learning
based on point cloud. To solve this problem, the authors pro-
posed abstraction layers in the model to aggregate multi-scale
information according to local point densities. PointNet++
achieved 90.7% accuracy on ModelNet40 [66], which was
the state-of-the-art.

7) GEOMETRIC ALGEBRA-BASED METHOD

William K. Clifford introduced Geometric Algebra abbre-
viated as GA, also called Clifford Algebra, which provides
such a coordinate-free framework to make the computation
efficiently. It completes the constructions and modelings in a
coordinate-free way and also has revealed wide applications
especially when applying to computer vision tasks, such as
multispectral images reconstruction or multispectral image
denoising [72] and 3D geometrical shapes classification [73].
RGA-MLP [73]: Multilayer Perceptron (MLP) is an efficient
feed-forward neural network, constituting one of the most
common and popular classes of neural networks for image
processing and pattern recognition. It consists of several sub-
sequent layers which is of perceptron-type, including an input
layer that simply obtains the external inputs, a set of hidden
layers and one output layer. And Geometric Algebra (GA) is
introduced by William K. Clifford, also known as Clifford

VOLUME 8, 2020

Sigmoid

W, i

FIGURE 8. The structure of RGA neuron model.Cited from [73].

Input layer
{I neurons}

Hidden layer
{H neurons}

Output layer
{O neurons}

FIGURE 9. The structure of RGA-MLP model with one hidden layer. Cited
from [73].

Algebra, which gives geometric insight and effective rep-
resentation for multi-dimensional signals.Technically speak-
ing, GA subsume, for example, the real numbers, the complex
numbers and the quaternions.

The authors Y. P. Li and W. M. Cao proposed a reduced
version of GA called RGA and utilize RGA to obtain an
extension neuron model for multi-dimensional signal pro-
cessing, in which all the operators can be extended to RGA
domain. The traditional multi-dimensional signal MLP model
treats the multi-dimensional signal as real number and pro-
cesses it independently. By contrast, they presented a tra-
ditional multi-layer perceptron (MLP) extension model for
multi-dimensional signal processing from real numbers to
RGA domain by using proposed RGA neurons. The struc-
tures of RGA neuron and RGA-MLP model are showed
below.

The network for 3D geometrical shapes task is a three layer
network, which has one hidden layer. Models are optimized
with learning rate set at 0.04. The training ends at itera-
tion 7200. The results illustrate that the RGA-MLP model
outperforms the traditional real-valued MLP. It can be seen
that multi-dimensional signals processed by real-valued MLP
tends to be single channel independently, which are not rich
enough to preserves more discriminative information among
multiple channels. In contrast, the proposed RGA-MLP
model is capable of capturing the inter-relationship informa-
tion between different channels, such as the scaling and the
rotation of inputs in multi-dimensional space, this informa-
tion is more important for classification. For more details
in geometric algebra-based methods, please read the reve-
lant technical paper [74]-[76], especially a comprehensive
review [77] in this area.

IV. APPLICATIONS

In this section, we will first introduce some basic datasets
which are commonly used in the geometric deep learning
field, including graph network datasets and some 3D model

35943

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

datasets. Then list several practical applications of geometric
deep learning.

A. DATASETS

1) NON-STRUCTURAL DATASET

Images,text and videos are most common unstructured data.
There are some common datasets such as MNIST [78], Ima-
geNet [79] and 20NewsGroup [80].

The MNIST dataset contains 70,000 images of size
28 x 28 labeled with ten digits. A typical way to convert an
MNIST image to a graph is to construct an 8-NN graph based
on its pixel locations.

The ImageNet dataset is a large image database used for
visual object recognition, in which over 14 million images are
manually annotated and at least a million images, bounding
boxes for objects are also provided. ImageNet contains more
than 20, 000 categories and acts like a network with multiple
nodes, each of which is equivalent to an item or subcategory.

The 20NewsGroup dataset consists of around 20, 000
News Group (NG) text documents categorized by 20 news
types. The graph of the 20NewsGroup is constructed by rep-
resenting each document as a node and using the similarities
between nodes as edge weight.

2) CITATION NETWORK DATASET

The citation network is a collection composed of inter-literature
references and quotation relationships in which nodes
represent papers and edges represent citation relations.
There are four popular datasets for paper-citation net-
works, such as Cora [81], Citeseer [82], WebKB from
https://starling.utdallas.edu/datasets/webkb/ and Aminer
Author-Paper-Citation (Aminer APC) Network from
https://aminer.org/citation.

The Cora dataset consists of 2, 708 scientific publications
classified into seven classes and 5, 429 links.

The CiteSeer dataset consists of 3, 312 scientific publica-
tions classified into six classes and 4, 732 links.

The WebKB dataset consists of 877 scientific publications
classified into five classes and 1, 608 links. Each publication
in Cora, Citeseer and WebKB is described by a 0/1-valued
word vector indicating the absence or presence of the corre-
sponding word from the dictionary.

The APC Network is a large-scale and complete
academic dataset released by Arnetminer.org which
includes 2,092,356 papers 8, 024, 869 citations between
papers 1,712,433 authors and 4, 258,615 collaboration
relationships.

3) SOCIAL NETWORK DATASET

A social network is a network describing the interactions
between people. It is an online social net, each node rep-
resents a user and edges representing interactions between
people. There are five popular datasets such as Facebook,
Gplus, Twitter, Reddit and Epinions1. You can download
these data from http://snap.stanford.edu/data.

35944

The Facebook dataset is an undirected graph which con-
sists of ‘circles’ (or ‘friends lists”) from Facebook. Facebook
data was collected from survey participants using Facebook
app. The dataset includes node features (profiles), circles, and
ego networks.

The Gplus dataset is a directed graph which consists
of ‘circles’ from Google+. Google+ data was collected
from users who had manually shared their circles using the
‘share circle’ feature. The dataset also includes node features
(profiles), circles, and ego networks.

The Twitter dataset is a directed graph consisted of
‘circles’ (or ‘lists’) from Twitter. Twitter data was crawled
from public sources.

The Reddit dataset is a collection of 132, 308 reddit.com
submissions. For each submission, we collect features such
as the number of ratings (positive/negative), the submission
title, and the number of comments it received.

The Epinions1 dataset is a who-trust-whom online social
network of Epinions.com which is a general consumer review
site. Members of the site can decide whether to “trust” each
other. All the trust relationships interact and form the trust
network, which is combined with review ratings to determine
which review should be presented to users.

4) CHEMISTRY / BIOLOGY DATASET

Chemical molecules and compounds can be represented by
chemical graphs with atoms as nodes and chemical bonds as
edges. This category of graphs is often used to evaluate graph
classification performance.

The NCI-1 and NCI-9 dataset contain 4, 110 and 4, 127
chemical compounds respectively, labeled as whether they
are active to hinder the growth of human cancer cell lines.
The datasets can be found on http://networkrepository.com/
NCI1.php and http://featureselection.asu.edu/datasets.php.

The MUTAG [83] dataset contains 188 nitro compounds,
labeled as whether they are aromatic or heteroaromatic.

The D&D dataset contains 1, 178 protein structures,
labeled as whether they are enzymes or non-enzymes.
The dataset can be found on https:/github.com/snap-
stanford/GraphRNN/tree/master/dataset/DD.

The QM9 [84] dataset contains 133, 885 molecules labeled
with 13 chemical properties.

The Tox21 [85] dataset contains 12, 707 chemical com-
pounds labeled with 12 types of toxicity.

Another important dataset is the Protein-Protein Inter-
action network (PPI), containing 24 biological graphs with
nodes represented by proteins and edges represented by the
interactions between proteins. The datasets can be found on
https://genemania.org/. In PPI, each graph is associated with
one human tissue. Each node is labeled with its biological
states.

5) TRAFFIC NETWORK DATASET

There are several datasets of the traffic conditions. The
METR-LA [86] is a traffic dataset collected from the high-
ways of Los Angeles County.

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

The Roadnet-CA dataset is a road network of California.
Intersections and endpoints are represented by nodes and the
roads connecting these intersections or road endpoints are
represented by undirected edges. The datasets can be found
on http://snap.stanford.edu/data/roadNet-CA.html.

6) 3D SHAPE DATASET

There is an increasing interest in working with 3D geometric
data, due to the emergence of 3D data collected by VR (visual
reality) sensors or Microsoft Kinect. Most 3D shapes are
modeled as Riemannian manifolds and discretized as meshes.

The FAUST [87] dataset (Fine Alignment Using Scan
Texture) contains 300 high-resolution human body scans
of 10 different subjects in 30 different poses. Scans are
acquired through a 3D multi-stereo system, each of which is
represented as a high-resolution, triangulated, non-waterlight
mesh.

The TOSCA dataset is used for high-resolution 3D
non-rigid shapes in a variety of poses for non-rigid shape
similarity and correspondence experiments. It contains a
total of 80 objects, including 11 cats, 9 dogs, 3 wolves,
8 horses, 6 centaurs, 4 gorillas, 12 female figures, and
2 different male figures, containing 7 and 20 poses. Typ-
ical vertex count is about 50,000. Turnable is 3D object
dataset in multi-viewed form from 144 calibrated view-
points under 3 different lighting conditions. The objects are
placed on an automated turntable and photographed every
5 degrees. And each object is photographed by 2 cameras
arranged in a stereo setup to obtain images with a reso-
lution of 3 million pixels. This dataset can be found on
http://tosca.cs.technion.ac.il/book/resources_data.html.

B. PRACTICAL APPLICATIONS

So far, we have introduced the knowledge of geometric deep
learning, reviewed the deep learning methods based on graphs
and manifold data, and some datasets that are often used in

this field. Next, we will introduce some practical applications
in this field.

1) COMPUTER VISION
One of the biggest applications of deep geometric learning
is computer vision. The most common application examples
in geometric deep learning are network analysis. In general,
the data is embodied by a graph where the vertices denote
members such as paper or users, and the relationship between
members are represented by the directed or undirected edges.
Classification task is to assign each data member to a class.
For example, work [16], [23] applied the spectral-based CNN
with two spectral convolutional layers on Cora dataset. The
work [88] worked on a social influence network.

3D data analysis has received more and more interest
from research scholars. In this domain, 3D shape data is
modeled as Riemannian manifolds and discretized as meshes.
There are two main application directions. One is to learn
local descriptors [18], [60] and shape correspondence [19].
Another direction is to learn global descriptors and use them

VOLUME 8, 2020

in shape recognition tasks [18]. Recognition of human motion
in videos can help better understand video content from the
machine perspective. In the work of [89], [90], the authors
used spatial-temporal neural networks to learn human motion
pattern by examining the time series of human skeleton in the
video clip.

In addition, possible directions for applying graph neural
network in computer vision continues to grow, including
small-sample image classification [91], semantic segmenta-
tion [92], visual reasoning [93], and QA systems [94].

2) RECOMMENDER SYSTEMS

The recommender systems are widely used in movie website
(Netflix), social software (WeChat) and online shopping plat-
form. Online shopping sites usually build network or graph
using goods or customers as the nodes. This data process-
ing mode has become ubiquitous in transaction management
by utilizing the relationship between goods and goods, cus-
tomers and customers, customers and goods. The key to a
recommender system is to rate the importance of an item
to the user, which can be converted into a link prediction
problem. The goal is to predict the missing link between
the users and the items. To address this problem, the work
in [95] proposed an auto-encoder model based on graphs.
Monti et al. [26] combined GCN with RNN framework to
learn the hidden procedure of generating the known ratings.

3) BIOLOGY/CHEMISTRY

In chemistry, researchers have mimicked GNN’s core ideas to
study the structure of molecular graphs. In molecular graphs,
nodes represent atoms and edges represent bonds. Wilensky,
Uri, and Kenneth Reisman describe a computation-based
approach that enables students to investigate the connections
between different biological levels [96]. The node classifica-
tion, graph classification, and graph generation are the three
main tasks, which can learn molecular fingerprints [24], pre-
dict molecular properties [97], infer protein interfaces [98],
and synthesize chemical compounds [99].

4) OTHERS

At present, some preliminary exploration have been made
to apply geometric deep learning to other problems such as
traffic flow prediction [100], brain functional networks detec-
tion [101], physics [102], disease or drug prediction [103],
[104], and natural language processing [105].

If readers are engaged in relevant research with spectral
methods for fixed graphs, practical applications in this direc-
tion include citation/social networks, recommender systems,
medical imaging, etc. If you study spatial methods for arbi-
trary graphs, related applications include particle physics
and chemistry, molecule design, quadratic the assignment
problem, and so on. If readers do the research of spatial
methods for manifolds, related applications include 3D shape
correspondence / classification and so on. In addition, if you
are interested, you can follow the work of Charles R. Qi to
further study the related technologies of point cloud.

35945

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

V. FUTURE WORK AND OPEN PROBELMS

Although geometric deep learning technique has proved itself
in learning both Euclidean and non-Euclidean domains data,
especially in non-Euclidean domain, there still exist some
challenges and problems to solve in this field.

A. COMPUTATION COST

Though the graph neural network has achieved great success
in various fields, the computation cost still a problem for
researchers and applications. Deep learning neural network
has a large number of parameters, which makes the compu-
tation intensive in training and test stage. The same is true
for graph neural networks. Moreover, due to the complex
relationship between graph nodes and the non-grid nature,
the computation is even more heavy. On the other hand,
most existing deep learning frameworks deal with regularized
structured data in Euclidean domain, for example, a one-
dimensional or two-dimensional grid which are allowed to
take the advantages of powerful processing ability of modern
GPUs. But the geometric data does not lie in a grid-like
structure in most cases, so they need different methods to
realize efficient and complex computation. So, how to make
graph neural network run faster is an urgent need.

B. DEEPER ARCHITECTURE

In the deep learning field, the CNN architecture has made
impressive achievements in the problem of Euclidean data.
As the number of network layers increases, the model
becomes more complex. Empirically, neural networks that
use more parameters tend to have better performance.

But stacked multi-layered GNNS will raise the over-
smoothing problem. Unlike the independent pixels in the
images, the nodes in the graph interact with neighbors and the
graph process in the network is a flow of information diffu-
sion and aggregation. The more layers to stack, information
from nodes will be combined together which will lead the
same representation of all nodes in the end. Therefore, all the
vertices will converge to the same value. For example, most
of the advanced graph convolutional network frameworks
are no more than 3 or 4 layers. The work of [106] tried
to use deeper network structure, but the performance is not
satisfactory. However, in 2019, Deepgcns [107] successfully
built a network of 56 layers by borrowing the ideas of residual
/ dense connections and dilated convolutions. Designing deep
graph neural network is promising, although still a challeng-
ing problem.

C. DYNAMIC GRAPHS

Most current methods are used to work with static graphs,
and many datasets are also static. In real life, however, many
graphs changes over time. For example, the exit of existing
users and the addition of new users in social networks may
occur at any time, and the relationship between users may
change with time. How to effectively model the evolution of
dynamic graph is still an unsolved problem, which affects the

35946

practicability of graph neural network to some extent. There
are some attempts to solve this problem, such as [108]-[110].

D. SCALABILITY / GENERALIZATION

It is a difficult problem to apply the graph neural network
on large graph. On the one hand, each node has its own
neighborhood structure, which involves the hidden state of
neighboring nodes, so it is difficult to use batch method in
training [29]. On the other hand, when dealing with millions
of nodes and edges, the researchers found it difficult to
calculate the Laplacian matrix of the graph. There are also
some methods to improve the model’s performance through
rapid sampling [111], [112] and subgraph training [46], [47]
methods, but the results are not very good.

E. CAUSAL REASONING

It is exciting that the graph neural network has the potential to
solve the problem pointed out by Turing award winner Judea
Pearl that deep learning cannot do causal reasoning [113].
The graph neural network is the generalization and expansion
of various neural network methods of graph before which has
powerful relational inductive bias that provides a direct inter-
face for manipulating structured knowledge and generating
structured behaviors, and combines end-to-end learning with
inductive reasoning.

It is expected to solve the problem that deep learning
cannot carry out relational reasoning [114]. Relevant work
includes [115], which takes the first step and focuses on
using a general framework of GNNs and GCNs for relational
solving problems.

VI. CONCLUSION

Thanks to the easy availability of computing resources and
dataset, as well as the rapid development in deep learning
technologies from Euclidean domain such as texts, images
and videos, geometric deep learning (GDL) methods has
achieved great success in theoretical research and applica-
tions. In this review, we have comprehensively reviewed deep
learning methods in the graph and manifold domain, from the
history, background to the methods, including deep networks
on graphs and manifold. Following that, typical applications,
benchmark datasets, and existing problems and challenges
are discussed. We believe this review will provide a good
reference for the readers and researchers in this domain.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

[2] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” in The Handbook of Brain Theory and Neural Networks.
Cambridge, MA, USA: MIT Press, 1998, pp. 255-258.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.

[4] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440-1448.

[5] S.Ren, K. He,R. Girshick, and J. Sun, “‘Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

[6]

[7

[8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, May 2017.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, and B. Kingsbury, ‘“Deep neural networks for
acoustic modeling in speech recognition,” IEEE Signal Process. Mag.,
vol. 29, no. 6, pp. 82-97, Nov. 2012.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104-3112.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neu-
ral networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp- 2014-2023.

M. Gori, G. Monfardini, and F. Scarselli, A new model for learning
in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2,
Aug. 2005, pp. 729-734.

F. Scarselli, M. Gori, A. Chung Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61-80, Jan. 2009.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203. [Online].
Available: http://arxiv.org/abs/1312.6203

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” 2015, arXiv:1506.05163. [Online]. Available:
http://arxiv.org/abs/1506.05163

J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993-2001.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844-3852.

T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral fil-
ters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97-109, Jan. 2019.
J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proc. IEEE
Int. Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015, pp. 37-45.

D. Boscaini, J. Masci, E. Rodola, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 3189-3197.

L. Yi, H. Su, X. Guo, and L. Guibas, “SyncSpecCNN: Synchronized
spectral CNN for 3D shape segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2282-2290.

D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and
P. Vandergheynst, “Learning class-specific descriptors for deformable
shapes using localized spectral convolutional networks,” Comput. Graph.
Forum, vol. 34, no. 5, pp. 13-23, Aug. 2015.

O. Litany, T. Remez, E. Rodola, A. Bronstein, and M. Bronstein, “‘Deep
functional maps: Structured prediction for dense shape correspondence,”
in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5659-5667.
F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model CNNs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 5115-5124.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 2224-2232.

Z.Huang, C. Wan, T. Probst, and L. V. Gool, “Deep learning on lie groups
for skeleton-based action recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6099-6108.

F. Monti, M. Bronstein, and X. Bresson, ‘“Geometric matrix completion
with recurrent multi-graph neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 3697-3707.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18-42, Jul. 2017.

Z.Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” 2018,
arXiv:1812.04202. [Online]. Available: http://arxiv.org/abs/1812.04202
J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” 2018,
arXiv:1812.08434. [Online]. Available: http:/arxiv.org/abs/1812.08434

VOLUME 8, 2020

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” 2019, arXiv:1901.00596.
[Online]. Available: http://arxiv.org/abs/1901.00596

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
'W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551,
Dec. 1989.

K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biol. Cybern., vol. 36, no. 4, pp. 193-202, Apr. 1980.

W. Cao, Q. Lin, Z. He, and Z. He, “Hybrid representation learning for
cross-modal retrieval,” Neurocomputing, vol. 345, pp. 45-57, Jun. 2019.
D. Meng, L. Zhang, G. Cao, W. Cao, G. Zhang, and B. Hu, “Liver
fibrosis classification based on transfer learning and FCNet for ultrasound
images,” IEEE Access, vol. 30, pp. 5804-5810, 2017.

W. Cao, W. Feng, Q. Lin, G. Cao, and Z. He, ““A review of hashing meth-
ods for multimodal retrieval,” IEEE Access, vol. 8, pp. 15377-15391,
2020.

D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 2843-2851.
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“OverFeat: Integrated recognition, localization and detection using
convolutional networks,” 2013, arXiv:1312.6229. [Online]. Available:
http://arxiv.org/abs/1312.6229

W. Cao, J. Yuan, Z. He, Z. Zhang, and Z. He, “‘Fast deep neural networks
with knowledge guided training and predicted regions of interests for real-
time video object detection,” IEEE Access, vol. 6, pp. 8990-8999, 2018.
A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for gen-
erating image descriptions,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 4, pp. 664-676, Apr. 2017.

Z. Zhang, M. Li, X. Lin, Y. Wang, and F. He, “Multistep speed predic-
tion on traffic networks: A deep learning approach considering spatio-
temporal dependencies,” Transp. Res. C, Emerg. Technol., vol. 105,
pp. 297-322, Aug. 2019.

R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional
neural networks,” in Proc. 32nd AAAI Conf. Artif. Intell., Apr. 2018,
pp. 1-8.

J. Yan, C. Li, Y. Li, and G. Cao, “Adaptive discrete hypergraph match-
ing,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 765-779, Feb. 2018.

L. B. Almeida, “A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment,” in Proc. IEEE Ist Int. Conf.
Neural Netw., vol. 2, Jan. 1987, pp. 609-618.

F. J. Pineda, “Generalization of back-propagation to recurrent neural
networks,” Phys. Rev. Lett., vol. 59, no. 19, pp. 2229-2232, Nov. 1987.
W. Hamilton, Z. Ying, and J. Leskovec, “‘Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024-1034.

H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2018, pp. 1416-1424.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998-6008.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.
[Online]. Available: http://arxiv.org/abs/1710.10903

J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2018, pp. 1666-1674.

B. Chen, L. Sun, and X. Han, “Sequence-to-action: End-to-End seman-
tic graph generation for semantic parsing,” 2018, arXiv:1809.00773.
[Online]. Available: http://arxiv.org/abs/1809.00773

D. D. Johnson, “Learning graphical state transitions,” in Proc. ICLR,
2016, pp. 1-19.

A. Bojchevski, O. Shchur, D. Ziigner, and S. Giinnemann, ‘“Net-
GAN: Generating graphs via random walks,” 2018, arXiv:1803.00816.
[Online]. Available: http://arxiv.org/abs/1803.00816

35947

IEEE Access

W. Cao et al.: Comprehensive Survey on GDL

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

35948

J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” 2018,
arXiv:1802.08773. [Online]. Available: http://arxiv.org/abs/1802.08773
T. N. Kipf and M. Welling, ““Variational graph auto-encoders,” 2016,
arXiv:1611.07308. [Online]. Available: http://arxiv.org/abs/1611.07308
S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adver-
sarially regularized graph autoencoder for graph embedding,” 2018,
arXiv:1802.04407. [Online]. Available: http://arxiv.org/abs/1802.04407
D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2016, pp. 1225-1234.

K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2018, pp. 2357-2366.

R. Litman and A. M. Bronstein, “Learning spectral descriptors for
deformable shape correspondence,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 1, pp. 171-180, Jan. 2014.

D. Boscaini, J. Masci, E. Rodola, M. M. Bronstein, and D. Cremers,
“Anisotropic diffusion descriptors,” Comput. Graph. Forum, vol. 35,
no. 2, pp. 431-441, May 2016.

A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov,
“Shape Google: Geometric words and expressions for invariant shape
retrieval,” ACM Trans. Graph., vol. 30, no. 1, pp. 1-20, Jan. 2011.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D
ShapeNets: A deep representation for volumetric shapes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1912-1920.
H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 945-953.

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘“PointNet:
Deep learning on point sets for 3D classification and segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 652-660.

C. R. Qi, H. Su, M. NieBner, A. Dai, M. Yan, and L. J. Guibas, “Vol-
umetric and multi-view CNNs for object classification on 3D data,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 5648-5656.

ModelNet. Accessed: Oct. 2019. [Online]. Available: https://modelnet.
cs.princeton.edu/

J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably infor-
mative multi-scale signature based on heat diffusion,” Comput. Graph.
Forum, vol. 28, no. 5, pp. 1383-1392, Jul. 2009.

M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel sig-
nature: A quantum mechanical approach to shape analysis,” in Proc.
IEEE Int. Conf. Comput. Vis. Workshops (ICCV Workshops), Nov. 2011,
pp. 1626-1633.

I. Kokkinos, M. M. Bronstein, R. Litman, and A. M. Bronstein, ““Intrinsic
shape context descriptors for deformable shapes,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 159-166.

D. 1. Shuman, B. Ricaud, and P. Vandergheynst, ‘“Vertex-frequency analy-
sis on graphs,” Appl. Comput. Harmon. Anal., vol. 40, no. 2, pp. 260-291,
Mar. 2016.

C.R.Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5099-5108.

R. Wang, M. Shen, and W. Cao, “Multivector sparse representation for
multispectral images using geometric algebra,” IEEE Access, vol. 7,
pp. 12755-12767, 2019.

Y. Li and W. Cao, “An extended multilayer perceptron model using
reduced geometric algebra,” IEEE Access, vol. 7, pp. 129815-129823,
2019.

E. Hitzer, “Geometric operations implemented by conformal geomet-
ric algebra neural nodes,” 2013, arXiv:1306.1358. [Online]. Available:
http://arxiv.org/abs/1306.1358

W. Cao, F. Lyu, Z. He, G. Cao, and Z. He, “Multimodal medical image
registration based on feature spheres in geometric algebra,” IEEE Access,
vol. 6, pp. 21164-21172, 2018.

R. Wang, Z. Cao, X. Wang, W. Xue, and W. Cao, “GA-STIP: Action
recognition in multi-channel videos with geometric algebra based spatio-
temporal interest points,” IEEE Access, vol. 6, pp. 56575-56586, 2018.
E. Hitzer, T. Nitta, and Y. Kuroe, “Applications of clifford’s geometric
algebra,” Adv. Appl. Clifford Algebras, vol. 23, no. 2, pp. 377-404, 2013.

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Y. LeCun, C. Cortes, and C. J. Burges. (1998). The MNIST Database
of Handwritten Digits. [Online]. Available: http://yann.lecun.com/
exdb/mnist

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

K. Albishre, M. Albathan, and Y. Li, “Effective 20 newsgroups dataset
cleaning,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent
Technol. (WI-IAT), Dec. 2015, pp. 98-101.

A. McCallum, “Cora dataset,” LINQS, Inter-Univ. Consortium Political
Social Res., Santa Cruz, CA, USA, Tech. Rep., 2017.

C. Caragea, J. Wu, A. Ciobanu, K. Williams, J. Ferndndez-Ramirez, H.-
H. Chen, Z. Wu, and L. Giles, “Citeseer x: A scholarly big dataset,”
in Proc. Eur. Conf. Inf. Retr. New York, NY, USA: Springer, 2014,
pp. 311-322.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. Correlation with molecular orbital
energies and hydrophobicity,” J. Medicinal Chem., vol. 34, no. 2,
pp. 786797, Feb. 1991.

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, “Quan-
tum chemistry structures and properties of 134 kilo molecules,” Sci. Data,
vol. 1, no. 1, Aug. 2014, Art. no. 140022.

R. R. Tice, C. P. Austin, R. J. Kavlock, and J. R. Bucher, “Improving the
human hazard characterization of chemicals: A Tox21 update,” Environ.
Health Perspect., vol. 121, no. 7, pp. 756765, Jul. 2013.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, ‘“Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” 2017,
arXiv:1707.01926. [Online]. Available: http://arxiv.org/abs/1707.01926
F. Bogo, J. Romero, M. Loper, and M. J. Black, “FAUST: Dataset
and evaluation for 3D mesh registration,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. Piscataway, NJ, USA: IEEE, Jun. 2014,
pp. 3794-3801.

J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf:
Modeling influence locality in large social networks,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2018,
pp. 1-9.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 1-9.

A.Jain, A. R. Zamir, S. Savarese, and A. Saxena, ““Structural-RNN: Deep
learning on spatio-temporal graphs,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 5308-5317.

M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, and L. Fei-Fei,
“Neural graph matching networks for fewshot 3D action recognition,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 653—669.

X.Qi,R. Liao, J. Jia, S. Fidler, and R. Urtasun, ‘3D graph neural networks
for RGBD semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5199-5208.

X. Chen, L.-J. Li, L. Fei-Fei, and A. Gupta, “Iterative visual reasoning
beyond convolutions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 7239-7248.

M. Narasimhan, S. Lazebnik, and A. Schwing, “Out of the box:
Reasoning with graph convolution nets for factual visual ques-
tion answering,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 2654-2665.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for Web-scale rec-
ommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2018, pp. 974-983.

U. Wilensky and K. Reisman, “Thinking like a wolf, a sheep, or a
firefly: Learning biology through constructing and testing computa-
tional Theories—An embodied modeling approach,” Cognition Instruct.,
vol. 24, no. 2, pp. 171-209, Jun. 2006.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. 34th Int. Conf.
Mach. Learn. (JMLR), vol. 70, 2017, pp. 1263-1272.

A.Fout,J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface prediction
using graph convolutional networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 6530-6539.

N. De Cao and T. Kipf, “MolGAN: An implicit generative model for
small molecular graphs,” 2018, arXiv:1805.11973. [Online]. Available:
http://arxiv.org/abs/1805.11973

VOLUME 8, 2020

W. Cao et al.: Comprehensive Survey on GDL

IEEE Access

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Z. Cui, K. Henrickson, R. Ke, Z. Pu, and Y. Wang, “Traffic graph
convolutional recurrent neural network: A deep learning framework for
network-scale traffic learning and forecasting,” 2018, arXiv:1802.07007.
[Online]. Available: http://arxiv.org/abs/1802.07007

S.I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D.
Rueckert, “Distance metric learning using graph convolutional networks:
Application to functional brain networks,”” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. New York, NY, USA: Springer, 2017,
pp. 469-477.

C. W. Coley, R. Barzilay, W. H. Green, T. S. Jaakkola, and K. F. Jensen,
“Convolutional embedding of attributed molecular graphs for physical
property prediction,” J. Chem. Inf. Model., vol. 57, no. 8, pp. 1757-1772,
Jul. 2017.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side
effects with graph convolutional networks,” Bioinformatics, vol. 34,
no. 13, pp. i457-i466, Jun. 2018.

S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. G. Moreno, B. Glocker, and
D. Rueckert, “Spectral graph convolutions for population-based disease
prediction,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent. New York, NY, USA: Springer, 2017, pp. 177-185.

J. Bastings, 1. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an,
““Graph convolutional encoders for syntax-aware neural machine transla-
tion,” 2017, arXiv:1704.04675. [Online]. Available: http://arxiv.org/abs/
1704.04675

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can gens
go as deep as CNNs?” in Proc. IEEE Int. Conf. Comput. Vis., 2019,
pp. 9267-9276.

M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig, “Deep learning
with dynamic computation graphs,” 2017, arXiv:1702.02181. [Online].
Available: http://arxiv.org/abs/1702.02181

Y. Ma, Z. Guo, Z. Ren, E. Zhao, J. Tang, and D. Yin, “Streaming
graph neural networks,” 2018, arXiv:1810.10627. [Online]. Available:
http://arxiv.org/abs/1810.10627

F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognit., vol. 97, Jan. 2020, Art. no. 107000.

J. Chen, J. Zhu, and L. Song, ““Stochastic training of graph convolutional
networks with variance reduction,” 2017, arXiv:1710.10568. [Online].
Available: http://arxiv.org/abs/1710.10568

J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph con-
volutional networks via importance sampling,” 2018, arXiv:1801.10247.
[Online]. Available: http://arxiv.org/abs/1801.10247

J. Pearl, “Theoretical impediments to machine learning with seven sparks
from the causal revolution,” 2018, arXiv:1801.04016. [Online]. Avail-
able: http://arxiv.org/abs/1801.04016

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A simple neural network module for
relational reasoning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4967-4976.

P. W. Battaglia et al., “Relational inductive biases, deep learning,
and graph networks,” 2018, arXiv:1806.01261. [Online]. Available:
http://arxiv.org/abs/1806.01261

VOLUME 8, 2020

WENMING CAO (Member, IEEE) received the
M.S. degree from the System Science Insti-
tute, China Science Academy, Beijing, China,
in 1991, and the Ph.D. degree from the School
of Automation, Southeast University, Nanjing,
China, in 2003. From 2005 to 2007, he was a
Postdoctoral Researcher with the Institute of Semi-
conductors, Chinese Academy of Sciences. He is
currently a Professor with Shenzhen University,
Shenzhen, China. He is also a Project Manager
of The Guangdong Key Laboratory of Intelligent Information Process-
ing, Guangdong Multimedia Information Service Engineering Technology
Research Center and Video Processing and Communication Lab, Department
of Electrical and Computer Engineering. He has authored or coauthored
more than 80 publications in top-tier conferences and journals. His research
interests include pattern recognition, image processing, and visual tracking.

ZHIYUE YAN was born in Taiyuan, Shanxi, China,
in 1995. He received the B.S. degree in infor-
mation engineering from Shenzhen University,
Shenzhen, Guangdong, China, in 2018, where he
is currently pursuing the M.S. degree in infor-
mation engineering with the College of Elec-
tronic and Information Engineering. His research
interests include the development and analysis of
social networks and recommender systems using
geometric deep learning techniques and image
classification.

ZHIQUAN HE received the M.S. degree from
the Institute of Electronics, Chinese Academy of
Sciences, in 2001, and the Ph.D. degree from the
Department of Computer Science, University of
Missouri, Columbia, in 2014. He is currently an
Assistant Professor with the College of Informa-
tion Engineering, Shenzhen University, China. His
research interests include image processing, com-
puter vision, and machine learning.

ZHIHAI HE (Fellow, IEEE) was a Research Engi-
neer with the David Sarnoff Research Center. He is
currently a Professor with the Electrical Engineer-
ing and Computer Science Department, University
of Missouri. He was named as a Fellow of the
Institute of Electrical and Electronics Engineers
(IEEE), in 2015, for his contributions to video
communication and visual sensing technologies.

35949

