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ABSTRACT The low-rank matrix decomposition (LMD) algorithm based on the maximum correntropy
criterion (MCC) has recently shown its superiority to other algorithms in classification (e.g., face recog-
nition), and we develop it into single-channel speech enhancement for the low-rank structure of speech
signals in the time domain. However, a new issue has arisen: some residual noise exists in the enhanced
speech due to its sensitivity to the exact rank value. To address this issue, we propose a novel adaptive LMD
(ALMD) algorithm in which the energy threshold technique is adopted to adaptively update the effective
rank value of each frame of the speech matrix. Our proposed ALMD algorithm can achieve an acceptable
performance for low signal-to-noise ratio (SNR) levels without approximating the speech phase with the
noisy phase. We compare ALMD algorithm with common conventional algorithms in Gaussian white noise
and non-Gaussian noise conditions. The simulation results demonstrate that ALMD algorithm can achieve
its superiority in terms of the segmental SNR (segSNR), perceptual evaluation of speech Quality (PESQ),
and short-time objective intelligibility measure (STOI), when compared with tested baseline algorithms.

INDEX TERMS Maximum correntropy criterion, single-channel speech enhancement, adaptive low-rank
matrix decomposition, energy threshold technique.

I. INTRODUCTION
With the development of speech technology, many speech
applications have emerged, such as smart phones, hearing aid,
and human-computer interaction. These applications play
indispensable roles in human life [1], [2]. However, they
are often severely damaged by ubiquitous background noise.
Therefore, the design of an appropriate speech enhancement
algorithm is of great importance. To address this challenging
issue, many solutions have emerged during the last fifty years.
According to the number of microphones, these approaches
could be broadly divided into two patterns: multi-channel
speech enhancement and single-channel speech enhancement
[3], [4]. Multi-channel speech enhancement requires a series
of microphones to get the desired signal information [5], [6].
In this case, the spatial diversity is mainly exploited to sep-
arate target speech signal from mixed signals. Beamforming
is one of the most commonly technology to perform spatial
filtering. It forms a beam of the desired direction speech
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signal through the array geometry. While zero trapping to the
non-target directional interference source [2], [7]. However,
the limitation for beamforming is whose reliance on accurate
target source orientation information and acoustic transfer
functions (ATFs).

Single-channel speech enhancement has attracted plenty of
attention since it requires only one microphone to provide
a more computationally appealing solution [8], [9]. Spec-
tral subtraction (SS) [10] is one of the most widely used
methods due to its simplicity, which was originally presented
by Boll [11]. The enhanced speech is mainly obtained by
subtracting the estimated noise energy from the noisy power,
where the estimated noise power is detected by voice activ-
ity detection (VAD). The major drawback is that it suffers
from an uncomfortable signal called ‘‘music noise’’. Wiener
filtering (WF) [12] is a typical filtering algorithm. The main
idea of WF is that a filter function based on the minimizing
estimate error criterion is used to get the target speech [13].
It is sufficiently robust to Gaussian additive noise but non-
Gaussian noise. An alternative popular work is that several
based minimum mean square error (MMSE) [14] schemes
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have been proposed, such as MMSE short-time spectral
amplitude estimator (MMSE-STSA) [15], MMSE-spectrum
power estimator based on zero cross-terms (MMSE-SPZC)
[16], and MMSE log spectral amplitude estimator (MMSE-
log) [17]. They perform well to improve speech intelligibility
and quality, especially in some noisy conditions. However,
these MMSE-based methods are computationally expensive
and their performance is sensitive to the prior knowledge
of noise distribution. Another more promising work is the
subspace approach, which decomposes the noisy speech into
the noise subspace and the speech subspace via employing the
Karhuenen-Loeve transform (KLT) or singular value decom-
position (SVD) [18], [19]. It is well applied with the assump-
tion of subspace of speech and noise being orthogonal, which
often fail in actual scenarios [20].

In recent years, a new matrix decomposition theory called
robust principal component analysis (RPCA) [21]–[25] was
developed for speech enhancement. In RPCA, the observation
matrix is effectively separated as a low-rank component and
a sparse component, representing speech and additive noise,
respectively. Because of the temporal variability of the low-
rank component, RPCA can perform well with nonstationary
noise [24]. However, traditional RPCA has two drawbacks.
The first drawback is that reasonable performance requires
prior knowledge of the signal source. The other is that RPCA
exhibits high computational complexity because it uses a sin-
gular value decomposition (SVD) process for large matrices.
Up to the present, various methods have been attempted to
alleviate these problems [23], [26]–[29]. Riemannian robust
principal component pursuit (R2PCP) [30] is one well-known
improved RPCA algorithm, which imposes the tailored Rie-
mannian optimization function to avoid full SVD. However,
it assumes that the rank value is fixed and the iteration starting
point is random. Constrained low-rank and sparse matrix
decomposition (CLSMD) [23] is a notable new method for
RPCA-based speech enhancement. The core idea of CLSMD
solution is to incorporate rank and sparsity constraints into
the decomposition of noisy. It successfully deals with residual
noise with a fast convergence speed. However, approximation
of the speech phase is required, because it works in the time-
frequency domain. Moreover, [31] has shown that an inaccu-
rate phase decreased the quality of speech communication.
Is there a new approach without the high computational cost
of SVD and the phase processing is not required?

For the purpose of comfortable voice communication,
we develop a novel single-channel speech enhancement
method based on an adaptive low-rank matrix decomposition
(ALMD) method inspired by the low-rank matrix decompo-
sition (LMD) algorithm [32]. In [32], the maximum corren-
tropy criterion (MCC) [33] is adopted to eliminate outlier
effects, whilst the combination of half-quadratic (HQ) [34]
optimization and greedy bilateral (GreB) [35] paradigm are
used to accelerate the computational speed. Therefore, the
approach not only avoids SVD but also displays state-of-
the-art performance on face recognition. In addition, in the
time domain, the speech signal can be considered a low-rank

component because of its short-time stability, whereas the
background noise can be considered as the unknown cor-
ruption. Consequently, it was possible for us to develop the
LMD algorithm for speech enhancement. However, a new
issue has arisen that it fails to obtain the desired results for
denoising due to its sensitivity to the exact rank value. Here,
the energy threshold method is exploited to adaptively update
the effective rank value of clean speech.

The excellent properties of our work could be concluded
as follows:
• To our knowledge, the MCC-based LMD algorithm
is the first time developed into single-channel speech
enhancement for the low-rank structure of speech signal.

• The proposed method mainly exploits the low-rank
structure of speech signals for matrix decomposition in
the time domain. As a result, the accurate VAD process
and noise estimation are needless herein.

• Since the presented algorithm only performs denoising
in the time domain, approximating the speech phase by
the noisy phase is not required. Therefore, it will bemore
conducive to real-time denoising issue.

• Owing to the adaptive estimate of the effective rank
value, great performance can be obtained for the task
of obtaining the low rank speech components. Experi-
mental results reveal that the ALMD approach can per-
form significantly better than several common baseline
methods for various different types of noise (white, pink,
babble, F16, and hfchannel), especially in low signal-to-
noise (SNR) situations.

The organization of this paper is listed as below. In section
II, the relevant theoretical basis of RPCA theory is briefly
introduced. Then, speech enhancement based on ALMD
approach is described in section III. In section IV, we com-
pare the adopted method with existing ones and analyse the
numerical results. Finally, Section V concludes our work.

II. RPCA THEORY
Principal component analysis (PCA) [36], [37] is one of
well-known statistical methods for signal processing, can
accurately recover the desired matrix with low dimension
from high-dimensional observations. However, the perfor-
mance of the PCA technique will be seriously degraded until
large noise or outliers occurs. To address this robustness
issue, a modified version called RPCA [38] was originally
presented by J.Wright. The core idea is that a given noisy
signal Y ∈ RN×K could be effectively divided into two parts:
sparse S ∈ RN×K and low-rank L ∈ RN×K matrices (i.e.,
Y = L+S). Owing to the speech signal has a sparse structure
and uncorrelated white noise has a low-rank structure in time-
frequency domain. Thus, the RPCA approach could be devel-
oped into speech enhancement. In enhancement process of
RPCA approach, S and L are utilized to represent the speech
and noise components, respectively. The convex optimization
problem of RPCA can be described as,

min ‖L‖∗ + λ ‖S‖1 , s.t.Y = L+ S, (1)
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where the symbol λ > 0 denotes a weighting parameter,
which is a significant factor to trade off the sparsity of S with
the low-rankness of L. Also, ‖· ‖∗ and ‖· ‖1 is defined as the
nuclear norm and the l1-norm of a matrix, respectively. Here,
the nuclear norm and the l1-norm is served as a surrogate for
the rank of L matrix and the sparsity of S, respectively. To
address the optimization problem in (1), different kinds of
efficient algorithms have been presented, such as augmented
Lagrangianmethod (ALM) [39], alternating directionmethod
of multipliers (ADMM) [21] and accelerated proximal gradi-
ent (APG) [40]. However, since the delicate balance between
the sparsity and low ranknessmay be not satisfied, the RPCA-
based approach is fail to get the desired result.

One of the notable work is called CLSMD [23], which can
effectively solve the RPCA problems by incorporating the
constraints of low-rankness and sparsity. The noisy matrix
could be described as Y = L + S + O, and the symbol
O represents a residual noise matrix. Before applying the
CLSMD method to recover S and L, the spectral magnitude
matrix of noisy is smoothed as Ŷ . It can be written as

ˆ|Y (t, k)| =
1
3
(|Y (t − 1, k)| + |Y (t, k)| + |Y (t + 1, k)|) ,

(2)

where the t and k is denoted as time index and frequency bin
of Y , respectively. Then, the CLSMD is performed to deal
with the two sub-problems: recovering S and L from Ŷ . It can
be defined as

L(n) = argmin
∥∥∥Ŷ − L− S(n−1)∥∥∥2

F
,

S(n) = argmin
∥∥∥Ŷ − L(n) − S∥∥∥2

F
,

s.t. rank(L) ≤ r = min(t, k),Card(S) ≤ c&S ≥ 0,

(3)

where n represents the number of iteration. ‖· ‖F denotes the
Frobenius norm (i.e., ‖E‖F =

√
e2ij). Besides, rank(· ) is the

rank function of estimated noise matrix, which is usually set
to 1 or 2, due to the strong correlation of the column vectors
of the background noise. Card(· ) is equivalent to ‖· ‖1, which
is used to calculate the cardinality value of speech matrix.
The drawback of CLSMD approach is that it adopts the noisy
phase to approximate the clean speech phase and uses a hard
threshold operator to achieve the acquisition of S and L.

III. SPEECH ENHANCEMENT BASED ON ALMD
In this section, we will introduce ALMD-based speech
enhancement, which can alleviate the problems of CLSMD
and RPCA. More specifically, we first give the problem
formulation and then describe the ALMD method.

A. PROBLEM FORMULATION
The task of speech enhancement will be considered in this
section. Specifically, the process of acquiring an enhanced
speech is performed in the time domain not the time fre-
quency domain, which can address the shortcomings of the

FIGURE 1. The ALMD-based speech enhancement framework.

approximate speech phase in the CLSMD method. However,
owing to the stationary in the short time features of the speech
signal, the noisy needs to divide the signal into N frames
(yn, n = 1, . . . ,N ). Let the symbol y(t) ∈ RK×1 denotes
a frame of the noisy signal vector, which is taken to be the
sum of a clean speech vector l(t) ∈ RK×1 and a noise vector
s(t) ∈ RK×1, where the symbol K is the length of each frame
signal. The additive model can be given as

y(t) = l(t)+ s(t). (4)

To show the low-rank characteristics of K -dimensional
signals more clearly, a matrix transformation is performed on
each frame of the signal. It can easily be obtained as

Y = L+ S, (5)

where Y , L and S are M × P matrices, M = 2K/3 + 1,
and P = K/3. In the case of enhancement, the matrix Y is
known, while the L and Smatrices are unknown. The ALMD
algorithm is utilized to obtain speech matrix L. After obtain-
ing the estimated L, an overlap-add-synthesis is utilized to
recover the enhanced speech signal. This process is depicted
in Fig. 1.

B. OPTIMIZATION ALGORITHM FOR ALMD
The core idea of ALMD is motivated by the MCC-based
LMD method. However, since the speech energy of each
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frame is unique, it is obvious that it is not feasible to use the
fixed rank value. Thus, we will describe the adaptive rank
value estimate at the end.

1) MCC AND HQ OPTIMIZATION
Correntropy [41] is a local criterion of similarity, which
is often used to process the non-Gaussian noise with large
outliers. Meanwhile, it also as a nonlinear similarity evalua-
tion of two random variables X̄ and G. Moreover, since the
correntropy holds the symmetrical characteristics. It can be
defined as

Vσ (X̄,G) = Vσ (G,NX) = E
[
κσ (X̄ − G)

]
, (6)

where the function κσ (· ) and E [·] denotes the kernel function
and the expectation operator, respectively. Besides, σ is the
kernel size that can be chosen by the maximum likelihood of
density estimate. We will only consider the data x̄ that obeys
a Gaussian distribution, so the κσ (· ) is the Gaussian kernel,
i.e.,

κσ (x̄) = exp
(
−
x̄2

σ 2

)
. (7)

In practice, since only the initial data {(x̄i, gi)}ni=1 are
known but the joint probability density function (PDF), a sim-
ple estimator of correntropy could be used to instead of the
expectation. It can be expressed as

V̂n,σ (X̄,G) =
1
n

n∑
i=1

κσ (x̄i − gi). (8)

Owing to the locality of correntropy, the similarity of the
two variables (i.e., x̄ = g) is primarily dictated by κσ (x̄ − g)
[41]. Therefore, a new cost function is called MCC that used
to evaluate adaptive systems training. Giving as

max
θ

1
n

n∑
i=1

κσ (ei), (9)

where the symbol θ represents a set of adjustable parameters,
and ei is errors of system. Furthermore, the M-estimator
[33] is also a maximum likelihood method, defined as
min
θ

1
n

∑n
i=1 (1− κσ (ei)). In that sense, M-estimator is equal

to MCC. To address the problem of M-estimator, we make
use of the HQ [34], [42] optimization.

HQ technique is a commonly used optimization algorithm
for convex or non-convex minimization, which is well used
for signal and image reconstruction [42]. The HQ function is
defined as

Q1(a, b) = (a− b)2, (10)

Q2(a, b) =
1
2
a2b, (11)

where a and b is the adjustable parameter and an auxiliary
parameter of the adaptive systems, respectively. b can be
obtain by

b = δa(a) = a
(
1− exp

(
−
a2

σ 2

))
, (12)

where δ(· ) is a minimization function inWelschM-estimator.
Owing to the additive form in it, (10) is well utilized to
recover corrupted data [34]. Here, we only consider this case.
Let us define a loss function of a, i.e.,

ψ(a) = minbQ1(a, b)+ ϕ(b), (13)

where ϕ(· ) is served as the dual function of ψ(· ) in (13).
MCC and HQ optimization could well deal with the problem
of LMD, which is introduced in the following section.

2) MCC-BASED LMD APPROACH
To address another issue for the hard threshold operator in
the CLSMD method. The MCC theory is adopted to provide
an additional penalty for the updating of the LMD algorithm.
Moreover, the method can also perform well in non-Gaussian
noise conditions because of the property of correntropy [41].
Therefore, the redefined noiseW = S+O is modeled by the
MCC theory, i.e.,

max
L

M∑
m=1

P∑
p=1

κσ (Wmp), s.t.Y = L+W , rank(L) ≤ r, (14)

where the κσ (· ) is a Gaussian kernel defined in (7). Based
on the HQ optimization approach, an auxiliary variable G is
introduced, and ϕ(G) serves as the dual function of ψ(W )
(i.e.,ψ(W ) = ψ(Y − L) = min

L,G
(Y − L−G)2+ϕ(G)). Thus,

G can be easily obtained by (12) and (7), and it is given as

G = W −W � κσ (W ), (15)

where the mathematical symbol � indicates the entry-wise
product. Therefore, Sub-problems of alternative updating for
the MCC-based LDM approach in the CLSMD (3) solution
can be rewritten as

L(n) = argmin
∥∥Y − L− G(n−1)

∥∥2
F + ϕ(G),

G(n) = argmin
∥∥Y − L(n) − G∥∥2F + ϕ(G),

s.t. rank(L) ≤ r = min(t, k), (16)

where G is obtained by (15) when W = Y − L is fixed.
However, the GreB [35] strategy aims at dealing with the
updating of L in (16) and (3) to reduce failure caused by a
biased estimate of the rank r .
In the GreB strategy, a bilateral factorization X = UV

is constructed to replace X . In addition, the alternating opti-
mization of U and V is obtained via QR decomposition.{

U (i) = Q, XVT
(i−1) = QR

V (i) = QTX,
(17)

where i is the number of the iteration. The detailed MCC-
based LMD approach is summarized in Algorithm 1. The
convergence of this approach has been proven to be lin-
ear [32].
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Algorithm 1 The MCC-Based LMD Algorithm

Intput: Y ∈ RM×P, r , q, σ , η, max = 100
Output: L = LT

Initialize: G(0) = 0, L(0) = YT, n = 1;
Suppose a standard Gaussian matrix X2 ∈ RP×r ;
while not converged do

Ŷ = Y − G(n−1);
for i = 1, . . . , q do

X1 = ŶX2;
X2 = ŶX1;

end for
[Q,R] = QR(X2, 0), X2 = Q;
V = QTŶ , U (n) = Q;
L(n) = U (n)V (n) = QQTŶ ,W (n) = Y − L(n);
G = W (n) −W (n) � κσ (W (n));

if ‖L(n)−L(n−1)‖
2
F

‖L(n−1)‖
2
F

< η or n == max then

break;
end if
L D L(n);
n = n+ 1;

end while

3) THE ADAPTIVE ESTIMATE OF THE EFFECTIVE RANK VALUE
Since the energy of different frames is time-varying, using
a fixed rank value in Algorithm 1 will reduce the recovery
effect. Therefore, we introduce an energy threshold technique
to update the effective rank value of the speech matrix L.
Suppose that speech signal l(t) and additive noise s(t) are
zero-mean Gaussian signals, i.e., p(l) ∼ N (0, σl ), p(s) ∼
N (0, σn). It can be readily obtained that

E
(
y(t)yH(t)

)
= E

(
l(t)lH(t)

)
+ E

(
s(t)sH(t)

)
, (18)

σy = σl + σs, (19)

where (19) is the simplified version of (18). In addition, σl
and σs can be taken as the powers of the speech and noise,
respectively. Let lk (t) represents the signal synthesized by the
first k largest eigenvalues, so we can obtain

σ (k) = σy − σ 1(k), s.t. σy = σl + σs, (20)

σ (k)− σs = σl − σ 1(k), (21)

where σ (k) and σ 1(k) represent the difference power and the
power of lk (t), respectively. However, in the non-Gaussian
noise scene, formula (19) is not satisfied. The QR transfor-
mation can be used to obtain a unitary matrix from the noise
matrix and whiten the noisy matrix to satisfy the above con-
ditions. In addition, we use the formula (21) as the adaptive
determination of the effective rank value of the speech matrix
L. According to (21), when k is greater than the value of the
actual rank r in Algorithm 1 (i.e., σ (k)−σs < 0), then this is
a case of overestimating speech, because the recovered low-
rank matrix L contains not only speech components but also
partial noise components. In contrast, when k is less than the
value of the actual rank r (i.e., σ (k)− σs > 0), it is a case of

underestimation where the speech signal has distortion. Thus,
only the difference power in formula (21) is equal to or close
to zero. The effective rank value of the speech matrix L can
be obtained. More specifically, it can be given as

τ = |σ (k)− σs| , (22)

where the symbol τ is a minimum value. Therefore, when
the value of k satisfies the condition in (22), we can obtain
the value of effective rank r . This approach of adaptively esti-
mating the effective rank value is summarized in Algorithm 2.

Algorithm 2 The Approach of Adaptively Estimating the
Effective Rank Value
Intput: Y ∈ RM×P, τ
Output: r = k
Initialize: k = 1;
Suppose y1 contains only the noise matrix S ∈ RM×P;
while not converged do

UΛVT
1 = SVD(S);

σs = Sum
(
ΛΛH);

UλVT
2 = SVD(Y );

σ (k) = Sum
(
λλH

)
− σ 1(k);

if ‖σ (k)− σs‖2F ≤ τ or k == P then
break;

end if
k = k + 1;

end while

C. EXPERIMENTAL SETTINGS
For these experiments, we choose 30 different clean speech
signals (sp01∼sp30) based on the NOIZEUS database [43].
This database consists of 30 sentences with a sampling fre-
quency of 8 kHz, and the sentences are produced by three
female and threemale. In addition, the additive noise included
Gaussian white noise and different types of non-Gaussian
noise ( pink, babble, F16, and hfchannel) are taken from
NOISEX-92 database [44]. The clean speech signal is cor-
rupted by these different types of noise at 0, 5, 10, and
15 dB. The synthesized noisy signals are divided into frames
of 32 ms each, and 50% frame overlap is used to ensure signal
continuity. The window function is a 256-point Hamming
window applied to suppress the Gibbs phenomenon. Overlap-
add-synthesis is performed on the final enhanced speech
signal to obtain the reconstructed speech matrix. Note that
we perform a parallel recovery for all frames.

D. PERFORMANCE METRICS
Wemake use of three objective performance metrics to quan-
tify and analyze the performance of these algorithms, namely,
the segmental SNR (segSNR) [1], the perceptual evaluation
of speech Quality (PESQ) [45], and the short-time objective
intelligibility measure (STOI) [46], respectively. The segSNR
metrics is served to reflect the suppression of interference
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noise, defined as

segSNR =
1
N

N∑
n=1

{
10 ∗ log10

‖l(n)− l̂(n)‖2

‖l(n)‖2

}
, (23)

where l(n) and l̂(n) denote the n-th frame of clean and recon-
structed speech signal, respectively. The symbol N denotes
the total number of speech signal frames. Moreover, The
PESQ metric and STOI metric are commonly used to predict
speech distortion and intelligibility, respectively. It is worth
to note that they all calculated on the average.

E. EXPERIMENTAL RESULTS AND DISCUSSIONS
1) PERFORMANCE IN GAUSSIAN WHITE NOISE
In this section, we will display the performance comparisons
for the enhanced speech signal degraded by Gaussian white
noise. The results are shown in Fig. 2.

As showing in Fig. 2(a), we give the relationship between
the average segSNR and input SNR in the Gaussian white
noise case. As expected, the above results show that both the
average segSNR achieved by different methods are increasing
with the input SNR improving. It also can be seen that the
average segSNR generated by the ALMD approach is higher
than that of the other methods (MMSE-STSA, Minimum
mean square error estimator of magnitude squared spectrum
(MSS-MMSE), RPCA, CLSMD, and LMD) across the SNR
range of 0-15 dB. This may be attributed to the fact that
the effective rank technique will be valuable for the sup-
pression of noise. It’s interesting to note that the CLSMD
solution will make very little noise attenuation when the
SNR reaches>10 dB. The MMSE-STSAmethod display the
lower average segSNR than that of the other methods, since
it is heavily sensitive to the correctness of VAD. Fig. 2(b)
shows the results of the average PESQ scores obtained by
different methods. The ALMD method has a significantly
higher average PESQ scores than the baselines for the input
SNR range of 0–15 dBwith 5 dB steps. It also clearly displays
that the average PESQ scores obtained by the MSS-MMSE
increase rapidly with the SNR increases. This is duo to the
fact that this method achieve satisfactory results by incor-
porating a priori SNR uncertainty [16]. In terms of average
STOI scores, we can see from Fig. 2(c), the enhancement
method presented herein can also yield significantly higher
STOI scores than that of the other five algorithms. In contrast,
LMD scheme has a very poor average STOI scores with the
rank is fixed operation. These results manifest that the ALMD
method outperforms the baselines in Gaussian white noise
environment.

Fig. 3 shows the waveforms of reconstructed speech
(‘‘sp01’’) obtained by different methods. The reconstruction
is performed in a condition of very severe noise with additive
Gaussian white noise at−5 dB. In this circumstance, it is eas-
ier to see the enhanced performance of the above mentioned
enhancement schemes in the Gaussian white noise scene with
a −5 dB SNR.

FIGURE 2. Performance comparisons of the different methods in the
Gaussian white noise.

In Fig. 3, it is clearly shown that MMSE-STSA and RPCA
led to a notable speech distortion in heavy white noise condi-
tion (−5 dB). We believe that this may be due to the follow-
ing facts: MMSE-STSA needs accurate VAD detection and
RPCA needs the prior knowledge of the signal source. Both
of these conditions will be unavailable in strong noise condi-
tions. Owing to the effective rank value estimate and the fact
that a noisy phase approximation is not needed, the ALMD
method yields significantly better waveform than the other
methods (MSS-MMSE, CLSMD, and LMD). Unfortunately,
there is some distortion. This may be because the strong
noise (−5 dB) interferes with the estimate of the effective
rank. Besides, the MSS-MMSE and CLSMD demonstrate
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FIGURE 3. Time-domain waveform comparisons of speech (‘‘sp01’’) reconstruction in the white noise condition at −5 dB SNR.

the similar noise suppression. Comparatively, the proposed
method still has better performance in the white noise condi-
tion with a −5 dB SNR.

2) PERFORMANCE IN NON-GAUSSIAN NOISE
Additionally, we will introduce the performance comparisons
between our proposed algorithm and the baselines in sev-
eral non-Gaussian noise scenarios (colored pink noise, non-
stationary babble noise, F16 noise, and stationary hfchannel
noise). First, we adopt the average segSNR metric to reflect
the suppression of different types of non-Gaussian noise. The
results are presented in Fig. 4.

Fig. 4 displays that the ALMD scheme has a substantially
higher average segSNR than that of the other methods, as the
SNR reaches >10 dB, especially in the F16 noise condition.
However, the average segSNR is comparable to the average
segSNR obtained from MSS-MMSE approach at the lower
SNR levels (0 dB, 5 dB). The CLSMD method achieves
a lower average segSNR against these acquired by ALMD
and MSS-MMSE for the SNR range of 0-10 dB in various
noise conditions (pink, babble, and F16), but does with a
relatively higher average segSNR improvement in hfchannel
noise condition. This might be due to the hfchannel noie
belongs to stationary noise. Consequently, hfchannel noise
could be as a low rank component not like the highly non-
stationary noise [47].

Second, the average PESQ scores are applied to reflect the
speech distortion of the proposed ALMD approach for four
different types of non-Gaussian noise. The results are shown
in Fig. 5.

We could clearly see from Fig. 5 that our proposed method
can obtain a substantially higher average PESQ scores in
different kinds of non-Gaussian noise conditions with the
input SNR range of 0–15 dB, except in the non-stationary
babble noise scene at 0 dB and 5 dB SNR. However, the
suggestion of this paper has similar effects to that of MSS-
MMSE solution for the SNR less than 15 dB (i.e., 0 dB, 5 dB,
and 10 dB). In comparison, the proposedmethod still perform
well in different types of non-Gaussian noise conditions in
terms of speech distortion. However, as mentioned earlier,
under strong noise conditions, the estimate of the effective
rank process will be affected. Thus, the enhanced speech
will still contain a portion of the noise information. This
fact can explain why the average PESQ scores obtained by
the proposed scheme herein are sometimes lower than that
obtained by the MSS-MMSE method at 0 dB.

Last, the average STOI scores are used to reflect the speech
intelligibility of the presented approach in four different types
of non-Gaussian noise conditions. The results are shown
in Fig. 6.

We could clearly see from Fig. 6 that our presented
approach achieves a significantly higher average scores in
STOI metrics, and the improvement of STOI scores indicate
that the proposedALMD scheme can successfully recover the
speech signal and that intelligibility is effectively improved.
While several other reference algorithms cannot preserve
the originality of reconstructed speech. The above results
demonstrate that the ALMD scheme still could preserve the
speech intelligibility in various types of non-Gaussian noise
conditions, especially in low-SNR situations (0 dB, 5 dB).
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FIGURE 4. The average segSNR of the different methods in various types of non-Gaussian noise.

FIGURE 5. The average PESQ scores of the different methods in various types of non-Gaussian noise.
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FIGURE 6. The average STOI scores of the different methods in various types of non-Gaussian noise.

FIGURE 7. Time-domain waveform comparisons of speech (‘‘sp01’’) reconstruction in the F16 noise condition at −5 dB SNR.

Fig. 7 shows the time-domain waveforms of reconstructed
speech (‘‘sp01’’) obtained by six different enhancement

methods, which degraded by non-Gaussian F16 noise for
input SNR at −5 dB.
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As can be seen clearly from Fig. 7, the MMSE-STSA,
RPCA, CLSMD, and LMD methods have a disappointing
loss of speech information. This is that the preconditions for
the effective operation of these methods, such as noise obeys
Gaussian distribution, prior signal knowledge, the rank of the
noise is 1, and the value of the effective rank, which is no
longer satisfied in strong non-Gaussian F16 noise condition
(−5 dB). In addition, the time-domain waveform achieved
by the MSS-MMSE is comparable with the performance of
ALMD solution. However, it has some speech information
lost in the high frequency part. Comparatively, in the case of
non-Gaussian F16 noise, the ALMD method could achieve
a better performance than the baselines at −5 dB. However,
this method inevitably leaves much residual noise, which will
be our future improvement.

IV. CONCLUSION
In this work, we present a novel speech enhancement algo-
rithm based on ALMD scheme that exploits the fact that low-
rank characteristics are shown by the speech signals in the
time domain. The energy threshold technique is developed
to adaptively update the effective rank value of each frame
of the speech matrix. Additionally, the enhancement process
in the time domain avoids phase loss, which is helpful to
improve speech quality and intelligibility. The experimental
results confirm that our improved algorithm outperformed
the five baseline algorithms in terms of the segSNR, PESQ,
and STOI, especially in the case of white noise. However,
the proposed method also could yield significantly higher
scores of PESQ and STOI than performed by the baselines in
the non-Gaussian noise condition. Whilst it has low complex-
ity without loss of evident speech intelligibility and quality.
More significantly, our proposed method avoids the need for
noise estimation, the VAD process, and approximation of the
clean speech phase by the noisy phase.
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