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ABSTRACT This paper addresses the event modeling and recognition problem in video surveillance systems
using the system net on the Petri Net (PN) formalism. The single event on the foundation of prior knowledge
is first modeled via arranging event schemes from the design document. Then, finite sequential runs (FSRs)
determined by semantic features in training clips drive elements of the proposed single event model. Finally,
the multi-event model is built automatically from single event models via a proposed integration method
using multi-level features (including high-level semantic features and low-level features like numerical
characters of individual trajectories). We provide a novel solution to event conflict issue through an extended
system net where the resultant event type is determined by the decision tree technique. The comparison
between the proposed methodology and other approaches in the literature is reported via experiments on an
acknowledged public dataset.

INDEX TERMS Event recognition, high-level video event modeling, video surveillance system, Petri nets,
video analysis application.

I. INTRODUCTION
Due to the prosperity of video surveillance systems, long-
term surveillance of multiple channels simultaneously chal-
lenges the capacity of human operators and gives rise to
demand on automated reasoning. Hence, various event anal-
ysis approaches are developed for video surveillance sys-
tems. The typical framework of event analysis application is
comprised of subtasks that are generally grouped under three
categories: low-level vision, intermediate-level vision, and
high-level vision. Low-level vision tasks comprise operations
such as image acquisition and pre-processing. Intermediate-
level tasks pertain to segmentation, symbolic representation,
classification, recognition, and tracking. High-level vision
tasks are concerned with achieving a conceptual understand-
ing of information and realizing further semantic tasks.

This paper devises an event modeling framework that
realizes multi-event recognition via an extended elementary
system of Petri net. It concentrates on the high-level event
modeling in a particular application and for recognition of
these events in video sequences. As the knowledge-based
framework depicted in Fig. 1, proposed methods of event
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FIGURE 1. Architecture of high-level event analysis applications.

modeling and recognition are applied after the module of
knowledge representation. That is, we assume that states of an
object in each frame with multi-level features from low-level
numerical values of characters in individual trajectories (like
object size, location, speed) to high-level semantic features
(like semantic actions, semantic region) are given. Similar
to [1]–[5], we assume that an event label is assigned to
each object in every frame. Contribution of this work can be
highlighted by the followings:

1) We provide a concise event recognition framework for
proposed event models. Analysis of a given video is turned
into moving of tokens inside the system net for the proposed
framework. State of the event reasoning machine, that is,
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an event model whose intrinsic structure is an extended sys-
tem model, triggers the operations of the event recorder.

2) We devise an intuitive finite sequential run (FSR) cen-
tered single event modeling strategy which hasn’t been pro-
posed to the extent of our knowledge in existing models.
Mapping rules of entities from both prior knowledge and
training dataset into elements of the Petri net model are
depicted. Algorithms are given to build the single eventmodel
from training clips automatically and to associate each FSR
with corresponding clips.

3) Algorithms that directly built the multi-event model
from the training clips are presented. We propose a novel
solution to the event conflict that different events share the
same FSR. It is addressed by extending the system net with
specific place types with rules together with the decision tree
technique.

4) Experimental results verify that our proposed frame-
work achieves significant performance advantages against
others.

We structure the remainder of this paper as follows:
Section II covers the preliminaries and related work,
Section III presents details of the proposed framework and
algorithms, Section IV provides the experimental results,
evaluations, and discussion, and Section V makes a short
summarization.

II. VIDEO EVENT MODELING USING PETRI NET
A. DEFINITIONS IN PETRI NET
Petri Nets is a formal and graphical appealing language which
is appropriate for modeling systems. Basic components of
a Petri net structure include three kinds of elements called
places and transitions as well as directed arcs that connect
between them. Besides, the token is designed to reflect the
dynamic states of a Petri net. In this section, elementary
conceptions of the standard Petri net are introduced. For more
information on Petri nets, please refer to [6].
Definition 1 (Net Structure): Let P and T be sets and let

F ⊆ (P× T ) ∪ (T × P), N =def (P,T ,F) is a net structure.
P, T and F contain the places, transitions and arcs of N ,
respectively.

A place p always models a passive component that has
discrete states while a transition t always models an active
component that is capable of producing, consuming, trans-
porting or changing. The arc describes abstract, sometimes
only notional relation, such as logical connections, access
rights, spatial proximities or immediate linking. A transition
t can be labeled with a condition and the arcs around t
with expressions. These labels show the various situations
(modes) in which t is enabled, and the respective effects at the
occurrence of t . Lastly, every transition is either hot or cold,
where cold transitions are indicated by ε.
Definition 2 (Marking and Final Marking): Assume a uni-

verse U that contains all examined kinds of tokens and M
as the set of all multisets over U , a mapping M : P → M
is a marking of N . A system has reached a final state if it

can remain in this state forever. A final state of a system
corresponds to a final marking. In such a marking, no hot
transitions are enabled.

A marking M of N is a distribution of tokens (multisets)
across the places ofN , which describes a state of the modeled
system. Typically, the initial marking of N is denoted by M0
and is explicitly drawn into N .
Definition 3 (System Net): Let N = (P,T ,F) be a net

structure, let U be a set, let M0 be a marking of P over U ,
let τ : T → cond , let ` : F → M, let C ⊆ T . Then
S =def (N ,M0, τ, `,C) is a system net over U .
System nets are used to model real, discretely changeable

systems. A net structure together with an initial marking,
transition conditions, arc labeling, and cold transitions form
a system net. Each place of a system net models a state com-
ponent of the system and each currently existing token in a
place models a currently given, but changeable, characteristic
of that component. Each transition of a system net repre-
sents an action of the system. The occurrence of a transition
describes the occurrence of the respective action. If in doing
so, a token reaches or leaves a place, the action respectively
creates or terminates the corresponding characteristic of the
state component.

A marking M of a 1-bounded system net can be described
as a string of marked places. As the event reasoning model is
designed for the recognition of a single object event, the sys-
tem net in our reasoning machine is a 1-bounded elementary
system net.
Definition 4 (Finite Sequential Run): A sequential run of a

system net N

M0
t1
−→ M1

t2
−→ . . .

tn
−→ Mn

is a finite sequential run ofN iff Mn is a final marking of N.

B. RELATED WORK ON EVENT ANALYSIS
Event modeling involves defining inference models for spe-
cific event types and developing methods for recognition that
corresponding to these models. To capture the complexity
existing in the domain of video sequences, the inference
model is required to take into account factors including
spatial, temporal and logical relations. To this end, many
approaches have been applied in the event modeling and
recognition task. Models including Convolution Neural Net-
works (CNN), Bayesian Networks (BN), Hidden Markov
Models (HMM), Petri Nets (PN), and Context-Free Gram-
mars have been successfully adapted to provide solutions for
event recognition as it will be explained in next paragraphs of
this section.

Pattern recognition approaches take advantage of deep
networks to derive powerful and distinguishing feature por-
trayals. Rather than using high-level semantic features, these
models usually adopt video frames or spatial-temporal trajec-
tories as input. Zhou et al. [7] proposes a deep neural network
including a motion fusion block, a feature transfer block,
and a coding block. They are designed to keep the temporal
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and spatial connection between the motion and appearance
cues and extract discriminative features by exploiting the
transferability of the neural network from different domains.
Abnormal frames are detected by the reconstruction error of
the dictionary encoding normal events. Ullah et al. [8] investi-
gates the convolutional layers of a pre-trained CNN to detect
human saliency in the surveillance stream. Learned salient
regions are further used for salient feature extraction and shot
segmentation, resulting in representative shots suitable for
industrial video stream analysis and activity recognition.

In [9], an event classification system is proposed which
learns the relative significance of the features from the train-
ing set of data. A triple-channel model is designed in [10]
which yields the final detection results via fusion method
on triple channels including spatial CNN features, temporal
CNN features and their fusion at convolution layers.

Bayesian networks can encode spatial and logical relations.
BNmodels in [11], [12] are usually tailored to the application
domain to recognize simple events. Hidden Markov models
(HMMs) are the extension of BNs over time which allow
computational tractability. Hence they are effective for recog-
nizing sequential events with different temporal durations and
more complexities. Epaillard and Bouguila [13] derives the
variational learning for the Dirichlet HMM and extended it to
the generalized Dirichlet case. Besides, a realistic solution is
proposed to the problem of unusual event detection in crowds
of pedestrians that yields convicting results compared with
other HMM models like [14].

Another popular event model is Context-Free Grammars
which naturally encode sequence and hierarchy using gram-
mar models. In [15], a knowledge representation framework
is proposed for video event recognition. It is capable of
describing patterns of knowledge via specific representations
including Elements of Context Representation (ECR), Action
representation (AR), and General Descriptors of Context
(GCD) with corresponding reasoning rules. However, exist-
ing approaches [4], [16], [17], both knowledge-based and
rule-based schemes through semantic representations, require
heavy manual modeling work.

Compared with other event analysis models, the Petri
net is chosen as the inference mechanism for the following
advantages: 1) Both deterministic and stochastic inference
of event occurrences can be addressed by Petri nets. Much
fewer observations are required compared to deep network
methods. 2) Events can be represented at various levels
of abstraction using Petri nets. 3) Petri nets have intuitive
graphical representations with well-defined semantics. The
place of the token indicates the current state of the tracking
target. Past places and transitions describe what happened and
connecting branches of the place predict what will happen in
the further.

The Petri net is a graphical and mathematical modeling
tool to describe and study information processing systems.
They are particularly useful since they permit to express
concurrency and to use smart control strategies. Formally,
a Petri net is a directed bipartite graph composed of places,

FIGURE 2. System net of high-level event detection framework.

transitions, and arcs. To enable the target of event detec-
tion, automatic mappings of ontology entities into Petri nets
must be defined. Researches define the event representation
according to their understandings of the Petri net. Petri nets
and its variations arewidely used inmodeling video events for
their detection and recognition since plan-based PN presented
by Castel et al. [18]. Ghanem et al. [19] adopts PN models
for both representation and recognition. A graphical user
interface is provided where Petri nets can be generated from
queries. These Petri nets are provided with primitive events
detected from video streams and are used as filters to recog-
nize composite events. Albanese et al. [20] proposes a PN
approach for the recognition of human activities. This work
describes a probabilistic Petri Net representation of complex
activities based on atomic actions that are recognizable by
image understanding algorithms. Lavee et al. [21] provided a
methodology and examples of how formal ontology language
definitions for an event can be transformed into a Petri net
formalism. After that, a Particle Filter Petri Net is proposed
in [22] to model and recognize activities in videos. That
method allows a recognition of the activity which takes into
account the uncertainty of events obtained by low-level pro-
cessing of surveillance videos. Hamidun et al. [23] translates
the event sequence in the crossing scenario to the PN model.
The combined effects of spatial and temporal information are
analyzed using the steady-state analysis built in the model
which indicates that modeling with Petri Nets also allows the
development of a model in the hierarchical structure.

III. PROPOSED METHODS FOR VIDEO EVENT MODELING
AND RECOGNITION
To realize event modeling and recognition from subsequent
video sequences, the proposed framework is made up of
two parts, namely, an event reasoning machine and an event
recorder. Their interactions are shown in Fig. 2 where the left
part depicts states of the event reasoning machine and the
right part present stats of the event recorder. A given video
will be cut into clips and frames in each clip share the same
event label determined by the reasoning machine.

In the initial state, the reasoning machine is on a pending
state while the event recorder is closed. The inial state stays
until the object appears on a certain frame. The transition
‘Appear’ will be enabled upon the target appears because
its incoming arc starts at a place containing a token and the
transition condition is satisfied. The effect can be deduced
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from the arrows starting or ending in it: the token will
move from ‘Pending State’ to ‘Event Reasoning’. Intuitively,
the appearance of the target leads to the start of an event
recognition process in the reasoning machine. The intrin-
sic pattern of the reasoning machine is an extended system
net which will be described in Section III-C. Immediately,
the transition ‘Start Event Recorder’ will be also fired as
both of its incoming arcs are satisfied. That results in the
movement of the token from ‘Event Recorder Off’ to ‘Event
Recorder On’. That is, the event recorder will start to work
and the clip to be recognized starts at this appearance frame.

Then, the current marking keeps still until the transition
‘Event Out’ is triggered. Determination conditions of the
inference machine for single event and multi-events will be
explained in details in Section and III-C, respectively. After
the transition ‘Event Out’ fires, the last framewill be recorded
as the end frame of the clip to be recognized. The event
reasoning machine will assign an event label for this clip
which is further recorded by the event recorder and the left
token will return to ‘Pending State’. Besides, the transition
‘Close Event Recorder’ will occur because the arrows ending
in it are satisfied. Hence the right token will be back to ‘Event
Recorder Off’ leading to an identical marking of the initial
one as depicted in Fig. 2. After that, things continue to happen
for the same process inside this framework and the event
recorder writes down the labels of frames.

A. SINGLE EVENT MODELING: PRIOR KNOWLEDGE
Both prior knowledge and training datasets can be the source
of the single event model. In some real-world applications,
especially abnormal event detection tasks, concerned events
rarely happen while having important practical significance.
Prior knowledge from experts will compensate for the possi-
ble absence of vital events in training datasets.

The prior knowledge provided by field experts usually
includes qualitative representations for elements and schemes
of events. Technically, it can be described as a directed graph
consisting of states and arrows. States of the tracked object are
described by high-level semantic features. The state change of
the target from one to another following the connecting arrow
depicts the execution of a step. The sequence of actions form
a routine and various routines may represent for the same
event. Note that generally only high-level semantic features
are exploited during the single event modeling stage.

A modeling process of event ‘Windowshop’ using prior
knowledge is depicted in Fig. 3 which occurs in a shopping
center. In such a context, a person walks past a shop window
at various places and then enters the shop or walks away. The
prior knowledge is introduced in the form of an event scheme
where the graph of the situation sequence is presented. Each
flow, starting from an input arrow to an end arrow, represents
an individual routine of this event.

Following the arrow flows, each event of interest can be
arranged into routines made up of semantic feature sequences
manually. Each transformation from one situation to another
corresponds to an individual step. That is, a step occurs

FIGURE 3. An example of the single event modeling approach. The prior
knowledge is introduced in the form of an event scheme graph, which is
finally transformed into a system net via arranging FSRs.

when the state comes to a fresh situation. The loops in
schemes, like ‘MOVE-BROWSE’ in this example, might
occur repetitious in an event leading to infinite possible rou-
tines. In some cases, the infinite routines can be represented
by the combination of other existing routines. For exam-
ple, the routine ‘MOVE-BROWSE-MOVE-BROWSE’ of the
scheme falls to the former case since it is the connection
of two ‘MOVE-BROWSE’s which is already an independent
routine. Then, the combinatorial sequence will be discarded
since the designed framework is capable of recognizing the
event through sub-routines. For the other case where the
infinite routines cannot be represented through combina-
tions, our solution is to cover the common pattern with high
probabilities.

After that, each independent and complete routine will be
transformed into an FSR. As a 1-bounded elementary system
net which designed for single target, the marking of our
event models is exactly the place where the only token stays.
In practice, that is exactly the state of the target. The step,
which is also the transition condition in system net, is hence
matching the new situation. When the situation meets the
requirement in a frame, the state change happens. The initial
marking is donated as ‘Start’ for the unknown start upon the
appearance of the target. The final marking which might be
lots of is event end is short as ‘EE’ in the figure. Note that
markings in the ‘FSRs’ block are not shown in the formal
format of the Petri net as they are not shown in the names of
places. Since places could be repeated in routines, their labels
are omitted in the reasoning stage tomagnify the steps and the
network structure.

Finally, the single event model will be generated using
the backstepping algorithm since the inference machine is
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a 1-bounded system net. Places, transitions, and arcs are
produced from the markings and steps of FSRs.When a place
corresponds to the end marking in an FSR, the place is deter-
mined as an end place drawn in bold circles. As aforemen-
tioned, ε inside rectangles donates for cold transitions. The
cold transitions ensure automatical checking of finite sequen-
tial runs whose end place still have subsequent branches. For
details of the system net model for the proposed single event
model, please refer to Section III-B. Besides, a token will be
put into the place ‘Start’ when the target appears.

B. SINGLE EVENT MODELING: TRAINING DATASET
While prior knowledge can generate routines, they are lack
of real-world cases with enriched information. A video clip
includes details from the low-level features like trajectory
attributes to high-level semantic features per frame for each
target. Additional information enhances the discrimination of
the reasoning machine as more conditions can be supplied.
When a training dataset is exploited together with the event
scheme, it automatically provides these manual routines with
clip examples and verifies the prior knowledge in turn.

Rather than modeling directly from videos, the training
dataset is further segmented into training clips according to
the event label of a target. In single event modeling, the train-
ing clip of an object is consecutive frames which owns the
event label to be learned. That is, each training clip describes
a single object continuously conducting an event ek . These
training clips with multi-level features generated from the
pipeline in Fig. 1 will further be exploited for two effects: one
is to extracted implied FSR to gather possible routines of the
event, the other is to provide the FSR with real-world clips.
The latter connection supplies the event model with enhanced
discriminative ability. To be consistent with the prior knowl-
edge solution, only semantic features are exploited in a single
event model.

To support both situations that prior knowledge is
given or not, the handling of training clips is separated into
two stages. At first, they are extracted into FSRs and then a
unified system net is built upon. Hence the representations
are identical to the prior knowledge solution where the step
of FSR denotes the matching of semantic features in the
following state.

The method for the first stage is proposed as Algorithm 1
which extracts FSRs from the training dataset. It assumes
the existence of prior knowledge. When FSRs determined
by prior knowledge are absent, it still works with leaving
the input PK blank. As it searches over all the frames in
training clips, the complexity is linearly correlated to the
number of observations in training clips. Let the number of
training clips for event ek be Nk and the number of frames in
clip TCi be Frki, the computational complexity of extraction
stage in Algorithm 1 would be O(

∑Nk
i=1 Frki). Denote the

number of FSRs in FSR set for TCi as Rki, the complexity
of FSR repetition checking stage varies from 1 to Rki. Hence
the computation complexity in this stage would be a value

Algorithm 1 FSR Extraction
Input: PK : FSRs of ek determined by the prior knowledge

TC : Training clips of objects conducting the event ek
Output: FSR: complete FSRs of ek
1: FSR = PK //Initialize FSR using prior knowledge
2: for every clip TCi of TC do

// Extract steps of routine in current clip
3: Initialize empty SR, stepID = 1
4: for each frame in TCi do
5: if initial frame then
6: SR(stepID) = TCi(1).sf ()
7: else if FireCheck(TCi(CRT ))) then
8: stepID++
9: SR(stepID) = TCi(CRT ).sf ()
10: end if
11: end for

// Check the repetition of current routine
12: APflag = [] // initialize the repetition flag
13: for each FSR FSRm in FSR do
14: if IdenticalSR(FSR.Steps(m), SR) then
15: APflag = [APflag,m]
16: end if
17: end for

// Check repetition flag and update
18: if isempty(APflag) then

// Create a new FSR FSRnew
19: FSR.Steps(new) = SR
20: FSR.Clips(new) = [i] //add clip i as an example
21: else
22: FSR.Clips(flag) = [FSR.Clips(flag), i] // Update

examples of the repeated routine
23: end if
24: end for

between O(Nk ) and O(
∑Nk

i=1 Rki), for the best and the worst
respectively.

For each training clip containing a concerned event, it is
divided into consecutive intervals with identical semantic fea-
tures inside and different semantic features from neighbors.
A new step of the current routine will be generated when a
new interval starts. In the proposed algorithm, CRT is short
for the current frame and sf () represents semantic features.
The output of function FireCheck(TCi(CRT ))) is a binary
flag. It is true if and only if the semantic feature of TCi(k)
is different from TCi(k − 1).sf ().
After that, each training clip is arranged into corresponding

routine composed of steps. Further, they are gathered to
merge identical routines. For each clip in order, the steps
of current clip is compared with existing FSR set. Given
two FSRs FSRa and FSRb, the binary flag of function
IdenticalFSR(FSRa,FSRb) is true if and only if the input
FSRa and FSRb :

1) length(FSRa.Steps) = length(FSRb.Steps) = N
2) ∀n = 1, . . . ,N , FSRa.Step(n) = FSRb.Step(n).
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Algorithm 2 Single Event Modeling
Input: FSR: FSRs of the kth event
Output: System net Nk for ek
1: Initialize empty N = (P,T ,F), τ , `, C
2: P0.Type = ‘Start ′, M0 = P0

// Construct Petri net structure
3: for each FSR(r) in FSR do
4: while step n ≤ length(FSR(r)) do
5: Set a token in P0
6: if FSR(r).Steps(n) ⊆ P·CRT then
7: Fire the fitting transition
8: else
9: T (new).condition = FSR(r).Steps(n)

10: Add a new place P(new) and corresponding arcs
11: Move the token to P(new)
12: end if
13: if n == length(FSR(r)) then
14: PCRT .Type = EPE
15: PCRT .Clips = FSR.Clips(CRT )
16: Clear the token
17: end if
18: end while
19: end for

// Generate cold transitions τ
20: for each place fitting ‘P.Type = EPE ′ do
21: if exist(P·CRT ) then
22: P·CRT .Label = ε
23: end if
24: end for

When an identical routine is found in existing FSRs,
the clip is added as a new example of this FSR. If not,
a new FSR is built in the FSR set and this clip is
also attached. After this procedure, the output FSR is a
structure including complete FSRs and attached clips for
each FSR.

In the second stage, the system net for a single event is
modeled based on the FSR using algorithm 2. It construct the
system net for a single event for all its FSRs. Let the number
of FSRs for event ek be Rk and the number of steps in FSR(r)
be Lkr , the computational complexity of Algorithm 1 would
be O(

∑Rk
r=1 Lkr).

Note that the event model together with specific termi-
nation mechanisms is the reasoning machine in proposed
framework. Two special types of place are determined in
the proposed single event model: initial place P0 and end
place of event (EPE), which are labeled with ‘Start’ and ‘EE’,
respectively. Upon appearance, the tracked object will be
modeled as a token in the initial place of this system net. It is
an instant state as immediately the connected transitions P·0
will be checked leading the movement of the token into other
places. A place will be determined as an EPE if and only if
it represents the final state of an FSR. Refer to Definition 4,
transitions in EPE · are cold transitions.

The reasoning termination of a single event model is
caused by three factors: the disappearance of the tracked
target(including the termination of testing video), the end
of the event and any unexpected step. For a token staying
in p, the unexpected step occurs when a fresh step that is
different from any transition in ·p ∪ p· happens. Note that
·p is the transition leading to the place p hence implying the
occurrence of an unchanged state while p· is transitions that
directly connect p with following places which result in the
change of state into a certain predefined state of the single
event model. If any termination condition happens when the
token stays in an EPE, the current routine fits an independent
FSR of the event hence frames of this reasoning interval (clip)
will be assigned as this event. If not, the routine mismatches
any existing FSRs and will be determined as not the event.
After termination of the inference process, the current token
will be reset and the ‘Event Out’ transition in Fig. 2 will be
triggered.

C. MULTI-LEVEL FEATURE BASED
MULTI-EVENT MODELING
Several system nets of single events cannot integrate into a
multi-event model directly because of event conflicts. Event
conflict happens when clips share identical FSRwhile having
different event labels. In the view of the Petri net, a place
would be EPE for multiple events. When a testing clip ended
here, the reasoning machine cannot decide which event ought
to be the ground-truth from multiple event labels of this
EPE. Confronted with event conflicts, corresponding clips of
each event provide additional features to train a classifier to
determine the event label.

The proposed method of multi-event model construction
from single event models is presented in Algorithm 3. To the
best of our knowledge, this approach has not been exploited
before for the application of the classification technique in
high-level event modeling. Besides initial place and EPE,
Conflict Place of Event (CPE) is added in the multi-event
model to address the event confliction. After the system
net with uncertainty is preliminarily composed, the EPEs
with more than one event labels are CPEs. The low-level
features of clips are gathered as predictors while its event
labels are recorded as the response. With the predictor and
response, the classifier attached to a CPE is trained. The
construction of these classifiers is explained in next para-
graphs of this section. Therefore, the information in low-level
features that hasn’t been extracted by knowledge representa-
tion is organized as a supplement. They form an additional
semantic feature via classification when needed. They are
not used when the sematic features are capable of event
modeling. After the formation of the classifier attached to
the CPE, additional transitions and places are introduced
with the same number of event labels contained in it. The
type of newly added place is EPE and each place owns
an event label previous contained in the CPE. The condi-
tions of newly added transitions are the classification results
correspondingly.
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Algorithm 3Multi-Event Modeling
Input: N : System nets of events N

FSR: finite sequential runs of events
Output: ISN : Integrated system net for multi-event recogni-

tion

// Construct a system net with uncertainty
1: for each event ek of interest do
2: if k == 1 then
3: ISN = N
4: Continue
5: end if
6: for each FSR(kr) in FSR(k) do
7: Add a token in P0
8: for each step FSR(kr).Steps(n) do
9: if Last Step then

10: PCRT .Type = EPE
11: PCRT .eventID = [PCRT .eventID, k]
12: PCRT .Clips.eventID = PCRT .Clips
13: Clear the token
14: Continue
15: end if
16: if FSR(kr).Steps(n) ⊆ P·CRT then
17: Fire fitting transition
18: else
19: Add T (new) = FSR(kr).Steps(n)
20: Add P(new) and corresponding arcs
21: Move the token to P(new)
22: end if
23: end for
24: end for
25: end for

// Modify the uncertainty in net structure
26: for each place fitting length(P.eventID) > 1 do
27: L = length(PCRT .eventID)
28: Initialize an empty training dataset TC
29: Add T (New1) · · · T (New(length(PCRT .eventID)))
30: Add P(New1) · · ·P(New(length(PCRT .eventID)))
31: for each column in PCRT .eventID do
32: TC(new).Label = PCRT .eventID(CRT )
33: TC(new).Clips = PCRT .Clips.eventID
34: T (New(CRT )) : Class = PCRT .eventid(CRT )
35: Add arc: P(CRT ) to T (New(CRT ))
36: Add arc: T (New(CRT )) to P(New(CRT ))
37: end for
38: Train the classier attached to PCRT using TC
39: end for// Generate cold transitions τ
40: for each place fitting ‘P.Type = EPE ′ do
41: if exist(P·CRT ) then
42: P·CRT .Label = ε
43: end if
44: end for

To explain the solution intuitively and simply, people mov-
ing inside a shopping mall might be explained as either

FIGURE 4. Example clips of CPEs and their trained decision trees
correspondingly. Circles in the same color donate for trajectories of a
single event type. 100 frames since the last step of the clip are selected as
predictors of the decision tree while corresponding event IDs are
recorded as labels of classification results.

‘walking along the hallway’ or ‘entering a shop’. For the
two events, their FSRs are the same with only step ‘moving’.
Hence the system net cannot distinguish the truth event given
a new clip with such routine. Now, if we gather the locations
in training clips of the two events and train a classifier.
The trained classifier can determine the boundary of events
automatically. Given region subset A as the range of locations
belongs to ‘walking’ while region subset B as the range of
locations belongs to ‘shop enter’, wemay determine the event
label of a new clip with the help of this classifier. Intuitively,
subset A semantically belongs to the hallway while B belongs
to areas around the shop doors. If the locations of this new
clip belong to subset A, then it should be ‘walking’. Two
detailed examples are depicted in the first row of Fig. 4. Each
subfigure plots the observations of a CPE. They are drawn in
small circles with different colors indicating corresponding
event labels.

In the proposed reasoning machine, the classification of
an event in the CPE is automatically realized through the
decision tree technique. To cooperate with real-world situa-
tions, only features in the early frames of current state, that
is, frames after the last transition are gathered as predictors
of the observation. Each observation shares the same weight.
The cost during the training stage is a square matrix, where
the rows and columns are responses. COST (I , J ) is the cost
of classifying a observation into class J if its true class is I.
COST (I , J ) = 0 if I = J , and COST (I , J ) = 1 if I 6= J .
That is, any misclassification is equally punished. The split
predictor in each node is chosen by maximizing the gain in
the split criterion over all possible splits on all predictors. And
Gini’s diversity index is selected as the split criterion. In the
following experiment, there is no limitation for the maximum
split number. To enhance the robustness, two numerical val-
ues are predefined for the minimum observation size of the
parent node and leaf node. Hence, the splitting process is
stopped when any of the following condition is hold:
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TABLE 1. Transition list for single event models in Fig. 5.

1) The node is pure. That is, the mean squared error (MSE)
for the observed response in this node drops below the MSE
for the observed response in the entire data multiplied by the
tolerance on quadratic error per node.

2) The node has fewer observations than predetermined
parent node size or any split imposed on this node procures
children with fewer observations than predetermined leaf
node size.

Algorithm 3 is made up of two stages: the construction of
system net with uncertainty and the modification of CP using
the decision tree technique. The computational complexity
of the first stage depends on the number of FSRs for all the
event. Let the number of concerned events be K , the number
of FSRs for event ek be Rk , and the number of steps in
FSRkr , maximin of its computational complexity would be
O(

∑K
k=2

∑Rk
r=1 FSRkr ). The complexity of the second stage

is determined by the number of conflicted places and the
decision tree constructions. When a decision tree grows, all
dimensions of features are candidate for split condition. Let
the number of CPs beM , the sample number for CPm be Sm,
the dimension of features be Q, the depth of decision tree
attached to CPm beDm, and the number of parent nodes be P,
the computational complexity of the second stage would be
O(

∑M
m=1 Sm ∗ Q ∗ Dm).

The reasoning termination of a single event model is
caused by three factors: the disappearance of the tracked
target(including the termination of testing video), the end of
the event and any unexpected step. For a token staying in p,
the unexpected step occurs when a fresh step that different
from any transition in ·p ∪ p· happens. If any termination
condition happens when the token stays in an EPE, the current
routine fits an independent FSR of the event hence frames of
this reasoning interval (clip) will be assigned as this event.
If not, the routine mismatches any existing FSRs and will be
determined as not the event. After termination of the inference
process, the current token will be reset and the ‘Event Out’
transition in Fig. 2 will be triggered.
The system net for multi-event recognition shares the

same termination factors with that of the single event model.
If the termination happens on EPE or naive places, the deci-
sion mechanism remains identical. When the termination
happens on CPE, additional operations are introduced. The

features of the first frame when the token reaches the CPE
are given to the attached decision tree. Its classification
result will trigger an existing transition resulting in the
movement of the token from this CPE to a neighbor EPE,
whose event label will be determined as the event during this
interval.

IV. EXPERIMENTAL RESULTS
In this section, experimental results are presented to verify
the performance of the proposed event recognition method.
Results of methods in the published literature [1] and [5] are
chosen as comparisons.

The CAVIAR (Context Aware Vision using Image-based
Active Recognition) dataset [24] covers the potential events
that can occur in a shopping mall surveillance context.
It defines a strict semantic hierarchy of events. In the
CAVIAR ground truth, high-level semantic descriptors
including movement, role, situation, and context are assigned
to each object for every frame. Besides, low-level features are
also written, including location and size information. Each
clip is recorder from two different points of view. The first one
shows a view of the corridor, while the second shows a frontal
view of the scenario. Choosing the corridor as the scene,
the training dataset includes 24 videos whose length ranging
from 11 seconds to a fewminutes and is further separated into
246 clips according to rules in Section III-B.

Context can be described as the overriding semantic pur-
pose of the object in question. Therefore, the context is chosen
as the ground-truth of event label as other literature [1], [5]
did. The situations and locations are semantic features and
low-level features respectively, which composed into the
multi-level features under the proposed framework.

A. RESULTS ON SINGLE EVENT MODELING
The system nets for single event recognition built from the
training dataset are depicted in Fig. 5. Each context in the
dataset is treated as a type of event. Start places are those
with a token while EPEs are drawn in bold circles with
various colors. The transition conditions are written beside
the rectangle transition boxes. As aforementioned, the situ-
ation is the only feature exploited in single event modeling.
Hence these abbreviations omit ‘Token. situation = ’ to fit
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FIGURE 5. Single event models produced by algorithm1 and algorithm2.
The transition conditions are given in Table 1.

the figure space. For example, the label ‘browsing’ is ‘Token.
situation= browsing’ in short, which represents the transition
will be fired if the token located in its previous place comes
to a frame with transition ‘browsing’.

We may find that duplicate finite sequential runs exist in
different eventmodels. Hence single eventmodelmerely built
on situation information would mistake other events whose
FSR is identical to its branch resulting in lots of false posi-
tives. The performance of single event recognition is obtained
via checking clips using every single model.

As shown in Table .2, false positives exist in six of the
seven types. The perfect precision and recall of event ‘shop
reenter’ is realized because the only FSR it occupies is unique
and does not arise any collisions with others. A severely
sharing routine is that of the ‘Walking’ event, which contains
an object with only a ‘moving’ situation in the sequence.
The sharing events ‘Walking’, ‘Shop Enter’, ‘Browsing’ and
‘Shop Exit’ are all effected in precision. At the same time, all

FIGURE 6. The multi-event model produced by algorithms 1 to 3.
Transition conditions are given in Table 3.

the positive events are recognized correctly since their recalls
are exactly 100%. Hence it proves that the proposed single
event model can recognize events based on the semantic
feature.

B. RESULTS ON MULTI-EVENT MODELING
In the following experiments, we simply apply the
2-dimension location as the predictor of the classifier as it is
already sufficient for the experimental dataset. Further, only
a few frames since the last step are exploited in the training
stage. The decision tree determines the event label according
to the location of the first frame in the last step.

After single event modeling, the multi-event model can
be realized via Algorithm .3. The system net of the training
dataset is shown in Fig. 6. All the concerned events can be
recognized with this model. Those filled circles represent
the CPEs and bold circles represent EPEs. The transition
conditions are depicted in Table 3. The transition number is
the same as its posterior place t•. And the ‘Token. LocClass’
stands for the classification result of the decision tree attached
to its previous place.We use the location of the tracking object
on the first frame of the last step as the input of the decision
tree. And the decision tree is attached to the previous CPE of
the transition.

The performance of the model is shown in Table 4. There
is only one mistake in all the 246 predictions. An event
whose ground-truth event is ‘Walking’ is recognized into
‘Shop Exit’. That lead to the flaw in the recall of ‘Walking’
and precision of ‘Shop Exit’. The false prediction is made
by the decision tree attached to place P1 since the initial
location of the clip is mixed with other shop exit locations.
Compared with Table. 2, huge improvement happens to the
false positives. That verifies the effectiveness of the proposed
framework. Those event conflicts between ‘Windowshop’
and ‘Browsing’ are completely handled via several decision
trees. Two types of the four conflicted events in the CPE
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TABLE 2. Performance of single event models in Fig. 5.

TABLE 3. Transition list for the multi-event model in Fig. 6.

TABLE 4. Performance of the multi-event model in Fig. 6.

TABLE 5. Recognition performance comparison of multi-event models.

P1 can be perfectly recognized. Besides, additional loca-
tion classification can be easily checked by human operators
through intuitive plots. In [1], semantic location information
is introduced while still underperform.

C. COMPARISON RESULTS ON EVENT RECOGNITION
In Table 5, the performances of other Petri net-based event
recognition methods on the experimental dataset are given
together with that of the proposed method. In [5], the models

of SE-Tree and ME-Tree allocate probability to the transition
between places to realize event reasoning while this paper
solves the uncertainty in reasoning via additional low-level
features. Comparedwith themanual eventmodel orME-Tree,
our model can be constructed automatically via proposed
algorithms as well as easily interpretable. Besides the per-
fect performance on events owning a unique step sequence,
those conflicted events are solved better with the proposed
model. Confronted with identical the routine in ‘Browsing’
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and ‘Windowshop’ which cannot be solved by [5], we sep-
arate them thoroughly using the automatic classification of
location information. And this solution is interpretable and
reasonable. The location feature automatically supplies the
deficiency of the semantic feature.

V. CONCLUSION
We present a framework for multiple event recognition in
surveillance videos that exploit multi-level features. Exper-
imental results demonstrate that the reasoning machine auto-
matically generated by presented algorithms outperforms
other Petri net models in both precision and recall. In terms
of event contexts, more branches are formed using the FSR
centered strategy that captures more routines of events in a
natural way.

The combination with the decision tree technique provides
an effective and intuitive solution to event conflicts. Observa-
tions and the trained decision tree can be shown to operators
which is more interpretable and comprehensible compared
with other extended Petri net models.

Besides, we provide an approach that constructs the model
from documents of events in case the absence of concerned
events in the training dataset. This is significant for the recog-
nition of rare events in real-world applications, particularly
anomaly detection tasks. High-level applications of video
analysis require high accurate low-level techniques includ-
ing object detection and tracking. Hence the lack of auto-
matic and effective knowledge representation methodologies
impede the further development of high-level applications.
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