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ABSTRACT Increasingly energy and environmental crises put forward higher request on diesel engine.
It promotes the development of diesel engine, while the complexity of structure is much higher, which leads
to higher probability of faults. In order to recognize the states of engine in harsh environments effectively,
variational mode decomposition (VMD) and expectation maximization (EM) are introduced into this paper
to analyze multi-channel vibration signals. To select the decomposition level of VMD adaptively, a novel
power spectrum segmentation based on scale-space representation is proposed for the optimization of VMD
and results show this approach can discriminate different frequency components in high noise circumstance
accurately and efficiently. To improve the adaptability and accuracy of EM, a feature selection approach
based on genetic algorithm (GA) is introduced to preprocess original data and a cross validation method
is used for selecting cluster number adaptively. Combined with these approaches, a diesel engine state
recognition scheme based on multi-channel vibration signals using optimized VMD and EM is proposed.
Compared with existing method, this scheme shows great advantages in accuracy and efficiency, and could
be applied in actual engineering.

INDEX TERMS Diesel engine, vibration, pattern recognition, variational mode decomposition (VMD),
expectation maximization (EM).

I. INTRODUCTION

As a frequently used power source, diesel engines are being
widely employed in industry, agriculture and some special
industries because of the advantages of low fuel consumption
and large output torque [1]. With increasingly energy and
environmental crises, a large number of laws and regulations
for diesel engine have been enacted in many countries, which
greatly promotes the development of new technologies such
as turbo charging, high-pressure common-rail fuel system,
electronically controlled fuel injection system, variable valve
timing (VVT) and exhaust gas recirculation (EGR) and so
on [2]. While the new technologies improve the performance
of diesel engine significantly, complex structure increases the
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probability of failure. As one of the main parts in mechanical
system, engine may lead serious security incidents under
failure, so fault detection is an important research direction
at present.

In order to ensure normal operation, fault detection sys-
tem should recognize failures in early stage and issue a
warning timely. So engine fault detection strategy develops
from regular and disassembling diagnosis to real-time and
non-disassembly diagnosis [3]. When developing the strat-
egy, direct signal, such as rotational speed, temperature and
pressure, is a traditional choice. For example, Xu et al used
shaft instantaneous angular speed to extract characteristic
parameters in order to detect misfire [4]. Although the direct
signal is simple, it can hardly deal with other common faults
such as mechanical failure and wear. To detecting various
faults, some real-time acquiring indirect signal, such as noise
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and vibration, is being a promising method, in which the
vibration signal is a research focus because of easy measure-
ment, low cost and strong robustness. For example, Jing et al
analyzed vibration signals from cylinder head and detected
valve clearance fault by it [5], Ftoutou er al used vibration
signals to make research on fuel injection faults [6].

Owing to complex structure, so many vibration sources
exist in engine that there is much noise in vibration sig-
nals. A number of signal processing algorithms have been
researched to overcome this problem such as wavelet trans-
form and empirical mode decomposition (EMD). Moosa-
vian et al analyzed the performances of different mother
wavelets and used wavelet transform to denoise vibration
signals [7], Ma et al mixed wavelet transform and EMD
to analyze vibration signals in order to diagnose abnormal
combustion in engine [8], Li ef al detected abnormal clear-
ance between contacting components using EMD [9]. How-
ever, the wavelet transform used for signal decomposition is
generally binary discrete wavelet transform (DWT), which
just decomposes signals in Fourier spectrum mechanically.
Moreover, wavelet basis has a great influence on decom-
position while there is no definite conclusion on how to
choose it. As an adaptable method, the EMD is built based
on recursive model, which results in low robustness and mode
mixing [10], [11]. In 2013, Gilles proposed empirical wavelet
transform (EWT), which can build adaptable wavelet filter
to extract components [12]. For the problem that meaningful
modes should be pre-detected to provide necessary param-
eters for the wavelet filter, Gilles et al proposed a param-
eterless scale-space approach to overcome it [13], which
improved the EWT and promoted its application in faults
detection such as Wang et al used EWT analyzed the fault
features of industrial bearing through vibration signals [14].
However, the problem of wavelet basis is still unresolved.
Besides, the process of building wavelet filter is complex
and the performance of filter is no guarantee of the best.
In 2014, Dragomiretskiy et al proposed variational mode
decomposition (VMD) based on variational model, which is
an essentially adaptable Wiener filter bank and it is equating
to the best filter under certain conditions [15]. The VMD
has been used in faults detection for rotating machinery and
showed great potential [16]. However, decomposition level
in VMD should be determined manually, which increases the
complexity and uncertainty. Fortunately, the parameterless
scale-space approach also has ability to provide parameters
for VMD. So the method is optimized to combine with VMD
in order to build a better filter.

Although a lot of successes have been achieved in
the diesel engine condition recognition and fault diagno-
sis based on time-frequency analysis, feature extraction
and pattern recognition of single channel vibration signal,
there are still some problems need solving. Firstly, in some
harsh environments, unpredictable signal interference may
lead to the misinterpretation of recognition rate. Secondly,
every feature parameter has different sensitivity to different
working states, which results in some features or feature
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combinations may not identify the working state effectively in
certain case [17], [18]. For these reasons, multi-sensor infor-
mation fusion technology is gradually attached the weight of
researchers. Multi-sensors information resources can be fully
and effectively utilized through data fusion method to gain
the greatest resources of system under test in different view
angles [19]. However, the increase of features has a negative
impact, such as information redundancy and complex data
processing on classification, and even reduce the recognition
rate [20]. Accordingly, it is necessary to reduce the feature
dimension by removing redundant and irrelevant features in
order to improve classification efficiency and accuracy. Fea-
ture selection is a challenging task, especially for hundreds
or thousands of features sub sets, in which genetic algo-
rithm (GA) is a classic method to improve the searching effi-
ciency. Stefano et al proposed an improved filter-based GA
to search feature subsets with high discriminative power [21].
Mohammadi et al presented a methodology which can search
and select a set of closure relationships for given experimen-
tal based on GA to minimize the error between measured
and predicted pressure gradient [22]. Gangavarapu et al,
used GA to optimize the subspace ensembling process of
high-dimensional biomedical datasets feature subspaces [23].
The performance of GA highly depends on the selection of
fitness function. However, various subsets of dataset may give
best results with a different function [24].

Feature selection is a preprocessing technique for classi-
fication algorithm [25], [26]. X-means clustering algorithm
is an extending K-means with efficient estimation of the
number of clusters. It goes into action after each run of
K-means, making local decision about which subset of cur-
rent centroids should split themselves in order to better fit
the data. The splitting decision is done by the Bayesian
information criterion (BIC) [27], and the numbers of clusters
are computed dynamically within preset lower and upper
bound [28]. X-means algorithm has a good effect on process-
ing low-dimensional dataset, while its performance on high-
dimensional dataset is unstable. Expectation maximization
(EM) algorithm based on Gaussian mixture model has been
being widely used due to its stability and simplicity [29].
Zhao et al proposed an improved EM algorithm for fault
detection of air conditioning system [30]. Chen et al put
forward an adaptive Gaussian mixture model to deal with
the dynamic working process of rotating turbine engine disk,
which improved the adaptability of fault detection model to
turbine engine disk [31]. Tapana et al evaluated the perfor-
mance of various clustering techniques and results showed
that the EM clustering algorithm is the most effective and
robust method for unlabeled data classification [32]. How-
ever, the conventional EM algorithm cannot choose the num-
ber of clusters adaptively and need to specify the number of
clusters as an input parameter.

The paper is organized as follows: section 1 introduces
the research background and significance, section 2 gives
algorithms details, the experiment is described in section
3, the optimized VMD is proposed in section 4, analysis
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and contrast of experiment result by a novel approach based
on EM are shown in section 5 and conclusion is given in
section 6.

Il. ALGORITHM THEORIES
A. VMD THEORIES
The goal of VMD is to decompose input signal f into several
modes, uy, i.e. intrinsic mode functions (IMFs), which are
supposed to have specific sparsity properties and limited
bandwidths. The IMFs are also assumed to be mostly compact
around a center frequency, wy [15].

Firstly, the u; is processed by Hilbert transform to get
unilateral frequency spectrum:

1
Huy, = —p.v./ Mk(v)dv =
T t—v
R

where p.v is Cauchy principal value, § is Dirac distribution,
* represents convolution and j2 = -1k €[1,2,...,K],
where K is the decomposition level in VMD, i.e. the number
of IMFs.

Next, an estimated center frequency, &1 is mixed to shift
the unilateral frequency spectrum into baseband:

B= [(5@) + i) ¢ uk(z)} e Jont )
Tt

(w) + i) sur®) (D)
Tt

Bandwidth can be computed by squared L2-norm of the
gradient. Meanwhile, all of the IMFs can restructure the input
signal f. Based on that, a constrained variational model can

be obtained:
j ' 2
min 0 |:(5(t) + —) * uk(t)i| eIkt ,
{ur ) {cor } 7 Tt 2

st. Y w=f A3)
k

where {u} = {ug,up, -+ ,ug} and {wr} =
{wi, wy, - -+, wg} are all IMFs and their center frequencies,
K

respectively. Z > is the summation of all IMFs.
k=1
In order to solve the constrained variational model,

Lagrangian multipliers, A, and quadratic penalty «, are intro-
duced to shift the model into unconstrained. A and o are
two classic ways to solve variational problem. The « is used
to enforce constraints strictly and it can be ignored at low
requirements for constraint. The « is used to balance the data-
fidelity constraint especially in high Gaussian noise condition
and it is inversely proportional to the noise level in data based
on Bayesian prior. The unconstrained variational model is:

L ({u}, {ox}, ) :
Y [(5 (1) + i) * U (t)] e Jekt
wt 2

2
+<A (), f (1) — Zuk (t)> 4

2 k

2

+{f O=) @
k
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Based on Parseval / Plancherel Fourier isometry, it can be
solved as:

An+1 J? (w) — 217&1{ u; (w) + A(w)
(@)= 1+ 20 (0 — wg)? ©)
}o u; (a))‘ dw
o (@) = S—— ©)
i ( (w)) do
0

~n+1

A (w)=Xn(w)+r((w) Zu (w)) (7

where n is the number of iterations, t is time-step of the dual
ascent and it is set as 0, i.e. taking no account of A in this
paper.

Based on that, IMFs can be obtained by alternate direction
method of multipliers (ADMM). The process of VMD is:

@ Initialize {uk }, {wk} A and n.
@ Compute uy, wy and A based on equation(5), (6) and (7)

through ADMM.
® During the iteration in step @, results can be obtained
+1 .
when stopping condition ), ‘ uz — uk < ¢1is

met, where ¢ = 10~ 7 in general.

B. GENETIC ALGORITHM BASED FEATURES SELECTION
GA is a method to solve optimization inspired by biolog-
ical processes of mutation, natural selection and genetic
crossover, which is also a powerful feature selection tool,
especially for feature set with large dimensions

The basic genetic operators of GA are selection, crossover,
and mutation [33].

1) SELECTION
Selection is based on individual fitness and influences its abil-
ity to reproduce into the next generation [34]. The probability
of selecting individual #; is determined by (8):
F(hy)
h) = ————— 8

p(hi) 7 F ®)
where F'(h;) is the fitness value of &;. The probability that an
individual will be selected is proportional to its own fitness
and is inversely proportional to the fitness of the other com-
peting hypothesis in the current population.

2) CROSSOVER

Select two chromosomes than have high fitness values from
the current population, exchange some bits of them and copy
them into the new population. The location of these bits are
random.

3) MUTATION

Select one chromosome that has a high fitness value from the
current population, alter some bits of it and copy it into the
new population [35].

33547



IEEE Access

X. Bi et al.: Engine Working State Recognition Based on Optimized VMD and EM Algorithm

C. EXPECTATION-MAXIMIZATION ALGORITHM FOR
GAUSSIAN MIXTURES
Given a Gaussian mixture model, the goal is to maximize
the likelihood function with respect to the parameters com-
prising the means and covariances of the components and
the mixing coefficients. The main processes are shown as
follows.

@ Initialize means puy, covariances X and mixing coeffi-
cients mx, and evaluate the initial value of log likelihood.

@ E step: Evaluate responsibilities based on current
parameter values.

) = ZkN(xnIMk, Zx) ©)
lﬂjN(xnIMj, %)

J

® M step: Re-estimate the parameters based on current
responsibilities

N
1
Mzew = ]vk Z ¥ (Znk)Xn (10)
n=1
X
5=y D v @) 0o — )0 — )" (1)
n=1
Ny
new - = 12
b4 N (12)
where
N
Ne= 3 y(aw) (13)
n=1

@ Evaluate the log likelihood:

N K
Inp(X|p, £, 7) =) In {an/v<xn|uk, zk>} (14)
= k=1

n=1

Check for the convergence of parameters or the likelihood,
and return to the Step @ if the convergence criterion is not
satisfied [36].

EM assigns probability distribution belonging to certain
cluster for each instance.

Ill. EXPERIMENT

In order to research the approach of engine faults detection,
author team built experiment system and designed experi-
ment project. The experiment system consists of vibration
testing and engine bench, as shown in Fig. 1. The engine
bench system includes experimental engine and electrical
dynamometer. The electrical dynamometer is manufactured
by AVL List GmbH. The experimental engine is a turbo
charged in-line 6-cylinder diesel engine and its parameters
is listed in Table. 1.

The engine faults were designed and simulated on this
bench test. Statistically, injection mechanism (27.0%), water
leakage (17.3%) and valve and its seat are the most frequent
faults in diesel engine [3]. Among these, water leakage gen-
erally leads to high water temperature, which can be easily
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FIGURE 1. Experiment system.

TABLE 1. Parameters of the experimental engine.

Items Parameters
Displacement 7.14L

Firing sequences 1-5-3-6-2-4

Rated power 220kw@2300r/min

Maximum torque 1250Nm@1200r/min-1600r/min

FIGURE 2. Engine bench test. (a) Bench test. (b) Vibration testing system.

identified by instrumentations. So, the rest two faults are the
main research objects in this paper. The inappropriate valve
clearance is mainly manifested in valve and its seat fault
caused by assembly error or abrasion, for which big and small
valve clearances are researched. The injection mechanism
fault is complex, and it is divided into injection timing and
rail pressure in this paper.

Vibration testing system includes acceleration sensors,
data acquisition and processing system. During engine oper-
ation, cylinder explosion pressure and valve bounce have a
direct impact on cylinder head, so the acceleration sensors are
placed on cylinder head cover to collected vibration signals
with high signal-to-noise ratio (SNR) and rich information,
as shown in Fig. 2. Main parameters of testing equipment are
listed in Table 2.

Considering that the characteristic frequency of engine
fault is below 10 kHz, sampling frequency is set as f; =
25.6kHz. The experiment simulates the failure of valve
gap, different rail pressure parameters and different injec-
tion timing. Speed conditions are selected as 1600r/min and
2100r/min, load condition and other operating parameters
setting are shown in Table 3.
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TABLE 2. Main parameters of testing equipment.

Testing equipment Model

Data acquisition front-end LMS SCMO05
Vibration sensor PCB 621B40
Laptop computer ThinkPad T530

TABLE 3. Operating parameters setting.

Injection timing  Rail pressure Valve clearance

(50% load) (100% load) (100% load)

3°CA 1000bar Increase (0.5-0.6)
5°CA 1100bar Normal (0.4-0.5)
7.5°CA (N) 1200bar Reduction (0.3-0.4)
10°CA 1340bar(N)

Where the valve clearance ‘(0.4, 0.5)’ means that the inlet
valve clearance is 0.4 mm, the exhaust valve clearance is
0.5 mm, and so does the rest; tag ‘N’ means normal operating
state parameter.

IV. SIGNAL DECOMPOSITION APPROACH BASED ON
OPTIMIZED VMD

The decomposition level K in VMD should selected manu-
ally, which increases complexity and subjectivity. An unsuit-
able K could results in over or under decomposition and
influences the accurate of subsequent analysis. To solve this
problem, spectrum segmentation is introduced to optimized
VMD.

A. OPTIMIZED VMD BASED ON FOURIER SPECTRUM
SEGMENTATION
Gilles et al proposed a spectrum segmentation approach to
detect meaningful modes for EWT [13]. VMD is a better
filter and the selection of decomposition level K is essentially
detecting meaningful modes. The spectrum segmentation
approach is optimized to build VMD filter in this section.
Suppose the Fourier spectrum function of f is F(x). g(x) =
;e_xz/ 2t is a kernel function, where ¢ is scale parameter.

V2wt i .
A scale-space representation of F(x) is

L(x,t)=g(x;t) % F(x) (15)

where * represents convolution.

The number of minima with respect to x of L(x, ) is a
decreasing function of the scale parameter #, and no new
minima appear as ¢ increases. Every minima corresponds to
a curve in scale-space, and the length of curve is L;. When
decomposing signal with VMD, selecting decomposition
level can be transformed into finding boundaries delimiting
consecutive modes that is finding local minima in Fourier
spectrum. Based on scale-space representation, this problem
is equivalent to find curves which meet a certain threshold.

The threshold is selected by the principle of histogram.
Firstly, sort the curves of local minima in ascending order by
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their length and obtain Ls,y = {L1, Lo, --- , Ly}, where M
is the number of local minima. Next, suppose A = LML—;L‘
and Linreshold = Ly — nA, where n is a positive integer
less than Lys. Finally, decrease the n one by one until the
proportion of L; € [Lyreshoids Lar] to Lsort is just less than
1/M, and the Linreshold 1S taken as final threshold. Suppose
the number of boundaries is N, the decomposition level of
VMD is K = N + 1 through considering of frequency range
(i.e. [0, f5/2]).

Unlike EWT, VMD needs center frequencies, instead of
the boundaries, to build filter. The frequency at peak value
of every segment in Fourier spectrum is take as the center
frequency, and the K center frequencies can be obtained:
{wi, w2, -+, wg}. So the adjustment added to step @ in
VMD algorithm is:

Analyze input signal by spectrum segmentation approach,
set the decomposition level K, initialize the center frequency
{o}as{o1, w2, -+, wg).

The rest processes remain unchanged and the desired VMD
result can be obtained.

B. VERIFICATION WITH SIMULATED SIGNAL

To verify the advantages of the optimized VMD, a simulated

signal is selected to be decomposed by the VMD and the

EWT. The simulated signal is shown as equation (16).

s1

if1€[4.0x107%,1.9%1077]

ifre[2.7x1073,4.2x1073]

= 11101900 sin2r 1) ifte[5.1x107%,6.5%x1073]
100e(~12000 sin2n f17)  ifre[7.4x 1074, 8.9x1073]
0 else

s = 20sin(2wfrt)

s3 = 30sin(2nf3t)

s4=1

s=51+52+53+ 54

150e(=7900 sin(27 f11)
130209 sin(27f 1)

(16)

where ¢t € [0,0.01], fi = 6500, f, = 3000, f; = 10000,
n, i.e. s4, represents Gauss white noise of 25dBw. Sampling
frequency is set as 25.6 kHz.

Based on that, the simulated signal and its Fourier spectrum
are plotted as Fig. 3, in which the sy, 52 and s3 simulate peri-
odic impact component, low frequency sinusoidal component
and high frequency sinusoidal component,respectively.

Based on the scale-space segmentation approach,
the Fourier spectrum is segmented as Fig. 4. Special to note
is that the amplitude of Fourier spectrum is absolute value of
single-sided fast Fourier transform (FFT) instead of the real
value. The real value is calculated for the absolute value by
linear transformation, which means analyzing the absolute
value directly is a more efficient way.

As shown in Fig. 4, the Fourier spectrum segmentation
approach has ability to divide components with different fre-
quencies. Based on the segmentation result, VMD and EWT
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FIGURE 5. Decomposition result of simulated signal based on VMD.
(a) Time domain. (b) Frequency domain.

filters can be built and their decomposition results are shown
as Fig. 5 and Fig. 6, respectively. In the VMD decomposition,
the quadratic penalty is selected as o« = 2200 by data
analysis.

As shown in Fig. 5 and Fig. 6, VMD obtains better result
compared with EWT. For the result of VMD, the IMFs
are near to desired narrow-bandwidth original signals. For
the results of EWT, IMF1 and IMF2 contain much noise
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FIGURE 7. Decomposition result of EEMD. (a) Time domain. (b) Frequency
domain.

compared with the s, and s3 respectively, which are sinu-
soidal signals with single frequency (as shown in Fig. 3).
To explain the advantages of VMD, traditional decompos-
ing algorithms, ensemble empirical mode decomposition
(EEMD) and local mean decomposition (LMD) are employed
to decompose the simulated signal and the results are shown
in Fig. 7 and Fig. 8. There are 9 IMFs in the result of EEMD
and 7 IMFs in the results of LMD, and the first 5 IMFs in
each result are shown for the rest ones are obvious illusive
components.

As shown in Fig. 7 and Fig. 8, neither EEMD nor LMD
could decompose high frequency components completely,
which means s; and s3 cannot be distinguished. The band-
widths of IMF1 and IMF2 are so large that much noise exists
in them, which effects the recognition of faults badly. The
reason for this shortcoming is that EEMD and LMD are built
based on recursive model and have low robustness.

Because of low robustness, EWT, EEMD and LMD have
no advantages in decomposing signals with complex fre-
quency and high noise, such as engine vibration signals.
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FIGURE 8. Decomposition result of LMD. (a) Time domain. (b) Frequency
domain.

TABLE 4. Correlation coefficients between results and original
components.

Algorithms S1 $2 53
VMD 0.94 0.94 0.96
EWT 0.97 0.78 0.89
EEMD 0.87 0.66 /
LMD 0.88 0.73 /

In order to verify it, the correlation coefficients between
results and original components are computed as Table 4.

As shown in Table 4, the correlation coefficients between
VMD results and original components are around 0.95. As for
EWT, the correlation coefficients for s, and s3 are 0.78 and
0.89 respectively, which are unacceptable values. Although
the correlation coefficient between s; and IMF2 is 0.97,
the result in VMD, i.e. 0.94, has very little influence on
recognition. The result also verifies the VMD has better
performance in filtering noise. As for EEMD and LMD,
they cannot extract high frequency sinusoidal component (i.e.
s3). Besides, although the correlation coefficients of s1 are
high, the frequency domains show that the high frequency
sinusoidal component (i.e. s3) still exists (its energy is low
so that has little effect on the computation of correlation
coefficients). The correlation coefficients of s, are 0.66 and
0.73 respectively, which are much lower than 0.94. In conclu-
sion, the optimized VMD based Fourier spectrum segmenta-
tion is a realistic and accurate approach.

C. OPTIMIZED VMD BASED ON POWER SPECTRUM
SEGMENTATION

As shown in last section, the Fourier spectrum segmentation
can provide accurate and stable parameters for building VMD
in order to reduce subjectivity and complexity. However, with
in-depth research, author team finds this approach is strug-
gling in dividing approximating frequencies. The f> simulated
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FIGURE 10. Power spectrum segmentation of new simulated signal.

signal shown in equation (16) is shifted from 3000 to 4000 in
this section, and the new simulated signal is also divided by
Fourier spectrum segmentation. As shown in Fig. 9, only one
boundary at 8.93 kHz is obtained, which divides the Fourier
spectrum into 2 components.

The reason for that is noise and the approximating frequen-
cies reduce the salience of characteristic components. In order
to overcome this problem, a spectrum with similar waveform
of Fourier spectrum and salient characteristics should be
researched. Based on that, power spectrum is used to divide
signal. The power spectrum computed as follows:

Firstly, remove the mean of input signal s:

Sin = 8§ — Smean an

where $;,04, 1S the mean of s.

Next, compute the Fourier spectrum of s;,,, and the unilat-
eral Fourier spectrum is F(s;,) = {f1, /2, « - - fn—1,fm}- So the
power spectrum (PS) is:

fl *fl f2*f2 fn—l >kfn—l f’l *fn

PS = ; , (18)
n n n n

where f, is the adjoint of f;,, n is the length of input signal s.

Finally, divide the input signal in scale-space by the power
spectrum.

As shown in the description, power spectrum can remain
the similar waveform as well as make characteristics stand
out. In order to verify this approach, the new simulated signal
with o = 4000 is divided by it and shown in Fig. 10.
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FIGURE 11. Time domain of measured signal. (a) Time domain.
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FIGURE 12. Segmentation result of Fourier spectrum.

As shown in Fig. 10, the power spectrum can reduce the
influence of noise on segmentation. Two desired boundaries
of 4.48 kHz and 8.47 kHz are obtained, which proves this
approach is better than Fourier spectrum segmentation.

To verify the applicability of power spectrum segmen-
tation, a measured signal collected from Y-direction (the
horizontal which is perpendicular to crankshaft) near the
3rd cylinder at 2100r/min and 100% load is used to
test its performance. The duration of the measured sig-
nal is an engine cycle and the time domain is shown in
Fig. 11.

For this signal, the segmentation result of Fourier spectrum
is shown as Fig. 12, 6 boundaries of 1.43 kHz, 3.68 kHz,
4.51 kHz, 7.04 kHz, 9.22 kHz and 11.57 kHz are obtained.

As shown in Fig. 12, 6 boundaries divide the signal into
7 intervals. Among these, the 4th (between 4.51 kHz and
7.04 kHz) and 5th (between 7.04 kHz and 9.22 kHz) intervals
is complex. For the 4th interval, it can be identified as a com-
bustion component. According to the simulated signal, peri-
odic impact has wide bandwidth and several extremely close
peaks in spectrum, which means this interval is divided appro-
priately. However, for the 5th interval, there are 2 subsections
in it obviously (the segmentation point is near 8 kHz), whose
characteristics are different from periodic impact. So the
power spectrum is used to divide the signal, and result is
shown in Fig. 13.

As shown in Fig. 13, characteristic frequencies stand
out significantly, and 7 boundaries of 1.43 kHz, 3.68 kHz,
4.51 kHz, 7.04 kHz, 8.23 kHz, 9.22 kHz and 11.75 kHz are
obtained. The interval between 4.51 kHz and 7.04 kHz is still
the combustion component. The interval between 7.04 kHz
and 9.22 kHz is divided by the boundary of 8.23 kHz into
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FIGURE 14. Decomposition result of the measured signal. (a) Time
domain. (b) Frequency domain.

2 subsections and get more clear segmentation. The result
shows the power spectrum has better performance in spec-
trum analysis and robustness than Fourier spectrum. Based
on that, the VMD optimized by power spectrum is used to
decompose the measured signal, and the result is shown as
Fig. 14.

As shown in Fig. 14, the frequencies of IMFs corre-
spond to the power spectrum segmentation accurately, and
ideal narrow bandwidth components with little noise are
obtained. Besides, all the IMFs cover the analysis frequency
as well as no overlap between them. To explain the advan-
tages of VMD optimized by power spectrum segmentation
further, the signal is also decomposed by the VMD opti-
mized by Fourier spectrum segmentation and result is shown
in Fig. 15.

As shown in Fig. 15, the component between 8 kHz and
10 kHz is not extracted by the VMD optimized by Fourier
spectrum, which means this algorithm has low ability in
decomposing components with similar frequencies and may
loss important information during decomposition. Overall,
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FIGURE 15. Decomposition result of VMD optimized by Fourier spectrum
segmentation. (a) Time domain. (b) Frequency domain.

the VMD optimized by power spectrum segmentation is an
accurate and advanced approach.

V. EXPERIMENTAL ANALYSIS BASED ON OPTIMIZED
EXPECTAION-MAXIMIZATION

A. DATA PREPARATION

The selected vibration signals are collected synchronously
from three sensors, two of which are located on the wall of
the first and the third cylinders and another one located on the
cylinder head cover corresponding to the first cylinder.

The vibration data of each channel is divided into certain
length depends on the diesel engine rotating speed and sam-
pling rate. In order to include complete working cycle of
diesel engine. The length of segment can be expressed as (19).

L = [60x%fs*2/r] (19)

where L is the length of segment, fs is sampling frequency, r
is rotating speed, the sign “[]” represents round up operator.
In order to obtain effective feature subset, original data
is decomposed by optimized VMD and the characteristic
components are restructured. Nine features are exacted from
the restructured signals, the features are shown as follows:

1.Minimum value (Min) 2.Maximum value (Max)

3.Mean value (Mean) 4.Mean square value (MS)
5.Root mean square (RMS) 6.Mean square error (MSE)
7.Standard deviation (SD) 8.Kurtosis (Kur)

9.Margin (Mar)

Considering that signals from 3 channels are analyzed,
there are 27 features exacted, where Chl, Ch2 and Ch3 indi-
cate the first, second and third channels respectively.

The total of 27 features exacted form the signals of 3
channels are shown as follows:
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1.Min_Chl 4.Max_Chl 7.Mean_Chl
2.Min_Ch2 5.Max_Ch2 8.Mean_Ch2
3.Min_Ch3 6.Max_Ch3 9.Mean_Ch3
10.MS_Chl 13RMS_Chl  16.MSE_Chl
11.MS_Ch2 14.RMS_Ch2 17.MSE_Ch2
12.MS_Ch3 15.RMS_Ch3  18.MSE_Ch3
19.SD_Ch1l 22.Kur_Chl 25.Mar_Chl
20.SD_Ch2 23.Kur_Ch2 26.Mar_Ch2
21.SD_Ch3 24 . Kur_Ch3 27.Mar_Ch3
Candidate features
colleciton
\ 4
Finess evaluation | False
(CFS) [
selection —» Crossover ¥  Mutation
4
Stopping

imal f
Optimal feature subset criteria?

FIGURE 16. GA and fitness function used in feature selection.

B. OPTIMIZED EXPECTATION-MAXIMATION ALGORITHM
To improve the adaptability and accuracy of EM, a fit-
ness function of correlation-based feature selection (CFES)
approach for GA is introduced to preprocess original data and
a cross validation method is used for EM algorithm to select
cluster number adaptively.

1) FITNESS FUNCTION OF CORRELATION-BASED FEATURE
SELECTION ALGORITHM

The fitness function is a criterion used by attribute subset
valuator to measure the worth of an attribute subset. In this
article, the CFS evaluator is used as fitness function for
GA [33], the process is shown as Fig. 16.

CFS is a filter algorithm that evaluates feature subsets
according to correlation based heuristic evaluation function.
The bias of the evaluation function is toward feature sub-
sets, which is highly correlated with the class and uncor-
related with each other. The acceptance of a feature will
depend on the extent to which it predicts classes in areas
of the instance space not already predicted by other fea-
tures [37]. CES’s feature subset evaluation function is shown
as (20):

_ krer
My = ——— (20)
Vk+k(k — Dy
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where Mg is the worth of feature subset S containing k
features, 7y is the mean feature-class correlation (f € S),
and 7y is the average feature-feature inter correlation. The
numerator can be thought as providing an indication to predict
the class of feature set, and the denominator indicates the
redundancy among features. Equation (20) is the core of CFS
and imposes a ranking on feature subsets in the search space
of all possible feature subsets.

2) ESTIMATING THE NUMBER OF CLUSTERS USING
CROSS-VALIDATION

EM clustering method needs specifying the number of clus-
ters as an input parameter, but in some cases this value is
unknown. Many solutions have been proposed to choose
the number of clusters automatically, most of them rely
on modeling assumptions, but main difficulty in choosing
the numbers of clusters is that clustering is fundamentally
an ‘“‘unsupervised” learning problem, meaning that there is
no obvious way to use ‘“‘prediction ability” to drive the
model selection [38]. Cross-validation (CV) method is a
data-driven approach to estimate the number of clusters,
and it is adaptive to the characteristics of data distribu-
tion [39]. Specially, in this article, 10-fold cross validation
method was adopted, and the details are shown in following
steps:

®. The number of clusters is set as 1

®@. The training set is split randomly into 10 folds.

®. EM is performed 10 times using the 10 folds the usual
CV way.

@. The log-likelihood is averaged over all 10 results.

®. If the log-likelihood increases, the number of clusters is
increased by 1 and the program continues at step @.

The number of folds is fixed to 10, as long as the number
of instances in the training set is not smaller 10. If this is
the case, the number of folds is set equal to the number of
instances [40].

C. EXPERIMENTAL ANALYSIS

Experiments were carried out under the condition of dif-
ferent rail pressures, injection timings and valve clearances,
respectively (for detailed parameter settings see TABLE
3). 40 samples at 1600r/min in different working state are
selected respectively, and the optimized VMD algorithm was
implemented to process the vibration signal acquired syn-
chronously from three vibration sensors at first, then 27 fea-
tures are extracted from them and preprocessed with feature
selection method. Finally, the different working states are
classified by EM. The detailed flowchart of data processing
is shown as Fig 17.

As shown in Fig 17, the power spectrum and scale-
space representation are employed to optimize VMD in
order to decompose signals adaptively. Then, the features
are extracted from the reconstructed signals. These complex
features lead to high computational cost and even reduce the
recognition rate, which impels the using of feature selection
algorithm. The CFS is selected and GA is used to optimize
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FIGURE 17. Flowchart of data processing.

its performance. After all of these processes, EM optimized
by cross validation is used to classify the different work-
ing states of engine, in which the cross validation is a
method to make the EM selecting the number of clusters
adaptively.

To verify the advantages of this scheme, two different
unsupervised and adaptive clustering methods, X-means and
EM with cross validation, are used to cluster the samples
with and without feature selection processing, respectively.
For clearly comparison, the classification accuracy is defined
as (21):

Caccuracy = M 21
Noriginal
where Nccuracy 18 the number of correctly clustered samples;
Noriginal 1 the number of original samples in a certain class.
In this experiment, the value of Noiginas is 40.

In this paper, the result of cluster is shown in two-
dimensional chart and the classification accuracy is calcu-
lated if the number of clusters is correct, otherwise only the
result of cluster is shown in two-dimensional chart. In par-
ticularly, only MS_Ch1 is shown in charts for limited space
because it is a feature exits in every example. The results were
shown as follows.
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FIGURE 19. X-means with feature selection, number of clusters is 2.
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FIGURE 20. EM without feature selection, number of clusters is 5.

1) CLUSTERING RESULT OF DIFFERENT INJECTION TIMING

An optimal subset selected from the original features is shown
blow, the number of selected features is 15:

I.Min_Chl  3.Min_Ch3  6.Max Ch3  7.Mean_Chl
8.Mean_Ch2 9.Mean Ch3 10.MS_Chl  12.MS_Ch3
14RMS_Ch2 15.RMS_Ch3 16.MSE_Chl 18.MSE_Ch3
21.SD_Ch3  24.Kur Ch3  27.Mar _Ch3

Four kinds of injection timing parameters are designed
in the experiment, so the correct number of clusters is 4.
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FIGURE 22. X-means without feature selection, number of clusters is 4.
Classification accuracy: 1000bar: 87.5% 1100bar: 82.5% 1200bar:
45% 1340bar: 80% Average accuracy: 73.75%.

There are 40 samples for each working state. Experimental
clustering result is shown as follows:

As shown in Fig. 18 and Fig. 19, no matter feature selection
is carried out or not, X-means cannot get the correct number
of clusters. In Fig. 20, EM algorithm also cannot gain the right
number of clusters without feature selection. In Fig. 21, after
preprocessing of feature selection, the desired cluster result
is obtained by EM algorithm.

2) CLUSTERING RESULT OF DIFFERENT RAIL PRESSURES

An optimal subset selected from the original features is shown
blow, the number of selected features is 13:

2.Min_Ch2 3.Min_Ch3 6.Max_Ch 7.Mean_Ch
8.Mean_Ch2 9.Mean Ch 10.MS_Ch 12.MS Ch3
18MSE_Ch 20.SD_Ch2 21.SD_Ch3 23.Kur_Ch2
24.Kur_Ch3

Four kinds of rail pressure parameters are designed in the
experiment, and the correct number of clusters is 4. There are
40 samples for each working state. Experimental clustering
result is shown as Fig. 22 - Fig. 25.

As shown in Fig. 22 and Fig. 24, without preprocessing
of feature selection, both X-means and EM algorithm can
get the correct number of clusters and the average classi-
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FIGURE 23. X-means with feature selection, number of clusters is 2.
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FIGURE 24. EM without feature selection, number of clusters is 4.
Classification accuracy: 1000bar: 97.5% 1100bar: 60% 1200bar:
52.5% 1340bar: 85% Average accuracy: 73.75%.
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FIGURE 25. EM with feature selection, number of clusters is 4.
Classification accuracy: 1000bar: 97.5% 1100bar: 80% 1200bar:
77.5% 1340bar: 87.5% Average accuracy: 85.63%.

fication accuracy of each algorithm is 73.75%. In Fig. 23,
X-means cannot gain correct number of clusters with feature-
selection preprocessing. In Fig. 25, with feature-selection
preprocessing, EM algorithm achieves better result compared
with Fig. 22 and Fig. 24, and the average classification accu-
racy is 85.63%.

3) CLUSTERING RESULT OF DIFFERENT VALVE CLEARANCES
An optimal subset selected from the original features is shown
blow, the number of selected features is 9:
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FIGURE 26. X-means without feature selection, number of clusters is 2.
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FIGURE 27. X-means with feature selection, number of clusters is 2.
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FIGURE 28. EM without feature selection, number of clusters is 4.
Classification accuracy: Increase (0.5, 0.6): 95% Normal (0.4, 0.5):
97.5% Reduction (0.3, 0.4): 100% Average accuracy: 97.50%.

The experiment design three group of different valve clear-
ances, and the correct number of clusters is 3. There are
40 samples for each working state. Experimental clustering
result is shown as follows:

As shown in Fig. 26 and Fig. 27, no matter feature selec-
tion is carried out or not, X-means cannot distinguish three
different states of valve clearance. In Fig. 28 and Fig. 29,
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FIGURE 29. EM with feature selection, number of clusters is 4.
Classification accuracy: Increase (0.5, 0.6): 97.5% Normal (0.4, 0.5):
95% Reduction (0.3, 0.4): 100% Average accuracy: 97.50%.

three different states are correctly classified by EM algorithm
without or with feature selection preprocessing.

It can be deduced from the results that: the EM clustering
method with features selection achieves the accurate number
of clusters and attains the average classification accuracy
of 89.38% for different injection timing parameters. For dif-
ferent rail pressure parameters, X-means and EM both can
achieve correct cluster number without features selection,
and also achieve the same average classification accuracy
of 73.50%. On the contrary, only EM method can get the
correct number of clusters after features selection and attains
high average classification accuracy of 85.63%. For different
valve clearances, X-means method cannot get the right num-
ber of clusters no matter with or without features selection.
However, EM achieve both correct number of clusters and
high average classification accuracy of 97.50%. In summary,
the analysis of three types of parameters adjustment exper-
iments in diesel engine validates the EM based on feature
selection optimized by genetic algorithm and cross validation
has the ability to obtain cluster numbers adaptively and is
effective for the classification of different diesel engine work-
ing states.

VI. CONCLUSION AND OUTLOOK

In order to recognize states of diesel engine, a novel opti-
mization approach based VMD and EM using multi-channel
feature fusion algorithm is proposed:

(1) Segmentation based on scale-space representation is
introduce to analyze the frequency components of origi-
nal vibration signals. Considering low robustness of Fourier
spectrum segmentation, power spectrum is used to dis-
criminate frequency components because of its similar-
ity to Fourier spectrum and good performance in noise
suppression. Based on that, the decomposition level of
VMD can be selected adaptively, which could provide
accurate time-frequency analysis results for subsequent
recognition.

(2) After extracting features from multi-channel vibration
signals, the GA and CFS fitness function are used for features
selection to reduce dimensions of data. The cross validation
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is introduced to optimized EM algorithm in order to cluster
feature subset adaptively.

(3) A diesel engine state recognition scheme based on
optimized VMD, feature selection and optimized EM using
multi-channel vibration signal is proposed. To prove the
advantages of it, classic X-means and the novel scheme
are used to analyze different injection timing, rail pressure
and valve clearance states. Comparison shows the proposed
method has better stability and classification accuracy, and it
has certain engineering and theoretical significance.

However, there are some further works need to do:

(1) Quadratic penalty is another important parameter in
VMD, which has a big effect on decomposition result, and
it is selected as « = 2200 by data analysis in this paper.
Although obtaining acceptable results, this parameter should
be researched further in future work.

(2) There are three main feature selection methods: filter
method, wrapper method and embedded method. The feature
selection based on GA and CFS fitness function in this paper
is one of the filter methods, whose advantage is high effi-
ciency. The shortage is that it is independent of classifier,
which results in the selected feature subset maybe not the
best. Other feature selection methods will be researched in
succeeding work.
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