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ABSTRACT Excess source and drain (S/D) recess depth (TSD) variations were analyzed comprehensively
as one of the most critical factors to DC/AC performances of sub 5-nm node Si-Nanosheet (NS) FETs
for system-on-chip (SoC) applications. Variations of off-, on-state currents (Ioff , Ion) in three-stacked NS
channels and parasitic bottom transistor (trpbt ), gate capacitance (Cgg), intrinsic switching delay time (τd ),
and static power dissipation (Pstatic) are investigated quantitatively according to the TSD variations. More S/D
dopants diffuse into the trpbt with the deeper TSD, so the Ioff and Ion increase due to raised current flowing
through the trpbt . Especially, the Ioff of PFETs remarkably increases above the certain TSD (TSD,critical)
compared to NFETs. Furthermore, the Ion contribution of each channels having the TSD,critical is the largest
at the top NS channel and the trpbt has the ignorable Ion contribution. Among the NS channels, the top
(bottom) NS channel has the largest (smallest) Ion contribution due to its larger (smaller) carrier density and
velocity for both P-/NFETs. The Cgg also increases with the deeper TSD by increasing parasitic capacitance,
but fortunately, the τd decreases simultaneously due to the larger increasing rate of the Ion than that of the
Cgg for all SoC applications. However, the Pstatic enormously increases with the deeper TSD, and low power
application is themost sensitive to the TSD variations among the SoC applications. Comprehensive analysis of
the inevitable trpbt effects on DC/AC performances is one of the most critical indicators whether Si-NSFETs
could be adopted to the sub 5-nm node CMOS technology.

INDEX TERMS Nanosheet FET, parasitic bottom transistor, source/drain recess depth, sub 5-nm node,
sub-sheet leakage, TCAD simulation, U-shaped source/drain.

I. INTRODUCTION
For several decades, conventional bulk planar Si-MOSFETs
had been successfully scaled down, and several novel strate-
gies were adopted from 90- to 32-nm node to improve
the CMOS performance [1]–[4]. However, aggressive scale-
down of planar Si-MOSFETs caused the loss of channel
controllability, and short channel effects (SCEs) significantly
degraded the DC/AC performances. Since 2012, as a solution,
22-nm node Si-FinFETs were adopted to industry for over-
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coming the SCEs and enabling further scale-down [5]. The
Si-FinFETs technologies have been continuously improved
down to 7-nm node by decreasing fin pitch and contact poly
pitch and increasing aspect ratio of fins [6]–[9]. However,
these kinds of fin structures need extremely high fin aspect
ratio and are limited by fin pitch [10]. As a result, verti-
cally stacked Si-Gate-All-Around (GAA) nanosheet FETs
(NSFETs) were proposed as a promising candidate to replace
Si-FinFETs due to those superior electrostatics below 7-nm
node [11]–[14]. But both Si-FinFETs and Si-NSFETs have
inevitable parasitic channels below the intrinsic channels that
critically affect the leakage current, which is the killing factor
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FIGURE 1. (a) Structure of the ideal S/D NSFETs and (b) the U-shaped S/D NSFETs (white lines highlight the difference between the ideal and
U-shaped S/D). (c) 2-D cross-section view (A-A’ and B-B’) of (b).

of scaled transistors [15], [16]. Especially, the Si-NSFETs are
deeply concerned because of wider parasitic channels than
the Si-FinFETs.

Meanwhile, in ultra-scaled transistor, impacts of process
variations on DC/AC performances are inevitable inherent
problems. Among these variations, source/drain (S/D) pro-
cess variations should be carefully controlled because those
are directly related to source-to-drain leakage current as well
as drive current. So far, several studies about the impacts of
the S/D process variations on the Si-FinFETs including S/D
epitaxy shape, depth [17]–[19], S/D length [20], [21], and S/D
doping concentration [22] were addressed, but the studies on
the vertically stacked Si-NSFETs were rarely reported.

In this paper, we quantitatively investigated the impacts
of S/D process variations on the DC/AC performances of
sub 5-nm node Si-NSFETs. We analyzed off- and on-state
currents (Ioff , Ion), gate capacitance (Cgg), and switching
delay time (τd ) according to S/D epitaxy shapes and S/D
depth variations in the following sections. In Section II, we
explained the device design and simulation methodology of
the sub 5-nm node NSFETs. In Section III, we investigated
the sensitivity of the Ioff , Ion, Cgg, τd , and static power dissi-
pation (Pstatic) to the S/D process variations. Finally, we gave
a conclusion in Section IV.

II. DEVICE DESIGN AND SIMULATION METHODOLOGY
We simulated the sub 5-nm node three-stacked NSFETs with
advanced physics models using Sentaurus TCAD simulator
[23]. Drift-diffusion model was considered self-consistently
with Poisson and carrier continuity equations for carrier
transport. Density-gradient model was included to consider
quantum confinement effects of the channel region [24], [25].

Slotboom bandgap narrowing model was also included
for doping-induced bandgap narrowing in overall device

regions [26]. Lombardi mobility model was considered to
calculate the mobility degradation induced by transverse
field at the interfaces [27]. Inversion and accumulation
layer and thin-layer mobility models were included to con-
sider Coulomb, phonon, and surface roughness scatterings
[28], [29]. Low-field ballistic mobility and high-field satura-
tion models were also included [30]. Furthermore, we consid-
ered recombination using Shockley-Read-Hall, Auger, and
Hurkx band-to-band tunneling models [31]–[33]. Finally,a
deformation potential model was considered for strain depen-
dency of effective mass, effective density-of-states, carrier
mobility, and band structure [34].

Fig. 1 shows the structure of the n-type NSFETs having
ideal and U-shaped S/D epitaxies, and its cross-section view.
All the NSFETs were formed by fully considering doping,
diffusion, and strain effect using Sentaurus process simula-
tor [23]. In reality, S/D recess profile cannot be a perfect
vertical shape, so we adopted the U-shaped S/D recess pro-
file, which was taken from [11]. In the U-shaped S/D, inner
spacer length (Lsp) could be the shortest (longest) at the top
(bottom) side, while gate length (Lg) was the same regardless
of NS channels positions. Channel length (Lch) was defined as
distance from the source to the drain epitaxies in each of the
NS channels. In addition, Si0.5Ge0.5 and Si0.98C0.02 epitaxies
were formed as the S/D to induce compressive and tensile
stress to the NS channels for p/n-type FETs (P-/NFETs),
respectively.

Highly doped Si0.5Ge0.5 [12] (Si0.98C0.02) epitaxies with
boron (phosphorus) of 5 × 1020 (1 × 1020) cm−3 were
formed as the S/D of the PFETs (NFETs), and silicon NS
channels and substrate were undoped (1×1015 cm−3). Punch-
through stopper (PTS) was doped with phosphorus (boron)
of 2× 1018 cm−3 in the PFETs (NFETs). Detailed geometry
parameters for the sub 5-nm node NSFETs were summarized
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FIGURE 2. Transfer characteristic of the ideal (black dashed line) and the
U-shaped S/D NSFETs (color lines) according to the TSD for both P-/NFETs.
The Ioff is fixed to 1 nA/µm in the ideal S/D NSFETs and in the U-shaped
S/D having the TSD of 0. Drain current is normalized to the SHP.

in Table 1. Dielectric constants were 3.9, 5.0, and 22.0 in
IL, spacer, and HfO2 for overall regions of the NSFETs,
respectively. Each contact resistance (Rcont ) of the source and
drain defined for contact width was fixed as an optimistic
value of 50 � · µm for both P-/NFETs [36], and operating
voltage (| Vdd |) was 0.7 V. All drain currents (Ids) in this
work were normalized to sheet pitch (SHP), and threshold
voltage (Vth) was extracted using constant current method at
Wch/Lg × 10−7A/µm, where Wch = 3 × (Wtop + Wbot +

2 × TNS ). Finally, the NSFETs structures of this paper were
built by process simulation mimicking the real process flow
of [11], while electrical simulations were conducted using
fully-calibrated physical model parameters of 10-nm node Si-
FinFETs including saturation velocity and low-field ballistic
coefficient [8], [35]. Here, I-V data of [11] could not be
used for calibrating the physical model parameters, because
those were presented as arbitrary units. Moreover, to estimate
the Ion/Ioff characteristics of the sub 5-nm node NSFET
properly, calibrating the mobility and velocity model from
matured and well-known Si-FinFETs technology was reason-
able approach. For calibrating our TCAD deck to the hard-
ware data properly, a higher S/D doping concentration (NSD)
of the PFETs than the NFETs was adopted for subthresh-
old swing (SS) and drain-induced barrier lowering (DIBL),
which are relatively poorer for the PFETs than for the NFETs.

III. RESULTS AND DISCUSSION
A. OFF-STATE (|VGS |= 0, |Vds |=|Vdd |) ANALYSIS
Fig. 2 shows transfer characteristics of the NSFETs according
to excess S/D depth (TSD) for both P-/NFETs and several DC
characteristics are summarized in Table 2. Here, the Vth of

TABLE 1. Geometry parameters for Sub 5-nm node NSFETs.

the PFETs at the TSD of 10-14 nm was not shown because
they do not approach to the Wch/Lg × 10−7 A/µm even in
very large positive gate voltage (| Vgs |). The TSD splits from
0 to 14 nm, and drain voltage (| Vds |) is fixed to the | Vdd |.
The Ioff and Ion are defined as the Ids when the | Vgs | is
0 and the |Vdd |, respectively. The ideal S/D NSFETs show the
smallest SS comparing to the U-shaped S/D NSFETs due to
the longest Lch, which mitigated the SCEs. In U-shaped S/D
NSFETs, both Ioff and Ion increase with the deeper TSD, and
especially, the Ioff remarkably increases at the certain points
of the TSD. To quantify these points, we defined critical excess
S/D depth (TSD,critical) as the maximum TSD where the Ioff is
smaller than 10 times of Ioff at the TSD of 0. The definition
of the TSD,critical is based on a Ioff criteria for system-on
chip (SoC) applications, wherer the devices having the Ioff
of 10 nA/um are no longer available for standard performance
applications [37]. The TSD,critical is 4 nm for the PFETs and
10 nm for the NFETs, and it means that DC performance
variations to the TSD are more sensitive in the PFETs than
the NFETs.

To analyze which channels mainly contribute to the Ioff ,
the Ioff density of the U-shaped S/D NSFETs according to the
TSD is shown in Fig 3a. For both P-/NFETs, the Ioff density
of the NS channels does not change significantly regardless
the TSD. Meanwhile, the Ioff of parasitic bottom channel
(Ioff ,pbt ) in parasitic bottom transistor (trpbt ) increases as the
TSD increases. The Ioff ,pbt increases with deepen TSD, because
more S/D dopants inevitably diffuse into the PTS region and
reduce the Vth of the trpbt . Especially, the Ioff ,pbt density of
the PFETs severely increases above the TSD,critical because
the S/D dopant concentration of the trpbt for the PFETs begins
to increase remarkably above the TSD,CRITICAL . On the other
hand, in the NFETs, the S/D dopant concentration linearly
increases according to the TSD increase and its amount is
smaller than the PFETs’ (Fig. 3b). As a result, the PFETs are
more sensitive than the NFETs to the TSD variations and show
larger Ioff ,pbt density and SCEs.
More details on the PFETS, a critical factor of high Ioff sen-

sitivity to the TSD is channel stress (Szz) differences between
the NS channels and the trpbt . Fig. 4 shows transfer char-
acteristics of the PFETs having the NSD of 1 × 1020 cm−3

according to the TSD (note that the annealing condition has
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TABLE 2. SS, Ioff, Ion, and Vth of the sub 5-nm node NSFETs according to the TSD.

FIGURE 3. (a) The Ioff density profile in the U-shaped S/D NSFETs
according to the TSD for both P-/NFETs. The trpbt is specified as black
dashed box. (b) Boron and phosphorus concentrations in the trpbt for the
P-/NFETs, respectively. The concentrations is averaged over the volume
from the interface between the interfacial layer and the PTS region to
depth TSD + 5 nm (see the white cuboid in the inset).

been also revised accordingly to reproduce the experimental
SS [8].). For accurate characteristic projection of the PFETs
having the NSD of 1 × 1020 cm−3, S/D dopant profile along

FIGURE 4. Transfer characteristics of the PFETs having the NSD of 1× 1020

cm−3 according to the TSD (the legends are the same as the Fig. 2.). Inset
above shows boron concentration profile along the source epitaxy to the
top NS channel. Inset below shows averaged boron concentrations in the
top NS channel and the trpbt over the volume according to the TSD.

the NS channel is adjusted to 3-5 nm/dec (inset above in the
Fig. 4) [38]–[42]. Note that the PFETs having lower NSD still
suffer from severe upsurge of the Ioff as the TSD increases
(TSD,critical is 6 nm). Typically, the compressive Szz of the
PFETs retards boron diffusion into the silicon channels [43],
and compressive Szz in the trpbt is much smaller than NS
channels. As a result, more S/D dopants can easily diffuse
into the trpbt than the NS channels (inset below in the Fig. 4),
and it significantly degrades the SCEs, regardless the NSD of
the PFETs.

B. ON-STATE (|VGS |=|Vds |=|Vdd |) ANALYSIS
Fig. 5 shows the Ion density of the U-shaped S/D NSFETs
according to the TSD in each NS channel and trpbt , where
S/D stress effects are fully considered as [44]. Unlike the
off-state operation, on-state operation shows different depen-
dency on the TSD with device types. First in the PFETs, as
the TSD increases, the Ion density in the trpbt (Ion,pbt ) remark-
ably increases, whereas the Ion densities in the NS channels
decrease. On the other hand, in the NFETs, the Ion,pbt density
slightly increases, but the Ion densities in the NS channels
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FIGURE 5. The Ion densities of each NS channel and the trpbt in the
U-shaped S/D NSFETs according to the TSD. The Ion densities were
extracted at the center of channel length and width. The legends are the
same as the Fig. 2.

FIGURE 6. The PSD according to the TSD. The PSD is extracted at the
center of channel thickness and width of the top NS channel. Inset
represents the definition of the PSD and the S/D contact resistance.

rarely vary. In common, increasing S/D dopants diffusion into
the PTS region with the deeper TSD induces the Ion,pbt density
increases for both P-/NFETs. The different dependencies of
the Ion densities on the TSD in the n-/p-channel NS channels
are mainly analyzed with potential differences between the
ends of the NS channels (PSD). The PSD is defined as the
valence (conduction) band energy difference between source
and drain epitaxies of the PFETs (NFETs) and the PSD is
extracted at the center of channel thickness and width of
the NS channel (inset of Fig. 6). We investigated the PSD
of the top NS only because the other two NS channels also
have the same PSD tendencies as the top NS channel (Fig. 6).
Increasing Ion,pbt with the deeper TSD causes the larger poten-
tial reduction by theRcont , so thePSD also reduces. Especially,

FIGURE 7. (a) The Ion contributions of each channel in the U-shaped S/D
NSFETs having the TSD = TSD,critical . The Ion contributions of each
channel was evaluated by integrating the Ion densities over the channel
cross-section area at the center of the channels (see Fig. 1c). (b) Averaged
carrier densities, mobilities and velocities of each channel in the
U-shaped S/D NSFETs having the TSD = TSD,critical over the channel
volumes surrounded by interfacial layers.

the Ion,pbt remarkably increases above the TSD,critical in the
PFETs but increases a little in the NFETs. As a result, the
PSD significantly decreases for the PFETs and lowers the Ion
densities of the NS channels, but the PSD does not vary much
for the NFETs.

To reveal the origin of the Ion, we analyzed the Ion con-
tributions of each channel using the U-shaped S/D NSFETs
with TSD of the TSD,critical (Fig. 7a). For comparison, the Ion
contributions of the ideal S/D NSFETs was also investigated
in [45]. The Ion contributions of each channel was evalu-
ated by integrating Ion density over the channel cross-section
area at the center of channels (see Fig. 1c). The top NS
channel has the largest Ion contribution for both P-/NFETs
and those are 41.1 % and 39.6 %, respectively. Interestingly,
the trpbt has a negligible Ion contribution (0.5 and 1.1 %
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TABLE 3. Relative comparison of electrical parameters of each NS
channels and dominant factors.

for the P-/NFETs, respectively), contrary to the case of the
Ioff (Fig. 3). In addition, the bottom NS channel shows the
smallest Ion contribution for both P-/NFETs (28.3, 26.8 %,
respectivly).

The reason why each of the NS channels has the different
Ion contributions can be clarified using carrier density, mobil-
ity, and velocity. Typically, current density is proportional to
the product of the carrier densitiy and the velocity (Fig. 7b).
First of all, the carrier density is proportional to gate overdrive
voltage (| Vgs | − | Vth |). More S/D dopant diffusion
into the channels decreases the | Vth | of each channels,
resulting in higher carrier density at the same | Vgs |. The
S/D dopant diffusion mainly occurs at S/D annealing steps
due to its high annealing temperature. In this step, both the
Lch and the Szz complexly affect the S/D dopant diffusion.
The shorter Lch, the deeper S/D dopants diffuse from the
S/D to the channels, whereas compressive (tensile) Szz retards
boron (phosphorus) diffusion into silicon channels [43], [46],
[47]. Furthermore, the larger S/D volume beside top-side
NS channel typically induces more compressive (tensile) Szz
than the bottom-side channels in the PFETs (NFETs), but
the Szz differences among the NS channels for the NFETs is
neglectible. Therefore, these two factors (the Lch and the Szz)
result in the S/D dopant concentrations in channels having
order of top> middle ≈ bottom (top> midddle> bottom)
NS channel in the PFETs (NFETs), and the carrier densities
of each channels are also in this order. Secondly, carrier
mobilities is critically affected by impurity scattering and
the Szz. The carriers in the top-side NS channel are mostly
suffered from impurity scattering due to the largest amount of
S/D dopants in the channel. Then, although the Szz can boost
the carrier mobility, the carrier mobilities of each NS channls
show almost inversely proprotional to the amounts of impuri-
ties. Finally, the carrier velocities of the PFETs are the largest
(smallest) in the top (bottom) NS channel because the shorter
Lch makes stonger electric field along the channel direction.
On the other hand, the carrier velocities of the NFETs are
almost the same among the NS channels because the smaller
(larger) carrier mobilities of the top (bottom) NS channel

FIGURE 8. (a) Oxide and parasitic capacitance components related to the
Cgg in the U-shaped S/D NSFETs. (b) The Cgg and Cinv,pbt of the NSFETs
at | Vgs |=| Vds |= 0.7 V according to the TSD.

can be compensated (degraded) in carrier velocities by its
larger (smaller) electric field. Therefore, for these reasons, Ion
contributions of each channel are determined like the Fig. 7a,
and we summaized the dominant factors determining the Ion
contributions of each NS channel in Table 3.

C. AC PERFORMANCE ANALYSIS
In this section, the effects of the trpbt on AC operation are
investigated comprehensively. In the NSFETs, the Cgg con-
sists of intrinsic gate oxide capacitance (Cox) and parasitic
capacitance (Cpar ) consisting of inversion capacitance of the
trpbt (Cinv,pbt ), inner (Cif ) and outer fringe capacitances (Cof )
(Fig. 8a). Fig. 8b shows the Cgg and Cinv.pbt of the NSFETs
according to the TSD. The Cgg was extracted at frequency
of 1 MHz, and Cinv,pbt was extracted as follow:
1) Integrating inversion charge density in the PTS region

over the PTS volume along the Vgs.
2) Differentiating the results of 1) over the Vgs, then get-

ting the series-connected capacitance,Cinv,pbt + Cox .
3) Subtracting the Cox from the results of 2), then obtain-

ing the Cinv,pbt itself. Here, Cox = Lg ×Wbot × 3.9 ×
ε0/EOT, where ε0 is the vacuum permittivity and EOT
is the effective oxide thickness with TIL of 1 nm and
THf of 2 nm.
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FIGURE 9. the Pstatic versus the τd of the sub 5-nm node NSFETs
according to the TSD for three SoC applications: LP, SP, and HP. Star
symbols are from the ideal S/D NSFETs and the others are from the
U-shaped S/D NSFETs with different TSD (the symbols filled in green are
from when the TSD is the TSD,critical .).

The ideal S/D NSFETs have the smallest Cgg due to their
longest Lsp and negligible Ion,pbt . The Cgg of the U-shaped
S/D NSFETs with the TSD of 0 are 9.7 % and 7.8% larger
than the ideal S/D NSFETs’ for the P-/NFETs, respectively.
Meanwhile, the Cgg of the U-shaped S/D NSFETs increases
up to 7 % as the TSD increases. Because gate oxide thick-
ness and width of the trpbt are not varied with the deeper
TSD, the Cox is not varied much, then increase of the Cpar
dominantly induces the increase of the Cgg. Interestingly, the
Cinv,pbt is negligible when TSD = 0, however, its contribution
to the increase of the Cpar gradually increases as the TSD
deepens.

The Pstatic(= Ioff ×|Vdd |) versus the τd (= Cgg×|Vdd |/Ion)
of the NSFETs is also presented for SoC applications: low
power (LP), standard performance (SP), and high perfor-
mance (HP) (Fig. 9). The Ioff is fixed to 10−10 A/µm for
the LP, 10−9 A/µm for the SP, and 10−7 A/µm for the HP.
The ideal S/D NSFETs have the smaller τd than the U-shaped
S/D NSFETs with the TSD of 0 because of their superior
Ion and smaller Cgg (Table 2 and Fig. 8b). In the U-shaped
NSFETs, the τd decreases with the deeper TSD due to the
increasing rate of the Ion being larger than the increasing rate
of the Cgg in both P/NFETs. However, the Pstatic significantly
increases as the TSD increases because tremendous amount
of current flow in the trpbt at off-state operation. Fortunately,
when the TSD is less than the TSD,critical , the variations of the
τd and Pstatic according to the TSD are small. In addition,
the τd and Pstatic of the PFETs are more sensitive to the
TSD than those of the NFETs because the trpbt of the PFETs
drives more leakage current than the NFETs’. Furthermore,
the LP is more sensitive to the TSD than the SP and the HP.
Therefore, the TSD should be controlled less than TSD,critical to
prevent the serious variations of the τd and Pstatic, especially
in the PFETs than the NFETs and for the LP than the other
applications.

IV. CONCLUSION
The TSD variations of the sub 5-nm node NSFETs were
thoroughly investigated in terms of the DC/AC performances.
The trpbt is a critical killing factor of the NSFETs in advanced
technology node. The deeper TSD induces more S/D dopant
diffusion into the trpbt and lowers the Vth of trpbt , so the
Ioff and the Ion increase due to the trpbt . Especially, the Ioff
remarkably increases above the TSD,critical(4, 10 nm for the
P-/NFETs, respectively), and the Ioff of the PFETs is more
severely degraded than that of the NFETs because the com-
pressive Szz of the trpbt is inevitably smaller than the Szz of
the NS channels for the PFETs. At the TSD,critical , the top
NS channel is the largest contributor to the Ion for both P-
/NFETs, but fortunately, the trpbt is the negligible contributor
to the Ion (0.5, 1.1 % for the P-/NFETs, respectively). The
Cgg also increases due to the increase of the Cpar as the TSD
deepens, especially, the contribution of theCinv,pbt to theCpar
also gradually increases. However, the τd decreases as the TSD
increases due to the increasing rate of the Ion being larger
than the increasing rate of the Cgg in both P/NFETs for all
the SoC applications. Finally, the Pstatic enormously varies
compared to the τd . The τd and Pstatic are more sensitive to
the TSD variations in the PFETs than in the NFETs and for the
LP than the other applications. Therefore, the sub 5-nm node
NSFETs ensures immune to the TSD variations if the Ioff can
be controlled only.
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