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ABSTRACT The cybersecurity of industrial control systems (ICSs) is becoming increasingly critical under
the current advancement in the cyber activity and the Internet of Things (IoT) technologies, and their direct
impact on several life aspects such as safety, economy, and security. This paper presents a novel semi-
supervised dual isolation forests-based (DIF) attack detection system that has been developed using the
normal process operation data only and is demonstrated on a scale-down ICS known as the Secure Water
Treatment (SWaT) testbed and the Water Distribution (WADI) testbed. The proposed cyber-attack detection
framework is composed of two isolation forest models that are trained independently using the normalized
raw data and a pre-processed version of the data using Principal Component Analysis (PCA), respectively,
to detect attacks by separating-away anomalies. The performance of the proposed method is compared
with the previous works, and it demonstrates improvements in terms of the attack detection capability,
computational requirements, and applicability to high dimensional systems.

INDEX TERMS Attack detection, principal component analysis (PCA), isolation forest (IF), industrial
control systems, cybersecurity.

I. INTRODUCTION
Industrial control systems (ICSs) are composed of electrical
and mechanical devices, computers, and manual operations
supervised by humans. They are mainly used for partial or
full automation control in industrial plants and critical infras-
tructures such as manufacturing industries, chemical plants,
power generation and distribution systems, water treatment
plants, and others [1]. Their operation has a direct impact on
the environment, the safety and health of people, the econ-
omy, and national security. Concerns about the security of
industrial control systems are increasing, given the growing
sophistication of cyber activities. The advancement in the
industrial Internet of Things (IoT) technologies is creating
more potential threat points and vulnerabilities in the sys-
tem. There have been a number of cyber-attacks on critical
infrastructures in the past few years [2]–[4], and research in
cybersecurity of industrial control systems has been evolving
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to overcome the challenges and vulnerabilities in the current
industrial attack detection systems.

Attack detection systems are designed to monitor the
events taking place in an information system in order to
identify signs of security issues. Anomaly detection is the
most commonly used approach for attack detection, which
is the process of identifying anomalous events that do not
conform to the expected behavior of the system. The main
underlying advantage of the anomaly detection approach is its
ability to detect unseen and new attacks. Anomaly detection-
based attack detection approaches can be implemented using
a variety of Machine Learning (ML) algorithms such as Sup-
port Vector Machine (SVM) [5], [6], Principal Component
Analysis (PCA) [7], Neural Networks [8], clustering analysis
[9], Negative Selection Algorithm (NSA) [10], and others.
They can be divided into unsupervised, supervised, and semi-
supervised learning approaches. In the unsupervised method,
the model is developed using unlabeled data that contain
normal and anomalous samples, while the labeled normal
and attack data are used in the supervised learning scheme.
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However, in the semi-supervised approach, the model is
developed using the normal operation data only.

The work presented in this paper is demonstrated using
the datasets obtained from the iTrust Lab testbeds, which
are the Secure Water Treatment (SWaT) testbed and the
Water Distribution (WADI) testbed. There have been sev-
eral works in attack detection using the SWaT dataset as
in [10]–[22] and limited work using the WADI dataset as
in [17]. Most of the previous works on attack detection uti-
lized the normal process data using several ML algorithms
such as Negative Selection Algorithm (NSA) [10], Singular
Value Decomposition (SVD) [11], Standard Neural Networks
(NNs) [12], [13], Convolutional Neural Networks (CNNs)
[14], Recurrent Neural Networks (RNNs) [15], [16], and
Generative Adversarial Network (GAN) implemented using
the Long-Short-Term Memory (LSTM) network [17]. They
are based on constructing a model that is able to profile
normal system behavior, and then non-conforming observa-
tions are identified as anomalies. In [18], an attack detection
approach is proposed based on a graphical model developed
using a probabilistic deterministic real-time automatonmodel
and a Bayesian network, named as the Time Automata and
Bayesian netwORk (TABOR) approach. In [19], supervised
learning is used to develop a detection model using SVM.
A network-based attack detection system is proposed in
[20] to detect attacks in particular communication links in
the SWaT testbed. In addition, model-based attack detection
methods are proposed in [21], [22] for the SWaT system using
approximated discrete models in which invariants are derived
from process dynamics and state entanglement among the
physical components, to detect attacks.

From the computational overhead aspect, model-based
approaches are considered relatively more efficient than data-
driven ones for large-sized systems [23]. In addition, the com-
putational complexity differs among the different Machine
Learning algorithms as it is well known that CNNs and RNNs
involve extensive computations in both training and evalua-
tion phases, while NNs have less computational requirement
ranging from average to high [24]. Comparatively, standard
ML algorithms such as SVD, PCA, SVM, NSA, etc. are char-
acterized by their low to average computational complexity
depending on the problem size [25], [26].

However, model-based approaches in [21], [22] have some
limitations such as modeling approximations given the com-
plexity associated with some processes in the system (i.e.,
the chemical processes, etc.), which affect the detection accu-
racy. Nevertheless, the difficulty, effort, and time require-
ments for the system modeling rise with the increase in the
complexity of the system, and the reliability of the detection
approach is likely to degrade. Even though in [21] the authors
proposed an approach for analyzing the security matter of
the SWaT testbed such as the vulnerabilities of the system
and the possible attack scenarios that can be discovered,
the possibility of using this approach in launching attacks that
cannot be detected by other approaches, specifically the data-
driven methods, depends on the quality of the used system

models. In addition, developing high-fidelity system models
becomes more challenging as the complexity, the size, and
the non-linearity of the system increase.

Methods proposed in [10]–[13], [15], [16] might have the
drawbacks of high missed alarm rate and poor performance
for high dimensional data. In addition, some approaches have
high computational cost such as in [14]–[17], and others, e.g.,
[10], [11] do not make full use of the process information by
disregarding the actuator signals that may contain valuable
input about the process status. In addition, the approach
proposed in [18] requires that the variables selection must
be made manually and empirically by the designer based on
the dynamic behavior. The disadvantage of the supervised
learning-based attack detection system proposed in [19] is its
dependency on the attack data- which are scarce - and the low
accuracy of the detection model under new and unseen attack
scenarios. TABLE 1 presents a summary of the previous
works done using the SWaT and WADI datasets for intrusion
and attack detection.

In this paper, we present a dual isolation forests-
based (DIF) attack detection framework for industrial control
systems in water treatment plants. The two isolation forest
models are trained independently, one using the normalized
raw data and the other using a pre-processed version of
the data using PCA. The idea behind using two models
is to inspect the data in two representations; one in the
original data space and the other in the principal compo-
nent space, thus, elevating the capability of the detection
approach. Its main objective is to address the limitations
of the previous works given that isolation forests have low
computational complexity and high applicability to complex
and high dimensional data. They can be used on mixed
datasets-containing continuous and discrete variables- that
facilitates harnessing the available data when developing
the model. They can be used in both semi-supervised and
unsupervised learning schemes. Unlike most of the previous
works, they are based on pointing out anomalies using the
concept of isolation, which improves the attack detection
capability. There have been a couple of implementations of
isolation forest-based approaches for attack detection, such
as in [27] for smart grid networks and in [28] for information
security.

The contributions of this work can be summarized as
follows:

1) A dual-isolation forests-based attack detection frame-
work is proposed for industrial control systems in water
treatment plants utilizing the normal process data of
actuator signals and sensor measurements.

2) The proposed approach is based on the principle
of separating-away observations that are anomalous,
which improves its ability to detect attacks.

3) Due to the nature of the isolation forest, it can harness
the available information about the process by analyz-
ing the relations between the different system variables,
which are the sensor measurements and the actuator
signals.

36640 VOLUME 8, 2020



M. Elnour et al.: DIF-Based Attack Detection Framework for ICSs

TABLE 1. Summary of the previous works on the iTrust Lab datasets for attack and intrusion detection.

4) It can exploit the available data of the system by learn-
ing from the process data in the original, as well as the
PCA-transformed representations.

5) It provides an efficient solution in terms of computa-
tional complexity when compared to Deep Learning-
based approaches.

The paper is organized as follows. The description of the
systems under study is presented in Section II. In Section III,
the details of the proposed approach are presented. The mod-
els training procedure and the used performance evaluation
metrics are explained in Section IV, along with the evaluation
and comparison results. Finally, conclusions and future work
are summarized in Section V.

II. SYSTEM DESCRIPTION
The work presented in this paper utilizes the experimen-
tal process data from the Secure Water Treatment (SWaT)
testbed [29], [30] and the Water Distribution (WADI) testbed
[31] developed by iTrust Lab at Singapore University of
Technology and Design in order to promote research work
in the area of cybersecurity of ICSs. The details of the two
testbeds are presented in the following subsections.

A. SECURE WATER TREATMENT (SWAT) TESTBED
The SWaT testbed is a scaled-down water treatment plant that
is composed of 6 processes, as demonstrated in FIGURE 1,
and is capable of producing 5 gallons per minute of fresh
water. The data were collected for a total of 11 days in
which 36 different attacks were injected during the last four
days by hijacking the packets in the communication links
between the SCADA system and the Programmable Logic
Controllers (PLCs) comprising around 6% of the total data
samples. The network packets were altered to reflect the
spoofed values from the sensors [29]. The dataset consists of
measurements from a total of 25 sensors for water level, flow
rate, pressure, and chemical decomposition, and signals from
26 actuators, such as pumps and valves. The description of
the SWaT attack scenarios is provided in TABLE 2.

B. WATER DISTRIBUTION (WADI) TESTBED
The WADI testbed is an operational testbed supplying
10 gallons per minute of filtered water. It represents a

FIGURE 1. The physical water treatment process in the SWaT testbed.
P1 through P6 indicate the six stages in the SWaT process - with each
having its dedicated PLC - starting with the raw water intake, then the
pre-treatment and filtration stage, and finally the reverse osmosis
process. Solid arrows indicate the flow of water or chemicals in the
dosing station. Dashed arrows indicate potential cyber-attack points. LIT:
Level Indicator and Transmitter; Pxxx: Pump; AITxxx: Property indicator
and Transmitter; DPIT: Differential Pressure Indicator and Transmitter [32].

scaled-down version of a large water distribution network in
a city. It contains three distinct control processes labeled as
P1 to P3, as presented in FIGURE 2, each controlled by its
own set of PLCs. It consists of a number of large water tanks
that supply water to consumer tanks. The dataset captures the
testbed operation for 16 days; it consists of a total of 59 sensor
measurements and 45 actuator signals. It also includes the
control signals of 7 actuators with their setpoints. The dataset
contains 15 attacks that were injected during the last 2 days
of the testbed operation targeting the components of the
cyber-physical system with the intention of interrupting the
water supply to the consumer tanks. They were conducted by
opening valves and spoofing sensor readings. A description
of the WADI attack scenarios is provided in TABLE 3.

III. PROPOSED METHOD
The proposed framework is developed utilizing the normal
process data of the actuator signals and sensor measurements,
and it is composed of two Isolation Forest (IF) models.
The first IF model is developed using the normalized raw
data while the second IF model is trained after performing
PCA on the normalized continuous-time system variables,
as illustrated in FIGURE 3. The aim of the dual isolation-
forests framework is to exploit the system data by examining
it using two representations to extract useful information that
improves the process of separating-away/isolating anomalies.
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TABLE 2. Description of the attack scenarios on the SWaT testbed.

TABLE 3. Description of the attack scenarios on the WADI testbed.

In the following subsections, we provide the details and the
theoretical background of the algorithms used in the proposed
method.

A. DATA PRE-PROCESSING ALGORITHMS
Machine Learning (ML) is about data analysis using algo-
rithms and statistical models in order to build models capa-
ble of predicting outcomes given the input data. Machine
Learning-based models are highly dependent on the data
used to develop them. The performance and accuracy of
the ML models are tied to the quality and representation
of the data used. The model’s ability to learn and extract
useful information for the purpose of the application can be

limited if the raw data are complex, redundant, contaminated
with noise, etc. Hence, data pre-processing is an essential
step in Machine Learning applications to improve learning.
It involves data normalization, feature selection/extraction,
dimensionality reduction, noise filtering, etc. There are var-
ious data pre-processing approaches that are commonly
used. The following subsections present the ones used in
this work.

1) DATA NORMALIZATION
Data normalization is performed by shifting the data to have a
zero mean, and it may include standardization, which is done
by scaling the data to have a unit variance. Data normalization
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FIGURE 2. There are three processes in the WADI testbed labeled as P1 to
P3. P1 is the primary grid process in which the water intake from the
SWaT testbed product water or from the return water from P3 in WADI is
stored in two storage tanks T-001 and T-002. The storage water tanks in
P1 supply water to two elevated reservoir tanks in P2, which is the water
distribution process to the six consumer tanks based on the demand.
In P3, the recycled water is sent back to P1 once consumer tanks meet
their demands. Solid arrows indicate the flow of water and sequence of
processes. S and A represent sets of sensors and actuators, respectively.
1-LT-001: level sensor in stage 1 and tank 1; 1-FS-001: flow meter 1 in
stage 1; 1-T-001: Tank 1 in stage 1; 2-MV-001: motorized valve 1 in stage
2; 2-MCV-101: motorized consumer valve 1 in stage 2; and 3-P-004: water
pump 4 at stage 3 [31].

is useful to speed up the learning/training of the model and
to optimize the algorithm results since most of the ML algo-
rithms are about solving optimization problems (maximiza-
tion/minimization), and hence depending on the nature of the
data, the learning of the ML-models can be slow and even fall
short due to any local optima. Data standardization is usually
performed before applying machine learning algorithms that
assume that the input data follow aGaussianDistribution. The
analysis is simpler if the input data follow the standard normal
distribution of a zero mean and unit variance.

2) PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a multivariate statistical analysis method defined as
a linear transformation of a set of correlated variables into a
new set of uncorrelated variables. It is widely used in data
dimensionality reduction. Given a measurement data matrix
X ∈ IRm×n where n is the number of variables, and m is
the number of observations, a PCA model is developed using
the normalized data matrix X̄ ∈ IRm×n by optimizing the
correlation matrix C ∈ IRn×n to find a new set of bases that
are uncorrelated to represent the data, namely the principal
components (PCs). The correlation matrix is calculated as:

C =
X̄
T
X̄

m− 1
. (1)

Then, the eigenvalue decomposition of the correlation matrix
is found by:

C = V3VT, (2)

where V ∈ IRn×n is the matrix of the eigenvectors
associated with each of the eigenvalues of C, and 3 =

diag(λ1, λ2, . . . , λn) is the diagonal matrix of the eigenvalues

of C with λ1 and λn are the largest and the lowest eigenval-
ues, respectively. The projection matrix P ∈ IRn×l is used
to transform the data onto the new feature subspace. It is
composed of the first l eigenvectors of the correlation matrix
that are associated with the largest eigenvalues. That is, V =
[P, P̃] where P ∈ IRn×l , P̃ ∈ IRn×(n−l), and l is the num-
ber of PCs. It is determined based on the desired explained
cumulative variance contribution. PCA transforms the data
into two subspaces; the principal components subspace (PCS)
and the residual subspace (RS). The data transformation of a
normalized measurement vector x ∈ IR1×n to the new data
vector x̂ ∈ IR1×l in the PCS is expressed as:

x̂ = xP. (3)

B. ISOLATION FOREST-BASED ANOMALY
DETECTION APPROACH
Isolation Forest (IF) is an unsupervised Machine Learning
algorithm that is used for anomaly detection [33], [34]. It is
an ensemble regressor encompassing a number of isolation
trees in which each tree is trained on a random subset of the
training data, as described in Algorithm 1. The parameters
associated with an isolation forest are:

1) The number of trees (nestimators),
2) The maximum number of observations (mmax) repre-

senting the size of the data subset used to train each
tree,

3) The maximum number of features (nmax) representing
the subset of the data features used to train each tree.

Algorithm 1 Train Forest (X , nestimators,mmax, nmax)

Input: X - input data, nestimators - number of trees, mmax -
size of data subset, nmax - features of data subset

Output: a set of nestimators iTrees
Initialize Forest
for i = 1 to nestimators do
X ′← sample(X ,mmax, nmax)

Forest ← Forest ∪ iTree
(
X ′
)

end
return Forest

As shown in Algorithm 2, the isolation forest uses the
concept of isolation to separate-away anomalies in which
recursive binary splitting is performed by each isolation tree
(iTree) for the random data subset X ′ by randomly selecting
a split feature q and its split value p -that is within its range-
yielding a left Xl and right Xr data subsets each time until all
samples are isolated. Each split produces a node, which can
be an internal node if there are further possible splitting in the
corresponding split regions or an external node meaning it is
the last node in the branch when the size of the data subset of
that region is 1 or the maximum tree depth is reached. In the
case of an internal node, the data subsets of the two branches
of the node Xl and Xr are further split until an external node
is reached. The information associated with the external node
is the size of the data subset in that region.
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FIGURE 3. The framework of the dual isolation forests-based attack detection approach. It starts with the offline training in which the first step is
separating the continuous and discrete variables. For the SWaT dataset, the system has a total of 51 variables with 26 discrete variables and 25
continuous variables, while for the WADI dataset, there are a total of 117 variables in which 53 are discrete, and 64 are continuous variables. PCA is
performed on the normalized continuous variables to retain a cumulative explained variance of 95%, and the numbers of PCs found for the SWaT and
the WADI datasets are 12 and 33, respectively. The original and the PCA-processed versions of the datasets are used to develop the isolation forests
models. The same steps are followed in the online detection using the PCA and isolation forests models obtained from the offline training along with
the information about the data normalization procedure -indicated by the red dotted arrows-. The final decision is made by observing the predictions
of the two isolation forest models for a time frame of w time instants.

Algorithm 2 Train iTree
(
X ′
)

Input: X ′ - input data
Output: an iTree
if X ′ cannot be divided then
return externalNode{Size← |X ′|}

else
let Q be the list of features in X ′

randomly select a feature q ∈ Q
randomly select a split point p between max and min
values of feature q in X ′

Xl← filter
(
X ′, q < p

)
Xr← filter

(
X ′, q ≥ p

)
return internalNode{Left← iTree(Xl),
Right← iTree(Xr), FeatureSplit← q, SplitValue← p}

end

Anomalies are different from normal observations, and
they can be easily isolated. Hence, it is expected that they
will be closer to the root and hence have a shorter path. The
anomaly detection for a given data sample x is made upon the
score s(x) relative to the detection threshold ε as follows:

s(x) = 2−
h̄(x)
H , (4)

H = 2 ln (mmax − 1)+ 1.2− 2 (mmax − 1) /m, (5)

where H is the average expected path length of trees in the
forest provided that anomalies are labeled as−1while normal
observations are labeled with 1, and h̄(x) denotes the average
path length on all trees defined as:

h̄(x) = 1/nestimators

nestimators∑
i=1

hi(x). (6)

Here, hi(x) is the path length of the ith tree determined by the
number of edges in the tree. Then, the anomaly is detected
using the following function:

y =

{
1 if s(x) > ε

−1 if s(x) ≤ ε.
(7)

For the proposed DIF-based attack detection framework
presented in FIGURE 3, the two isolation forest models
yield the outputs y1 and y2, which in turn -through a logical
operation- produce the attack indicator y̌. That is, if either of
y1 or y2 is −1, the attack indicator y̌ is one; otherwise, y̌ is
zero. The decision function of the dual isolation forests-based
attack detection approach is made by checking an observation
window of lengthw such that an attack is detected if the attack
indicator y̌ is 1 for at least 80% of the observation period.

IV. EVALUATION
This section presents the evaluation of the proposed attack
detection framework in terms of the used performance met-
rics, datasets description, models training details, and the
evaluation results.

A. PERFORMANCE METRICS
The confusion matrix is a form of contingency table with
two dimensions identified as True and Predicted, and a set
of classes in both dimensions, as presented in TABLE 4. The
following performance metrics are derived from the confu-
sion matrix [35]:

1) PRECISION
It is also called the Positive Predictive Value (PPV), which is
a measure of the closeness of the set of predicted results, and
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TABLE 4. The confusion matrix.

it is expressed as:

PPV =
TP

TP+ FP
(8)

2) RECALL
It is also known as the True Positive Rate (TPR) and is
calculated by:

TPR =
TP

TP+ FN
(9)

3) F1 − score
It is the harmonic average of the precision and recall, where
it is at its best at a value of 1, meaning perfect precision and
recall. It is given by:

F1 − score = 2
PPV× TPR
PPV+ TPR

(10)

B. DATASETS
As mentioned previously, the work presented in this paper
is demonstrated using the iTrust Lab datasets, which are
the SWaT and the WADI. The SWaT dataset consists of a
total of 51 variables, 25 of which are sensor measurements
(all are continuous variables), and 26 variables are actua-
tor signals (all are discrete variables). The WADI dataset
comprises of 117 variables with 59 sensor measurements
(44 are continuous variables, and 15 are discrete variables),
45 actuator signals (7 are continuous variables, and 38 are dis-
crete variables), 7 controller output signals (all are continuous
variables), and 6 time-varying setpoints (all are continuous
variables). The SWaT and the WADI datasets contain two
data logs, the first one contains normal process data only
collected for 7 and 14 days, respectively, while the second
one consists of data for the system operation under both
normal and attack scenarios for 4 and 2 days, respectively,
at a sampling time of 1 second.

The first step is to clean the second data log by remov-
ing the data collected during 1 hour after each attack was
terminated because the system behavior in that period is
vague and might result in biasing the performance evaluation
of the developed models. That is, it represents a recovery
period from the attack impact during which the system sta-
bilizes back to its steady-state normal behavior. Consider-
ing the actual labeling of this time period, the observations
are labeled as normal and attack-free time instants. While
behavior-wise, they are anomalous, which in turn would
induce false positives and bias the performance evaluation of
the proposed approach.

The normal and attack observations in the second log are
separated since it was noticed that the normal operational data

in the second logs seem to represent a different operational
mode -different distribution-. When developing the machine
learning model, the distribution of the training and the vali-
dation datasets should be the same. The dataset used to train
and develop the Machine Learning model should be repre-
sentative of the system operation. Finally, the steady-state
combined normal process data from the two logs are used for
developing the proposed detection approach. The attack data
subset is used to test the detection model performance.

C. MODEL TRAINING
The training of the isolation forest models is conducted using
Scikit-learn library, which is an open-source Machine Learn-
ing library for the Python programming language [36]. It is
conducted using 5-fold cross-validation such that each IF
model is trained 5 times using 80% of the training dataset
for training and 20% for validation, selected randomly. Grid
search is utilized for model tuning given the limited num-
ber of hyper-parameters associated with the isolation forest
model for the ranges presented in TABLE 5 and with the
objective of achieving a maximum false alarm rate of 5% on
the training dataset. The PC used for the training has 64 GB
RAM and 12-cores AMDRyzen 9 3900X CPUwith 3.8 GHz
speed using 64 bit Windows 10 Pro OS.

TABLE 5. Ranges of the hyper-parameter values for the grid search.

The two IF models are trained independently using the
normalized raw data and the PCA-processed data, respec-
tively. PCA is applied to the continuous-time variables to
retain an explained cumulative variance of 95%. For instance,
FIGURE 4 and FIGURE 5 present examples of the SWaT
dataset visualizations before and after PCA processing. It can
be seen that the normal and the attack observations are
somewhat fused when viewing the data in the original repre-
sentation while they are decoupled in the PCA-transformed
representation.

The details of the best models of the two isolation forests
are presented in TABLE 6. As inferred from [33], the per-
formance of the isolation forest converges in terms of the
number of trees nestimators used, and it was found converg-
ing at 100 and 250 for the SWaT models, and at 100 and
150 for the WADI models, respectively with minimal further
improvements in the detection performance at a higher cost
of the training time. FIGURE 6 and FIGURE 7 represent
a demonstration example on the SWaT dataset for the effect
of varying the number of trees by the Receiver Operating
Characteristic (ROC) curves.

In addition, the effect of the number of features nmax used
to train trees in the isolation forest model was minor while
the size of the data subset mmax used for training each tree
showed noticeable effects on the model’s performance since
the data subset size determines the average path length as
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FIGURE 4. Visualizations of random subsets of the SWaT normalized raw
dataset.

FIGURE 5. Visualizations of random subsets of the SWaT PCA-processed
dataset.

TABLE 6. Details of the isolation forest models.

determined using Equation (5). This is demonstrated using
the ROC curves shown in FIGURE 8 to FIGURE 11 on the
SWaT dataset as well.

Sometimes the system behavior under some attacks is
indistinguishable from the ones during the normal operation.
Hence, the benefit of using the dual examination of the
raw dataset with the original interdependency between the

FIGURE 6. ROC curves for models of Isolation Forest-1 with
mmax = 10000, nmax = 10, and varying nestimators.

FIGURE 7. ROC curves for models of Isolation Forest-2 with
mmax = 5000, nmax = 10, and varying nestimators.

FIGURE 8. ROC curves for models of Isolation Forest-1 with
nestimators = 250, mmax = 5000, and varying nmax.

FIGURE 9. ROC curves for models of Isolation Forest-2 with
nestimators = 250, mmax = 5000, and varying nmax.

different variables of the system and comparing it with a
cleaner version of the dataset after extracting the uncorrelated
components, and removing the redundancy in the data is to
help extract additional attacks. FIGURE 12 and FIGURE 13
demonstrate the performance of the IF-1 and the IF-2 models
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FIGURE 10. ROC curves for models of Isolation Forest-1 with
nestimators = 250, nmax = 5, and varying mmax.

FIGURE 11. ROC curves for models of Isolation Forest-2 with
nestimators = 250, nmax = 10, and varying mmax.

in detecting the SWaT attacks and the WADI attacks, respec-
tively, such that the y-axis represents the recall value and
the x-axis is the attack index. For the SWaT testbed, it can
be seen that some attacks are detected using the IF-2 model
that cannot be detected by the IF-1 model such as Attacks 3,
5, 6, 8, and 9 and vice verse. Again, as demonstrated in
FIGURE 4 and FIGURE 5, the performance of the IF-2 is
better since after performing data dimensionality reduction
using PCA, the redundancy and the uncorrelated components
in the data are removed, and the data is less fused such that it
is easier to isolate away anomalies. Similarly for the WADI
dataset, some attacks are detectable by the IF-1 but are not
by the IF-2 such that Attacks 3, 4, 5, 10, 11, 12, 13, 14, and
15 are detected by the IF-1 model while Attacks 2, 7, and
9 are detected by the IF-2 model. It is worth noting that the
selection of the detection thresholds for the two models is
based on a maximum of 5% false alarm rate. That is, the score
values in the scenarios that the attacks do not reflect on the
system variables are expected to be comparable. When the
detection threshold is set, those score values might fall below
this threshold, and hence, be considered as attack incidents
and vice versa.

D. COMPARISON WITH OTHER APPROACHES
We compared the proposed method with the other applied
approaches in the literature that have been developed using
the SWaT and WADI datasets. It is worth noting that the fol-
lowed data pre-processing procedure in most of the previous
works presented in this comparison utilized the datasets in
a similar way as in our work, i.e., the number and type of

TABLE 7. Comparison between the different detection methods on
the second log of the SWaT dataset.

TABLE 8. Comparison between the different detection methods on
the second log of the WADI dataset.

TABLE 9. Recall values for the different detection approaches on the
attack subset of the SWaT dataset.

variables used, the use of the normal observations from the
two logs for the training and validation while the attack log
was used for testing, the use of the steady-state data for the
training and validation phase, the consideration of the attack
recovery period, etc. The performance evaluation results for
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FIGURE 12. The recall values of the two isolation forest models on the SWaT attack log.

FIGURE 13. The recall values of the two isolation forest models on the
WADI attack log.

the second log of the two datasets for the different approaches
are summarized in TABLE 7 and TABLE 8, considering that
the observation window used for the DIF-based detection
method is w = 120 seconds that is evaluated every 30 sec-
onds. The evaluation results of additional approaches using
PCA, K-Nearest Neighbour (KNN), Feature Bagging (FB),
Auto-Encoder (AE), Efficient GAN (EGAN), and SVM that
were presented in [12], [17] for comparison are listed as well.

The DIF-based attack detection system achieves an
improved F1-score of 88.2% and 65.6% on the SWaT and
WADI datasets, respectively. For the SWaT dataset, it was
found that the achieved improvement in the F1-score value
is up to about 7% for the approach with comparable com-
putational complexity over the the NN-based, SVM, and the
TABOR-based approaches. However, it is as minimal as 2.2%
for the 1D-CNN-based approach, which is far higher in the
computational requirement. In addition, for theWADI dataset
when comparing the proposed approach with the GAN-based
approach, it was found that the improvement in the F1-score is
about 4% while the precision is improved by 23%. However,
the recall is less by 18%. There will be a trade-off in terms of
the different aspects of the used algorithms, as demonstrated
in the former analysis. Moreover, it is assumed that the pre-
vious works results, which are summarized in TABLE 7 and
TABLE 8, represent the best performing models as per the
authors of the original work.

The total number of detected WADI attacks was 12 out
of 15, representing 80% of the attack scenarios, namely the
undetected attacks were 1, 6, and 8, as demonstrated in
FIGURE 13. The common factor between these attacks is
that theywere conducted by changing the states of atmost two
valves from OFF to ON, aiming to overflow tanks or interfere

with the water distribution process. It seems that the impact
of those attacks on the process is insufficient for the proposed
approach to detect them.

In terms of the SWaT attack log, the dual isolation-
forest-based detection framework was capable of detecting
Attacks 3, 20, and 30, unlike the other approaches, as shown
in TABLE 9. FIGURE 14 to FIGURE 19 demonstrate the
attack indicators for the SWaT attack scenarios with the low
recall values reported in TABLE 9, which were detected
after a time delay noting that the start of the attack is at the
beginning (time = 0 min). As demonstrated in FIGURE 14
and FIGURE 15, the detection delay for Attacks 14, 15, and
28 is less than 1 minute, while, FIGURE 16 and FIGURE
17 show that the time delay in detecting Attacks 12 and 18 is
around 2 minutes. In addition, the detection delay for Attacks
13 and 36 is 4 minutes and 10 minutes, respectively, as shown
in FIGURE 18 and FIGURE 19. These results indicate that
the proposed DIF attack detection approach can eventually

FIGURE 14. Detection of SWaT testbed Attacks 14 and 15 using the
DIF-based approach.

FIGURE 15. Detection of SWaT testbed Attack 28 using the DIF-based
approach.

FIGURE 16. Detection of SWaT testbed Attack 12 using the DIF-based
approach.
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TABLE 10. Analysis of the performance of the proposed approach on some of the S3 attack scenarios.

FIGURE 17. Detection of SWaT testbed Attack 18 using the DIF-based
approach.

FIGURE 18. Detection of SWaT testbed Attack 13 using the DIF-based
approach.

FIGURE 19. Detection of SWaT testbed Attack 36 using the DIF-based
approach.

detect Attacks 12, 13, 14, 15, 18, 28, 36, and the low recall
values reported in TABLE 9 are mainly due to the detection
time delay.

It is worth noting that Attacks 16, 19, 21, and 25 were
detected by the NN-based attack detection approach, and
additionally, Attacks 1, 2, 25, and 29 were detected by the
1D-CNN-based detection method, but they were not detected
by the proposed DIF-based framework. This can be explained
by the fact that the scores of those attack (anomalous)
points are comparable to others under normal operation, and
hence, they cannot be detected without compromising the
false alarm rate. In addition, the DIF-based detection method
has a relativity higher false alarm rate, which is reflected
in the precision metric that was found to be lower when
compared with the other approaches. This is due to the fact
that the system behavior under some attacks is similar to
the ones during the normal operation, and hence, it may be
falsely regarded as an attack incident given the threshold
setting.

E. CASE STUDIES
This subsection presents two case studies regarding the per-
formance of the proposed approach under the SWaT Security
Showdown (S3) attacks on SWaT testbed, and under adver-
sarial attacks.

1) SWaT SECURITY SHOWDOWN (S3)
This section presents a qualitative analysis of the perfor-
mance of our proposed approach on the attack scenarios
implemented in the SWaT Security Showdown event, which
was held twice in 2016 and 2017 in which independent
attack teams were invited to design and lunch real-time
attacks on the SWaT testbed. There was a total of 49 differ-
ent attacks injected targeting the Human Machine Interface
(HMI), SCADA, PLCs, historian, sensors, and actuators, and
the details of the attacks can be found in [32]. The aim of
the event was to enable assessing the effectiveness of detec-
tion approaches, namely, the Water Defense (WD) approach,
which is a model-based detection method. We were unable
to use the S3 dataset for testing our proposed approach since
not all the system variables were recorded/available during
the attack injection, but rather only the particular variables of
interest for the used detection approach.

As presented in TABLE 10, we qualitatively analyzed the
effectiveness of our approach on the S3 dataset by studying
the type of the injected attack in relation to the original attack
log provided in the second log of the SWaT dataset. For
example, S3-2016 Attack 1 aimed to underflow a tank by
closing valve M-V101 and stopping the pumps P-101 and
P-102. Its effect on the process is similar to SWaT Attack
30 in which pumps P-101 and P-102 were both forced to
stop to achieve the same attacker aim. In addition, the goal of
S3-2017 Attack 20 is to disrupt the operation of pump P-501,
which matched SWaT Attack 32 description in which pump
P-501 was forced to turn OFF, and the reading of FIT-502 was
tampered with in an attempt to deviate the pump operation
from the normal condition. It was found that 13 attacks were
of the same characteristics as the SWaT attacks and were all
detected expect 1 attack, which is S3-2016 Attack 14.

2) ANALYSIS OF ADVERSARIAL ATTACKS
Adversarial attacks are crafted attacks by adversaries with
the intent of leading the machine learning model to misclas-
sify [37]. Concerns about those types of attacks have raised
after the increased deployment of machine learning-based
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approaches for cybersecurity applications. Isolation forests
are less prone to such attacks because of their working princi-
ple, which is - as mentioned previously- is based on isolating
anomalies. That is, the aggregated predictions of the differ-
ent isolation trees in the forest while examining the system
variables from several aspects - based on the isolation forests
specifications, such as nmax- promote the isolation forest to
be resilient to these kinds of attacks. On the other hand, deep-
learning-based approaches such as CNN, RNN, etc., are more
prone to adversarial attacks as they aim to extract patterns or
features from the input to make the prediction and a designed
attack by adding perturbations to the original input can cause
the network to misclassify the adversarial input.

V. CONCLUSION
A dual isolation forests-based attack detection system was
developed using the system’s process data for the Secure
Water Treatment and the Water Distribution testbeds, which
are down-scale versions of popular industrial control systems.
Theworking principle of the proposed approach is identifying
and separating away anomalies from the normal observations
using the concept of isolation after analyzing the data in the
original and the PCA-transformed representations.

The DIF-based attack detection framework was compared
with other approaches in terms of precision, recall, and
F1-score. For the SWaT testbed, it was found that the attack
detection using the proposed approach was improved by up
to 7% in terms of the F1-score value. In addition, a total
of 19 SWaT attacks were detected with a minimum recall
of 80%, 6 attacks were detected after a time delay of up to
40% of the attack duration, and 11 attacks were undetected.
For the WADI testbed, 80% of the attacks were detected,
and the performance of the proposed approach was improved
in terms of the precision by 23% when compared to the
GAN-based approach at the cost of the number of attacks that
were detected, which was reflected on the recall value that
was decreased by about 18%.

Future work would be as follows:
1) improving the performance of the detection approach

by means of feature extraction,
2) and extending the proposed approach to a hybrid detec-

tion system using both process and network traffic data
of the system to improve the detection capability of
stealthy attacks.
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