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ABSTRACT In this paper, an integrated accuracy enhancement method based on both the kinematic
model and the data-driven Gaussian Process Regression (GPR) technique is proposed for a Cable-Driven
Continuum Robot (CDCR) with a flexible backbone. Different from the conventional continuum robots
driven by pneumatic actuators, a segmented CDCR is developed in this work, which is a modular manipulator
composed by a number of consecutive Cable-Driven Segments (CDSs). Based on the unique design of the
backbone structure which merely allows 2-DOF bending motions, a two-variable Product-of-Exponential
(POE) formula is employed to formulate the kinematic model of the CDCR. However, such an analytic
kinematic model is unable to accurately describe the actual deflections of the backbone structure. Therefore,
GPR is proposed to compensate the tip error of a CDCR. Compared with other machine learning methods,
GPR requires less learning parameters and training data, which makes the learning process computationally
efficient. To validate the effectiveness of the proposed integrated accuracy enhancementmethod, experiments
on the actual testbed are conducted. Experimental results show that the CDCR’s position and orientation
errors are reduced by 68.72% and 51.74%, respectively.

INDEX TERMS Cable-driven continuum robot, kinematic modeling, tip error compensation, Gaussian
process regression.

I. INTRODUCTION
A Cable-Driven Continuum Robot (CDCR) with a flexi-
ble backbone can realize continuous deformation in order
to adapt to congested and complex environments. Besides,
the CDCR has the advantages of light-weight structure,
high compliance and inherent safety. Therefore, the CDCR
has attracted many researchers’ attention due to its promis-
ing applications, such as light-weight manipulators [1], [2],
inspection of gas turbine engines [3] and minimally invasive
surgery [4], [5].

In recent years, a variety of continuum robots have been
developed for different working environments. In [6], a con-
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tinuum soft robot is developed inspired by the octopus. The
integral structure of the robot arm is made of silicone rubber,
in which the driving cables are embedded into the struc-
ture. The proposed continuum robot possesses the bending,
elongation and shrinking capabilities. In [7], a soft modular
manipulator is presented based on flexible fluidic actuators
and motor driven cables, which also allows bending, elonga-
tion and shrinking movements. In [8], a tendril robot driven
by cables is proposed whose backbone employs extension
and compression springs, and such a vimineous robot arm
is employed for minimally invasive inspection. The above
soft continuum robots have unique configuration designs
in order to satisfy the properties such as high compliance,
great environmental suitability andmulti-degrees-of-freedom
movements. However, due to the complex deformation of the
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robot arm, it is difficult to formulate an accurate kinematic
model.

In previous research, a variety of kinematic modeling
methods have been proposed for different configuration
designs of the flexible continuum robots. In [9], the con-
ventional D-H parameter method is employed for the kine-
matic modeling analysis of a continuum robot inspired by
the elephant trunk. In [10], the forward kinematic model of
a multi-backbone snake-like robot is formulated based on
a two-joint-variable formula, in which two joint variables
are employed to describe the bending movements of the
backbone. In [11], a modal analysis approach is proposed to
develop the kinematic model of a hyper-redundant continuum
robot. The shape of the flexible backbone is decomposed into
a finite number of Wavelet basis functions in order to approx-
imate the actual bending shape of the backbone. However,
as most continuum robots have complex deformation due to
their soft and flexible backbone structures, their kinematic
models formulated through the above modeling methods are
generally inaccurate, which significantly affect the position-
ing accuracy of the continuum robots.

In order to improve the accuracy of the kinematic model,
various machine learning methods are employed for flexible
continuum robots. In [12], a supervised learning method,
Feedforward Neural Network (FNN), is employed to learn
the inverse kinematic model for an nonconstant curvature soft
manipulator. Compared with the numerical inverse kinemat-
ics algorithm, the presented method shows good performance
and significantly compensates the position error. In [13],
three data-driven approaches, Extreme Learning Machine
(ELM), Gaussian Mixture Regression (GMR) and K-Nearest
Neighbors Regression (KNNR), are employed to learn the
inverse kinematic model for a tendon-driven surgical manip-
ulator to compensate its tip error. In [14], the forward and
inverse kinematic models are obtained based on FNN tech-
nique for a concentric tube continuum robot, which shows
good performance on the compensation of the translation and
rotation errors. Compared with the analytic kinematic mod-
eling approaches, the above data-based methods can effec-
tively obtain more accurate kinematic models for flexible
continuum robots. However, most machine learning methods
require a large amount of training data and many learning
parameters, which makes the learning process computation-
ally intensive. Furthermore, the over-fitting problem in some
machine learning methods also affects the accuracy of the
learning models.

In this paper, a CDCRwith a flexible backbone is designed,
in which a segmented cable-driven scheme is employed.
The flexible backbone employs a unique mechanical struc-
ture that has high tensile and torsional stiffness but low
bending stiffness, so that each Cable-Driven Segment (CDS)
merely allows 2-DOF bending movements. Such a backbone
structure design not only simplifies the kinematic modeling
process but also makes the resultant kinematic model more
accurate than other continuum robots. Based on the unique
design features, a two-variable POE formula [15], [16] is

employed to formulate the forward kinematic model for the
CDCR. However, there still exists the certain level of mod-
eling errors due to the complex bending deflection of the
backbone. Therefore, Gaussian Process Regression (GPR)
technique is employed to compensate the tip error of the
CDCR resulting from the analytic kinematic model, which
further improves the accuracy of the kinematic model. The
proposed method is integrated with the analytic kinematic
model compared with other data-based machine learning
methods. It requires less training parameters and training
data, which increases the computational efficiency of the
learning process.

The remainder of this paper is organized as follows:
Section II presents the design of the CDCR with a unique
flexible backbone structure. Section III presents the forward
kinematic modeling analysis for the 2-DOF CDS and the
CDCR, respectively. Section IV introduces GPR and the
learning process in order to compensate the tip error of the
CDCR. SectionV presents the experimental set-up and exper-
imental results to validate the effectiveness of the proposed
integrated accuracy enhancement method. Finally, Section VI
presents the conclusion of this work.

II. DESIGN FOR THE CABLE-DRIVEN CONTINUUM ROBOT
WITH A FLEXIBLE BACKBONE
In this work, a segmented cable-driven scheme is employed
for the CDCR with a flexible backbone. As shown in Fig.1a,
the CDCR consists of a succession of consecutive identical
Cable-Driven Segments (CDSs). Each CDS is independently
controlled by four driving cables. The flexible backbone
employs a wire braided hydraulic hose, which has low bend-
ing stiffness but high tensile and torsional stiffness. As a result
of such a unique backbone design, the bending deflection of
each CDS can be approximated by an arc, i.e., each CDS
merely allows 2-DOF bending movements.

Referring to Fig.1b, each 2-DOF CDS consists of a base,
a moving platform, four driving cables and a flexible back-
bone. For each CDS, the base is identical to the moving

FIGURE 1. Schematic diagrams. a) The complete CDCR; b) the 2-DOF CDS.
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FIGURE 2. Kinematics diagram of the 2-DOF CDS.

platform. Four driving cables, which possess the unilateral
driving property, are evenly anchored on both the base and
the moving platform. The flexible backbone is located at the
centers of the base and the moving platform.

Resulting from the unique flexible backbone structure,
the kinematic modeling analysis of the CDCR is greatly
simplified compared with other continuum robots which have
complex movements.

III. FORWARD KINEMATIC MODELING ANALYSIS
A. FORWARD KINEMATIC MODELING ANALYSIS OF ONE
CABLE-DRIVEN SEGMENT
As shown in Fig.2, for the ith CDS, two coordinate systems,
frame {i − 1} and frame {i}, are defined and located at the
centers of the base and the moving platform, respectively. For
frame {i−1}, its xi−1 axis points to the anchorage point of the
first driving cable on the base and zi−1 axis is perpendicular
to the base. Similarly, for frame {i}, its xi axis points to
the anchorage point of the first driving cable on the moving
platform and zi axis is perpendicular to the moving platform.
The pose of the moving platform described in the base frame
is represented by the kinematic transformation matrix from
frame {i− 1} to frame {i}.

Based on the 2-DOF bending property, two joint variables
are employed to describe the 2-DOF bending movements of
the CDS: the bending angle θi and the rotation angle of the
bending plane αi, where θi ∈ [0, π2 ], αi ∈ [−π, π]. The plane
OCPB presented in Fig.2 is the bending plane of the CDS,
which is always perpendicular to the base.

1) KINEMATIC RELATIONSHIP BETWEEN DRIVING CABLE
LENGTHS AND TWO JOINT VARIABLES
Define the norm of the vector

−−→
BjPj be the jth driving cable

length (j = 1, 2, 3, 4). Based on the kinematics diagram
referring to Fig.2, a close-loop equation for the

−−→
BjPj is given

as
−−→
BjPj =

−→
BjO+

−→
OC +

−→
CPj (1)

where Bj and Pj denote the anchorage points of the jth driving
cable on the base and the moving platform, respectively. O
and C are the central points of the base and the moving

platform, respectively. The vectors,
−→
BjO,
−→
OC and

−→
CPj, can be

formulated by the joint variables and geometric parameters
of the CDS.

According to (1), the analytic expression of the jth driving
cable length is formulated as

lij = 2
L
θi
sin

θi

2
− 2r cosβj sin

θi

2
(2)

where L is the arc length of the backbone, and r is the radius
of the circle where the anchorage points are located.

In (2), βj is the rotation angle from
−→
OBj to

−→
OB. It can be

expressed as

βj = α + (j− 1)
π

2
(3)

where j = 1, 2, 3, 4.
From (2), it yields

αi = arctan
(
li4 − li2
li3 − li1

)
(4)

θi = 2 arcsin

(√
(li3 − li1)2 + (li4 − li2)2

4r

)
(5)

According to (4) and (5), the kinematic relationship
between driving cable lengths and two joint variables is
clearly expressed.

2) KINEMATIC RELATIONSHIP BETWEEN TWO JOINT
VARIABLES AND THE POSE OF THE MOVING PLATFORM
Based on the screw theory, the 2-DOF bending motions of the
CDS can be described as the rotation about an instantaneous
screw axis ξi by the bending angle θi [17]. The kinematic
transformationmatrix of frame {i}with respect to frame {i−1}
is given as

Ti−1,i(αi, θi) = eξ̂iθiTi−1,i(0) (6)

where ξ̂i =
[
ω̂i vi
0 0

]
∈ se(3) is the twist of the ith CDS

described in frame {i−1}, whose twist coordinate is given by
the screw axis ξi = (vi, ωi) ∈ <6×1. vi represents the position
vector of the screw axis ξi described in frame {i − 1} and ωi
is the unit directional vector of the screw axis ξi described in
frame {i− 1}.
In (6), Ti−1,i(0) denotes the initial pose of frame {i}

expressed in frame {i− 1}:

Ti−1,i(0) =


1 0 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 (7)

To determine ξi = (vi, ωi) ∈ <6×1, the kinematic transfor-
mation from frame {i− 1} to frame {i} is employed:

Ti−1,i(αi, θi) =
[
Ri−1,i(αi, θi) p(αi, θi)

0 1

]
(8)

where Ri−1,i(αi, θi) = eω̂iθi ∈ SO(3) is the orientation of
frame {i} with respect to frame {i − 1}, and p(αi, θi) is the
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position vector of frame {i} with respect to frame {i − 1},
which is represented by the coordinate of

−→
OC .

According to (6) and (8), eξ̂iθi can be rewritten as

eξ̂iθi = Ti−1,i(αi, θi)Ti−1,i(0)−1 (9)

From [17], the twist motion eξ̂iθi can also be represented as

eξ̂iθi =
[
eω̂iθi (I − eω̂iθi )(ωi × vi)+ ωiωTi viθi
0 1

]
(10)

Through equating (9) and (10), the position and orientation
of the screw axis can be formulated as follows:

vi = L
[
−

1
2 cosαi −

1
2 sinαi

1
θi
−

1
2 cot

1
θi

]T
(11)

ωi =
[
− sinαi cosαi 0

]T (12)

According to (12), the orientation of the screw axis ωi is
consistently parallel to the base platform as shown in Fig.3.
It is formed by the cross product of zi−1 and zi and is perpen-
dicular to the bending plane.

Based on (11) and (12), given two joint variables, αi and
θi, the screw axis can be uniquely determined. According to
(6), the pose of the moving platform with respect to the base
can be readily determined.

B. FORWARD KINEMATIC MODELING ANALYSIS OF THE
CABLE-DRIVEN CONTINUUM ROBOT
Based on the segmented cable-driven scheme, the forward
kinematic model of a CDCR can be formulated as the product
of the kinematic models of the CDSs:

T0,n(α, θ) = T0,1(α1, θ1) · · · Ti−1,i(αi, θi) · · · Tn−1,n(αn, θn)

(13)

Given joint variables of all CDSs, the pose of the end
platform for the CDCR described in the base frame can be
uniquely determined according to the number and sequence
of the CDSs.

FIGURE 3. Rotation of the 2-DOF CDS.

C. COMPUTATION EXAMPLE
In order to illustrate the effectiveness of the proposed kine-
matics modeling method, a computation example is pre-
sented. As shown in Fig.6, a CDCR is composed by four
CDSs and the height of each CDS is L = 120mm. The
radius of the circle where the anchorage points are located
is r = 70mm. Given the lengths of sixteen driving cables,
the joints variables and the corresponding pose of the end
platform described in the base frame can be computed. The
computation results are presented in Table 1.

IV. TIP ERROR COMPENSATION
Although the forward kinematic model of the CDCR pre-
sented in Section III is greatly simplified, it is still not
accurate due to the complex deflection of the flexible back-
bone and the influence of the machining error and assembly
error introduced to the CDCR. Gaussian Process Regression
(GPR) is employed to compensate the tip error of the CDCR
based on the formulated kinematic model. It is worth to
mention that GPR has been employed for the calibration of
the industrial robots and demonstrates its effectiveness and
robustness [18], [19].

A. GAUSSIAN PROCESS REGRESSION
GPR is a supervised learning method employed for data
prediction, in which Gaussian Process (GP) is employed to
describe the function distribution. GP is the combination
of wilfully finite random variables with the joint Gaussian
distribution, whose property is merely determined by the
mean function and the covariance function [20]. Generally,
the mean function of the GP model is transformed into zero
through data preprocessing in order to simplify the learning
process. Therefore, it just requires to train the tunable learn-
ing parameters of the covariance function during the learning
process. Compared with other machine learning methods,
GPR merely requires several learning parameters and a small
amount of training data, which increases the computational
efficiency of the learning process.

During the learning process, the training data set and the
verification test data set are employed to update the GP
model and evaluate the updated GP model, respectively. The
learning process and the prediction process are presented as
follows.

Given n sets of training data (xi, yi), i = 1, 2, . . . , n,
the corresponding outputs predicted by the GP model are
assumed as the normal distribution:

y ∼ N (0,K ) (14)

where K ∈ <n×n is the covariance matrix of the GP model,
and Kij is the relevance measurement between xi and xj.

In (14), the square exponential covariance is employed as
the covariance function for the GP model:

Kij = K (xi, xj) = σ 2 exp(
1

2
(xi − xj)T `−2(xi − xj)) (15)
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TABLE 1. Computation results for the forward kinematic analysis.

where σ and l are the tunable learning parameters of the
covariance function, which can form a parameter set θ =
{σ 2, l2}.

In order to solve the optimal solution of learning parame-
ters, themaximum likelihood function of the hyper-parameter
set L(θ ) = − log p(y | X , θ) is employed for the training data,
where X = [x1, · · · , xn]. Through minimizing the maximum
likelihood function L(θ ), the optimal hyper-parameters can
be obtained.

After training, it is required to verify the effectiveness of
the GP model. Given a verification test point (xtest, ytest),
the predicted output ygptest based on the Bayesian inference can
be determined by

ygptest|y ∼ N (KtestK−1y,KttKtestK−1KT
test) (16)

where Ktest = K (X , xtest) = K (xtest,X )T is the covariance
matrix between xtest and the input matrix X , and Ktt =

K (xtest, xtest) is the auto-covariance of xtest.
Through comparing the actual output ytest with the pre-

dicted output of the GP model ygptest, the effectiveness of the
GP model for data prediction is certified.

B. COMPENSATION PROCESS
For the CDCR with four CDSs as shown in Fig.6, the input
of the GP model is the joint variables from the first CDS to
the forth CDS:

x = [α1, θ1, α2, θ2, α3, θ3, α4, θ4] (17)

The actual output of the GP model is the initial tip error of
the CDCR. According to the local POE formula [21], the tip
error is given as

ε = log(T a0,n(T
n
0,n)
−1)∨ (18)

where T a0,n represents the measured pose of the end platform
with respect to the base frame of the CDCR, and T n0,n rep-
resents the computed pose of the end platform with respect
to the base frame calculated through (13). log(T )∨ denotes
the mapping from the kinematic transformation matrix T ∈
SE(3) to a twist ε ∈ <6×1. The flowchart of the learning
process for the joint variables and the corresponding tip errors
is given in Fig.4.

The updated GP model can be transformed into a matrix
Tgp ∈ SE(3) through the exponential mapping, which is used
to compensate the nominal kinematic model:

T c0,n = TgpT n0,n (19)

To evaluate the effectiveness of the updated GP model,
the residual tip error after compensation dε is calculated:

dε = log(T a0,n(T
c
0,n)
−1)∨ (20)

According to the aforementioned tip error compensation
method, the accuracy of the kinematic model is significantly
improved, which increases the positioning accuracy of the
CDCR.

V. EXPERIMENTAL SET-UP AND RESULTS
A. EXPERIMENTAL SET-UP
In order to validate the effectiveness of the proposed inte-
grated accuracy enhancement method, experiments based on
the actual testbed are conducted. An experimental testbed is
built referring to Fig.5, which includes the prototype of the
CDCR, the actuation devices, the Qualisys Track Manager
(QTM)with six cameras and an Industrial Personal Computer
(IPC).

As shown in Fig.6, the prototype of the CDCR is composed
by four CDSs. The height of each CDS is 120mm, which is

37478 VOLUME 8, 2020



W. Shen et al.: Accuracy Enhancement Method for a CDCR With a Flexible Backbone

FIGURE 4. Flowchart of the learning process.

FIGURE 5. Experimental setup for the tip error compensation.

the length of the flexible backbone for the CDS. The radius of
the circle where mounting points are located is 67mm. The
driving cables employ the steel wire rope whose diameter is
2mm. In the CDCR prototype, each CDS has four driving
cables and each driving cable is independently controlled by
a motor-driven actuation device. As such, sixteen actuation
devices are employed, which are mounted on the bench. The
flexible backbone employs a wire braided hydraulic hose
whose external diameter is 19mm.

FIGURE 6. Prototype of the CDCR with four CDSs.

As the position repeatability of the CDCR is limited to a
few millimetres, the QTM is employed as the position mea-
surement, whose measurement accuracy is around 0.5 mil-
limetre. In the experiment, four markers are fixed on the base
and the other four markers are mounted on the end moving
platform of the CDCR.

B. EXPERIMENTAL RESULTS
1) MEASURED DATA PROCESSING
During the experiment, QTM is employed to measure the
position of each marker described in the camera coordinate
system. The positions of the markers are used to build the
coordinate systems of the base and the end moving platform
with respect to the camera coordinate system, respectively.
Through the transformation of coordinate systems, the actual
pose of the end moving platform expressed in the base frame
is given as

endT base = (baseT camera)−1 · endT camera (21)

where baseT camera represents the pose of the base plat-
form described in camera coordinate system, and endT camera
represents the pose of the end platform described in camera
coordinate system.

2) EXPERIMENTAL DATA PROCESSING
A total of 750 input-output pairs of data are employed in
the experiment. The inputs are the joints variables which are
randomly generated within the reachable workspace of the
CDCR. The outputs are the corresponding initial tip errors
of the CDCR calculated through (18). The inputs and the
corresponding outputs make up a data set. 700 sets of training
data are randomly selected from the data set as a training
data set and the remaining 50 sets of data are selected as
a verification test data set. The average initial tip error of
the verification test data set before compensation is given
in Table 2.

A number of training data are selected randomly from
the training data set to learn the GP model according to the
learning process presented in Section IV. The updated GP
model is employed to modify the nominal kinematic model

VOLUME 8, 2020 37479



W. Shen et al.: Accuracy Enhancement Method for a CDCR With a Flexible Backbone

TABLE 2. The average initial tip error.

TABLE 3. The residual tip errors with different numbers of training data.

FIGURE 7. Experimental result about the relationship between the
number of training data and residual position errors.

according to (19). The residual tip error of the verification test
data is calculated through (20). Compared with the average
initial tip error, the average residual error after compensation
is significantly reduced.

Moreover, the relationship between the number of training
data and the corresponding residual tip error has also been
studied. As shown in Fig.7 and Fig.8, the average residual tip
error gradually reduces with the increment of the number of
training data. As shown in Table 3, the average residual tip
error converges to 16.6mm in position and 5.5◦ in orientation
when the number of training data reaches to 700. The average
residual tip error is reduced by 68.72% for position and
51.74% for orientation compared with the average initial tip
error.

According to the experimental results, the proposed inte-
grated accuracy enhancement method significantly reduces
the tip errors of the CDCR, which includes not only the
geometric errors but also the non-geometric errors result-
ing from the nonlinear characteristics of the driving cables,
the parasitic deflection of the backbone, and etc. In this work,
300 to 500 sets of training data are enough to learn an accu-
rate GP model, which also implies that the proposed data-
driven GPR technique is computationally efficient. However,
the compensated positioning accuracy is limited to 2 centime-
tres mainly due to the payload of the CDCR, which will be
further studied in the future.

FIGURE 8. Experimental result about the relationship between the
number of training data and residual orientation errors.

VI. CONCLUSION
In this paper, an integrated accuracy enhancement method is
proposed to improve the positioning accuracy of the cable-
driven continuum robot with a flexible backbone. The pro-
posed method is based on both the kinematic model and the
data-driven Gaussian Process Regression (GPR) technique.
A two-parameter POE formula is employed to derive the ana-
lytic kinematic model of the CDCR, while GPR is proposed
to compensate its tip errors. The integrated accuracy enhance-
ment method compensates not only the geometric errors but
also the non-geometric errors of a CDCR. The tip error of the
CDCR is greatly reduced according to the experiment results.
During the experiment, it is found that the payload has a great
influence on the positioning accuracy of the CDCR. In the
future, the payload will be considered as one of the GP model
inputs.
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