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ABSTRACT Mobile crowdsourcing (MCS) has shown great potential in received signal strength (RSS)
fingerprint collection, in which an incentive mechanism plays a critical role to motivate users’ participation.
However, how to quantify the quality of the gathered fingerprint data is still not addressedwell in the design of
incentivemechanism forMCS-based fingerprint collection. In this paper, a sensing qualitymetric is proposed
to characterize the joint impact of users’ privacy protection and the spatial coverage of the submitted data.
Given a limited budget, a basic incentive mechanism is devised to recruit appropriate users to maximize
sensing quality. Considering that the cost of each user is regarded as private information and users may be
attempted to misreport their costs to increase the revenue. Hence, an auction-based incentive mechanism is
proposed to achieve the truthfulness of users’ costs, which is truthful, individually rational, computationally
efficient and budget feasible. Simulation results show that our proposed schemes outperform the baseline
schemes and the experiment with real-world data is carried out to evaluate the performance of our proposed
basic incentive mechanism.

INDEX TERMS Local differential privacy, incentive mechanism, auction theory, crowdsourced fingerprint
collection.

I. INTRODUCTION
Mobile crowdsourcing (MCS) has emerged as a promising
solution to leverage the power of mobile users (MUs) for
massive data collection and processing [1]. A typical MCS-
based system is mainly comprised of a platform residing in
the cloud and a crowd of MUs, where MUs are recruited
to participate in the required task and upload the sensing
data back to the platform via the existing wireless network.
Generally, it requires MUs’ efforts and consumes diverse
resources (e.g., data usage, time, battery) to participate in
MCS activities. To incentivize MUs’ participation, many
incentive mechanisms have been developed with diverse opti-
mization goals, e.g., reducing the platform’s cost, maximizing
social welfare [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Zhang.

Over the past decade, many research efforts have been
dedicated to tailoring MCS to acquire received signal
strength (RSS) fingerprint data from the inertial sensors of
users’ smartphones with the aim to relieve the burden of
RSS fingerprint collection [3], [4]. However, the fingerprint
data gathered through MCS lacks quality guarantee, which,
in turn, has a significant effect on users recruitment [5]. This
necessitates the need formeasuring the quality of sensing data
(namely ‘‘sensing quality’’) and designing a quality-based
incentive mechanism for crowdsourced fingerprint collec-
tion. While the state-of-the-art studies [6], [7] have been con-
ducted to characterize the quality of fingerprint data gathered
in the MCS manner, they are not fully suitable in practical
scenarios. The success of the work [6] strongly depends on
experiments of users’ sensed locations, which may lead to
unpredictable factors. Thework in [7] is under the assumption
that the prior knowledge of the indoor space is perfectly
known, including the indoor map and the physical locations
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of reference points. Therefore, due to the lack of a perfect
benchmark, it is quite challenging to evaluate sensing quality
for MCS-based RSS fingerprint collection. Moreover, it is
worth noting that none of the works mentioned above con-
siders users’ privacy protection and deals with the impact of
the privacy issue on sensing quality measurement.

Nowadays, users’ privacy issue has been one of the key
concerns for MCS-based systems [8], since individuals’ sen-
sitive information can be inferred from sensing data [9].
Hence, users will suffer privacy breach when such sensi-
tive data is disclosed to the unauthorized third party. Given
this challenge, a great number of techniques from different
aspects of privacy have been developed to protect users’
privacy [10] that can be broadly categorized into four types:
encryption [11], anonymity [12], differential privacy [13]
and game theory [14]. Among those, local differential pri-
vacy (LDP) has been widely adopted by many technology
companies such as Microsoft, Google, Apple, where users
are permitted to perturb personal data by adding random
noise to achieve privacy protection [15]. However, there is
a conflict between the incentives of privacy preservation by
users and data aggregation accuracy maximization by the
platform [16], which increases the difficulty in the sensing
quality evaluation for crowdsourced fingerprint collection.

It is still an open research topic to quantify sensing
quality for MCS-based fingerprint collection without the
prior knowledge of ground truth and users’ historical data.
Moreover, the consideration of privacy issue increases the
difficulty for the quality measurement and the design of a
quality-based incentive mechanism. In this study, a sensing
quality metric is first proposed to capture the joint impact of
privacy protection and the spatial coverage of users’ submit-
ted data. Subsequently, the proposed sensing quality metric is
incorporated into the design of incentive mechanism for users
selection under a budget constraint. The key contributions of
this paper are summarized as follows:
• A sensing quality metric is proposed to characterize the
joint impact of the privacy protection for users’ sensory
data and spatial coverage of the area covered by the
submitted sensing data.

• The basic incentive mechanism is proposed to recruit
users with an assumption that individual user truthfully
reports its cost. To maximize sensing quality, a greedy
algorithm is proposed for users selection constrained
within a budget limit.

• An auction-based incentive mechanism is proposed to
address the scenario where users misreport their costs,
and theoretically analyzed to prove its truthfulness, indi-
vidual rationality, computational efficiency, and budget
feasibility.

The reminder of this article is organized as follows.
Section II analyses the related works and Section III intro-
duces the system model. The sensing quality maximization
problem is described in Section IV and the basic mechanism
is presented in Section V. Section VI presents the auction-
based mechanism with theoretical analysis. Section VII and

Section VIII present the performance evaluation results.
Section IX makes a conclusion of this paper.

II. RELATED WORK
In recent years, many incentive mechanisms have been devel-
oped for mobile crowdsourcing (MCS) to attract enough
number of users to participate in sensing tasks.

Game-theoretic incentive mechanisms have received
increasing popularity, since they are capable to deal with
users’ strategic behaviors [17]–[19]. Yang et al. [17] pro-
posed a platform-centric model to encourage users’ partic-
ipation within which the relationship between the platform
and users is modeled as Stackelberg game. Pang et al. [18]
proposed a Bayesian game based incentive mechanism for
spatial crowdsourcing. Nie et al. [19] proposed a Bayesian
game-theoretic incentive mechanism for social crowdsensing
service, where the information of social network effects is
incomplete.

Considering that selfish individual users seek to maximize
their own gain by misreporting their truthful costs. To tackle
this issue, auction theory has been an invaluable tool for
MCS-based systems to discover users’ truthful costs and
effectively control the payment for the selected users. In the
literature, many researchers have studied the auction-based
incentivemechanisms forMCS-based applications [20]–[24].
For example, Zhao et al. [20] investigated an online auction-
based incentive mechanism for mobile crowdsourced sensing
and Ji and Wang [21] proposed an auction-based incentive
mechanism to study the correlated tasks allocation problem.
The authors in [22] and [23] considered the user-centric
model where each mobile user could ask for the reserve price,
and further proposed a revenue maximizing reverse auction
mechanism. In [24], authors proposed an incentive mecha-
nism to maximize the social welfare including the worker-
centric task selection phase and the platform-centric worker
selection phase. However, none of these studies considers the
issue of estimating users’ data quality.

In this study, we first propose a metric of sensing quality
to characterize the joint impact of users’ privacy protection
and spatial coverage. Then, we incorporate this metric into
the design of the basic incentive mechanism to maximize
sensing quality, and the auction-based incentive mechanism
to achieve the truthfulness of users’ costs, respectively.

III. SYSTEM OVERVIEW
The system model considered in our work is described in
more detail in this section. For convenience, Table 1 lists the
frequently used notations.

A. SYSTEM MODEL
This system consists of a mobile crowdsourcing plat-
form (MCP) and a crowd of MUs � = {u1, u2, . . . , um}.1

Given a limited budget, MCP aims to recruit a sufficient

1In the next of this paper, we refer to the terms ‘‘mobile user’’, ‘‘user’’ and
‘‘participant’’ interchangeably.
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TABLE 1. Notations.

FIGURE 1. Interactions between MUs and MCP.

number of MUs to contribute to sensing data for RSS fin-
gerprint collection.2 The system architecture is depicted
in Fig. 1, where the interactions between MUs and MCP are
as follows:
• Step 1:TheMCP announces the task toMUs and similar
to [25], the upper bound of ε is also broadcasted.

• Step 2: The interested MUs perform the task and send
the data perturbed by adding random noise with the
claimed cost (sensing cost, privacy cost) to MCP.

• Step 3 & 4: The MCP selects a subset S of MUs
(winners) to maximize the sensing quality and deter-
mines the payment for winners to compensate their
costs, while the total cost does not exceed the budget B.

B. USER COST
In this paper, the cost of each user comes from two aspects:

(1) Sensing Cost: When participating in a MCS activity,
it incurs nontrivial sensing cost to a user in terms of the effort
to collect data, the charge to transmit data, the computing
power of devices to process data, etc. Referring to [26],
sensing cost for individual MU is modeled as a function of
its trajectory distance d . Based on [27], a linear function csd
is adopted to formulate sensing cost, in which cs scales the
value of unit movement cost for each MU.

(2) Privacy Cost: Individuals’ sensitive information can
be derived from MUs’ sensed data, which leads to users’
privacy loss (also termed as ‘‘privacy cost’’) if such data is
leaked. To quantify MUs’ privacy, the celebrated notion of
local differential privacy [13] is adopted.
Definition 1 (Local Differential Privacy):An algorithmz

is ε-local differentially private (ε-LDP), if and only if for any

2In this context, individual MU’s indoor trajectory is regarded as sensing
data, which includes walking steps, barometer readings, RSS value, time
slots.

input κ and κ ′, the following inequation can hold:

Pr[z(κ) = K] ≤ eεPr[z(κ ′) = K] (1)

where K ∈ Range(z) and Range(z) is the set of all possible
outputs of the algorithm z. Pr is the probability that z
maps the input κ or κ ′ to K. ε ∈ (0, 1) denotes the privacy
protection level (or privacy budget) achieved by F , where
data is strongly protected when ε approaches to 0.

According to [25], for any user, its privacy cost is positively
correlated with ε. Assuming that there is a positive relation
between privacy cost and d , since more sensitive information
is provided as d increases. In this paper, a linear model cpεd is
adopted to quantify privacy cost, where cp reflects how much
a MU cares about its privacy.

In summary, MU i’s cost is denoted as follows3:

ci = (csi + c
p
i εi)di (2)

IV. PROBLEM FORMULATION
This section defines a sensing quality metric, and presents the
budget-constrained sensing quality maximization problem.

A. SENSING QUALITY FORMULATION
This subsection studies the joint impact of privacy protection
and spatial coverage of the target area to characterize sensing
quality for crowdsourced RSS fingerprint collection.

(i) The Impact of Privacy Protection: Basically, MUs’
raw sensory data is perturbed with random noise to achieve
ε-LDP. However, this perturbation influences MCP’s data
aggregation accuracy. To quantify the accuracy of the aggre-
gated result, the notation (α, β)-accuracy is introduced.
Definition 2 (α, β)-Accuracy: An algorithm R with a

perturbation mechanism z is (α, β)-accurate where α, β ∈
(0, 1), if the following inequality can be held:

Pr{|R(D)−R(z(D)| ≥ α} < β (3)

whereR is adopted by the platform to aggregate the uploaded
data and the algorithm F is adopted to achieve ε-LDP. D is
the corresponding dataset and β is a predetermined constant
selected by the platform. α denotes the difference between
the aggregation result before and after perturbation.

Finally, by combining Definition 1 and 2, we can obtain
the relationship between ε and α: as ε is small, large noise
is locally added to MUs’ raw data, which causes larger α and
furthermore reduces the aggregation accuracy. Based on [28],
the function4 q(α) is exploited to characterize the impact of
privacy protection on sensing quality, which decreases in α.
(ii) The Impact of Spatial Coverage: Generally, a larger

number of fingerprints measured from diverse places con-
tribute to enhancing the system performance. Meanwhile,
the coverage scale of areas visited by participants is affected
by the randomness ofMUs’movement. To describe the places

3Note that in this article, for ease of presentation, we use a linear function
to formulate MUs’ cost.

4Based on Definition 2, β is determined by the platform. Here, we omit β
and mainly use q(α) to quantify the impact of α in the next of this paper.
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where users complete different activities (e.g., walking, turn-
ing), points of interest (PoIs) L = {l1, l2, . . . , ln} are intro-
duced that can be extracted from users’ indoor trajectories.
Successively, Shannon Entropy [29] is used to capture the
popularity of different PoIs, which denotes that how many
unique users have visited a specific PoI as well as how many
times each user have visited a PoI.

E(lj) = −
∑
ui∈�

λij/9j log(λij/9j) (4)

where λij denotes the number of visits of user ui ∈ � to PoI lj
and 9j =

∑
ui∈� λ

i
j. The entropy for a PoI is regarded as the

probability that the PoI is visited by users.
Definition 3 (Spatial Coverage): Given a collection of

PoIs L and an associated weight set W = {ω1, ω2, . . . , ωn},
the spatial coverage of the target area is characterized by (5):

8�(L) =
1
n

n∑
j=1

wjE(lj) (5)

where different weights in W are assigned to different PoIs
to capture the information heterogeneity since different valu-
able information is provided by different PoIs, in which all
elements inW sum up to 1. It is assumed that a higher weight
is assigned to the PoI with lower entropy, since it has a smaller
chance of being visited by users.

(iii) Sensing Quality Metric: Referring to [17], the power
property of log function is used to characterize sensing quality
with considering privacy protection and spatial coverage.

Q�(L) = log(1+ q(α)8�(L)) (6)

where the logarithm function is applied to reflect the MCP’s
diminishing returns on participating MUs while the total cost
does not violate the predefined budget B.

B. PROBLEM STATEMENT
The MCP aims to select a subset S MUs to maximize the
sensing quality given a limited budget B, in which the budget
B could be intuitively represented by the total reward that all
the selected users obtain.

max
S∈�

QS (L) (7)∑
i∈S

ci ≤ B (8)

V. BASIC INCENTIVE MECHANISM DESIGN
This section presents a basic incentive mechanism within the
budget limitation to recruit users to maximize sensing quality,
which is called BudgeTed Sensing Quality Maximization
(BTSQM) problem. Similar to [30], this mechanism is
designed under an assumption that MUs do not misreport
their costs, which means that the costs claimed by MUs are
treated as their real costs.

A. PROBLEM REDUCTION
To address this problem, we first claim that the BTSQM
problem could be transformed into the budgeted maximum
coverage problem [31].
Definition 4 (Budgeted Maximum Coverage Problem

[31]): A collection of sets S with associated costs is defined
over a domain of weighted elements X . The objective is to
find a subset of S ′ ⊆ S such that the total cost of all elements
in S ′ is at most of the budget B and the total weight of all
elements covered by the subset S ′ is maximize.
Similar to [30], given a PoI set L, Xui = {λ

i
j}
n
j=1 is used

to denote the PoIs visited by ui. Then, the collection of all
MUs’ cover set X = {Xu1 ,Xu2 , . . . ,Xum} with associated
cost set 2 = {c1, c2, . . . , cm} is acquired. Consequently,
the transform relation between our BTSQM problem and the
budgeted maximum coverage problem is as follows: X →
S,L → X with the corresponding target set S → S ′. As a
result, our BTSQM problem is proved to be NP-hard, since
the budgeted maximum coverage problem has been proved to
be NP-hard [31]. To solve the BTSQM problem, the objective
function is proved to be non-decreasing submodular such that
the submodular function [32] could be exploited.
Definition 5 (Submodular Function): Let h̄ be a finite set,

a function f on the subsets of h̄ is submodular if

f (A ∪ a)− f (A) ≥ f (A′ ∪ a)− f (A′) (9)

for any A ⊆ A′ ⊆ h̄ and a ∈ h̄ \ A′. Moreover, the function
f is denoted to be non-decreasing if f (A) ≤ f (A′) where
∀A ⊆ A′ ⊆ h̄.
Lemma 1: Given an arbitrary subset S1 ⊆ � and a PoI set

L, the function QS1 (L) is non-decreasing submodular.
The proof can be found in Appendix A.

B. ALGORITHM DESIGN
Based on [31], a greedy algorithm is proposed to obtain the
approximate solution that is illustrated in Algorithm 1.
• First, the collection H of � of the cardinality less than
the fixed integer τ > 0 is obtained, where the total
cost of each set in H does not exceed B. Among them,
the set with the largest sensing quality is selected as the
candidate solution (line 1).

• Second, all subsets of � of the cardinality τ are enu-
merated to acquire a feasible solution, whereas the
total cost of each subset is at most of B (line 2).
The greedy algorithm is used to complement all the
subsets. At each iteration, MU ui is added to the
candidate subset when meeting the following require-
ments: (1) the ratio (QH∪ui − QH )/c(ui) is maximized;
(2) the total cost of MU ui and the current candidate
set does not violate B. Then, the set with the high-
est sensing quality is chosen as the targeted solution
(lines 3-14).

• Finally, the approximation solution of BTSQM problem
is achieved (lines 15-16).
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Algorithm 1 Algorithm Design for BTSQM Problem
Input: PoI set L with weight set W , user set � with associ-
ated cost set 2 and cover set X , and the budget B
Output: Final candidate set S where S ⊆ �
1: G1 ← argmax{QH (L)}, where H ⊆ �, |H | < τ and
c(H ) ≤ B; G2← ∅

2: for all H ⊆ �, where |H | = τ , and c(H ) < B do
3: 5← � \ H
4: repeat
5: select ui ∈ 5 that maximize (QH∪ui −QH )/c(ui)
6: if c(H )+ c(ui) ≤ B then
7: H ← H

⋃
{ui}

8: 5← 5 \ {ui}
9: end if
10: until 5 = ∅
11: if QH (L) > QG2 (L) then
12: G2← H
13: end if
14: end for
15: if QG1 (L) > QG2 (L) then
16: S ← G1, otherwise S ← G2
17: end if

C. PERFORMANCE ANALYSIS
1) COMPUTATIONAL COMPLEXITY
It firstly takes O(mτ ) time to enumerate all subsets of �.
Secondly, at each stage, the greedy selection is employed to
obtain the feasible solution, which takes O(m log(m)) time.
In summary, the complexity is O(mτ+1 log(m)), where τ is a
integer and not less than 3.

2) APPROXIMATION RATIO
Given τ ≥ 3, an approximation factor of (1−1/e) is achieved
by Algorithm 1.

The proof can be found in Appendix B.

VI. AUCTION-BASED INCENTIVE MECHANISM
In the previous section, a basic mechanism is proposed to
maximize sensing quality under the assumption that each
MU truthfully reports its cost. However, the cost is private
information from MUs’ perspective that is not public to
MCP. To achieve the truthfulness of MUs’ costs, a sensing
quality-aware auction-based mechanism is presented in this
section.

A. PROBLEM FORMULATION
As depicted in Fig. 2, the trade-offs between MCP and MUs
are modeled as a reverse auction, where MCP acts as the
auctioneer that purchases indoor trajectories from MUs who
act as bidders. The utility of each winner is defined as (10):

πi =

{
pi − ci if i ∈ S
0 otherwise

(10)

where pi denotes the payment to winner i

FIGURE 2. Interactions between MUs and MCP.

Based on MUs’ contributed sensing data, MCP is able
to provide different kinds of location-based services to the
public. Under this circumstance, the valuation of the platform
is characterized as follows:

ν(S) = µ log(1+
n∑
j=1

q(α)wjE(lj)/n) (11)

where µ > 0 is the coefficient that transforms the sensing
quality metric into the platform’s valuation function.

This auction-based mechanism aims to maximize the
MCP’s valuation under a constrained budget.

max
S∈�

ν(S) (12)∑
i∈S

pi ≤ B (13)

Meanwhile, this mechanism also aims to satisfy the follow-
ing desirable properties:
• Truthfulness: No MU can improve its utility by sub-
mitting a bid different from its true cost, no matter what
others submit.

• Individual Rationality:The utility of individual winner
is non-negative.

• Computational Efficiency: The result of this auction-
based mechanism can be obtained in polynomial time.

B. AUCTION BASED ALGORITHM DESIGN
To meet the above properties, the designed mechanism
mainly depends on Myerson’s well-known characteriza-
tion [33] and budget feasibility [34].

Based on Lemma 1, given µ > 0, it is easily found that
the platform’s valuation function is submodular and mono-
tonically non-decreasing. To select winners, the marginal
contribution per bid of user i ∈ �\S is defined as ζi =

νi(S)
bi

with respect to S, where νi(S) = ν(S ∪ {i}) − ν(S). In this
study, Algorithm 2 contains the following phases:

Winner Selection: First, the winner set is initialized as
empty and MUs are sorted in the non-increasing order of
ζ , in which the candidate user is selected with the largest
marginal contribution per bid (line 2). Second, the difference
between the candidate user’s ζ and the value per budget of
S is acquired. If the difference is positive, this user is added
to S and the next iteration is continued until the difference is
negative, Otherwise, the candidate user is discarded and this
phase terminates (lines 3-6).
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Algorithm 2 Budgeted Auction Mechanism
Input: PoI set L with associated weight setW , potential user
set � with associated cost set 2, and a limited budget B
Output: A set of winning mobile users S ⊆ � and payment
profile P
1: // phase 1: winner selection
2: S ← ∅, i← argmaxj∈�

νj(S)
bj

;

3: while bi ≤ B
2

νi(S)
ν(S∪{i}) do

4: S ← S ∪ {i};
5: i← argmaxj∈�\S

νj(S)
bj

;
6: end while
7: // phase 2: critical payment determination
8: for each i ∈ � do;
9: P ← ∅;
10: end for
11: for each i ∈ S do;
12: �−i← �\{i}, 0← ∅;
13: repeat
14: ij← argmaxj∈�−i\0

νj(0)
bj

;

15: pi← max{pi,min{
νi(0)bij
νij (0)

,
Bνi(0)

2ν(0∪{i}) };
16: 0← 0 ∪ {ij};

17: until bij >
B
2

νij (0)
ν(0∪{ij})

or 0 = �−i;
18: if 0 = �−i then
19: pi← max{pi,

Bνi(0)
2ν(0∪{i}) }

20: end if
21: end for
22: return S,P

Payment Determination: First, the payment set P is ini-
tialized as empty for all users (lines 8-10). Second, the winner
set is recomputed over �−i ← �\{i} and MUs in �−i
are sorted based on ζ to obtain the first j users denoted as
0j, where the jth user is denoted as ij in this sorting. Third,
the largest bid that winner i can submit is achieved where
MU i is selected not the user at j-th position in this sorting.
This process is repeated until the position after the last win-
ner over �−i. Finally, for all candidate payments, the max-
imal payment is selected as the final payment to winners
(lines 11-20).

C. MECHANISM ANALYSIS
In this subsection, our designed mechanism is proved to
satisfy the predefined properties.
Theorem 1: The auction-based mechanism is truthful.
The proof can be found in Appendix C.
Theorem 2: The proposed auction-based mechanism is

individually rational.
Proof: According to (10), if user i is not selected as a

winner, its payoff is zero, otherwise its claimed cost should
be lower than or equal to the critical value. Moreover, this
auction-basedmechanism is proved to be truthful, user i could
report its true cost. Hence, winner i’s utility pi − ci is non-
negative.

Theorem 3: The proposed auction-based mechanism is
computationally efficient.

Proof: In Phase 1, it takesO(|�|)) time to obtain the user
with the maximal marginal contribution per bid (line 2) and
the process of the while-loop (lines 3-6) runs about O(|�|))
time. It takesO(|�|)) time to repeat the iteration (lines 11-20)
in Phase 2. To summarize, the complexity of the auction-
based mechanism is O(|�|3)).

Assume that there are two arbitrary user sets S ⊂ G ⊆ �
and η0 = argmaxη∈G\S

νη(S)
bη

, based on [35], we have

ν(G)− ν(S)
b(G)− b(S)

≤
νη0 (S)
bη0

(14)

where b(S) =
∑

g∈S bg.
By utilizing (14), we can obtain the following lemma.
Lemma 2: For the winner r ∈ S, its critical payment pr

has a upper bound νr (S)B
ν(S) .

The proof can be found in Appendix D.
Theorem 4: The auction-based mechanism is budget

feasible.
Proof: By using Lemma 3, we have

∑
i∈S pi ≤∑

i∈S νi(S)
ν(S) B = B. Hence, the sum of the payment to all winners

does not exceed the budget.

VII. NUMERICAL SIMULATIONS
This section presents the simulation results of our proposed
mechanisms. The basic incentive mechanism is made com-
parison with the following schemes: (i) Random selection
algorithm: in each round, users are randomly added to the
candidate user set with satisfying the budget constraint;
(ii) Maximum sensing quality (MSQ) algorithm: at each iter-
ation, the user who maximizes sensing quality is selected,
where the budget constraint is satisfied. However, in the basic
mechanism, a user who maximizes the ratio between the
increased sensing quality and the cost will be added to the
candidate user set. The auction-based mechanism is com-
pared against the following two benchmark schemes: Greedy-
SM and Random-SM [35].

A. SIMULATION SETTINGS
Assuming that MUs’ unit sensing cost cs and unit privacy
cost cp are randomly distributed within the range (0, 1)$/m
and the trajectory distance d for each user is normalized
into a scale of 0-10m. The weighs for different PoIs are
randomly distributed over (0, 1) and the value of the plat-
form’s valuation parameter µ is fixed as 1000$. Different
types of q(α) (0 < α < 1) are adopted to study the impact of
privacy protection on sensing quality, in which ε is randomly
distributed within the range (0, 1). Meanwhile, we assume
that a PoI is visited by the same user at most twice. MUs’
number m is varied from 200 to 1000 with the increment
of 200 and the budget B is within the range from 0 to 300$.

B. SIMULATION RESULTS
As shown in Fig. 3, the impact of the budget on sens-
ing quality is investigated. We observe that as the budget
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FIGURE 3. Budget vs sensing quality.

FIGURE 4. Budget vs the platform’s valuation.

increases, the proposed sensing quality metric satisfies the
law of diminishing returns. Meanwhile, our proposed algo-
rithm can achieve a higher sensing quality as compared to
the random selection algorithm and MSQ algorithm. Due
to the simulation setting, when the budget is greater than a
threshold, sensing quality of our proposed algorithm is same
to that of the random selection algorithm.

In Fig. 4, we fix MUs’ number m = 200. It is notable
that the platform’s valuation increases with the increasing
budget and satisfies the diminishing returns rule. As shown in
Algorithm 2, at the phase of winner selection, the user with
the largest marginal contribution per bid is selected, hence
our proposed mechanism can achieve a higher valuation in
comparison with the baseline schemes.

Fig. 5 shows the impact of m on the valuation of the
platform, in which we fixB = 100$. It is found that the valua-
tion indeed demonstrates diminishing returns as m increases.
At the same time, our proposed auction-based mechanism
outperforms the baseline schemes since the user with a larger
marginal contribution per bid is chosen.

As illustrated in Fig. 6, our proposed auction-based mech-
anism is budget feasible by investigating users’ total pay-
ment given different amount of budget. We observe that
the total payment increases with the increasing users since
more users are selected to perform the task. In Fig. 7,
we note that the valuation is impacted by different types
of q(α). Based on Definition 2, the larger α leads to lower
accuracy achieved by the aggregation algorithm. Hence,
the valuation of the platform’s decreases with the increasing
value of α.

FIGURE 5. MUs’ number vs the platform’s valuation.

FIGURE 6. MUs’ number vs total payment.

FIGURE 7. q(α) vs the platform’s valuation.

VIII. EXPERIMENT RESULTS
In this section, the performance of the basic incentive mech-
anism is evaluated on UJIIndoorLoc database [36]. This
database contains wireless local area network (WLAN) RSS
measurements of three buildings of Universitat Jaume I with
four or more floors, which is often utilized to evaluate indoor
localization solutions that depend on RSS fingerprints.

A. EXPERIMENT SETTINGS
In this experiment, the location data of the first floor of the
first building is adopted to validate the proposed mechanism,
where the physical coordinate or location is comprised by the
longitude and the latitude in the dataset.5

Considering that the indoor scenario is roughly divided into
subareas based on the signal coverage of access points (APs)

5For convenience, we make an assumption that the unit of both the
longitude and the latitude is meter and each user provides a RSS sequence.
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FIGURE 8. The impact of KNN on localization error.

deployed in the building. Hence, APs can be utilized to denote
the mentioned PoIs in Section III. Here, the assumption is
that if the RSS reading of an AP in a POI can be detected,
it means that its corresponding PoI is covered by users.
As mentioned in the previous sections, the mechanism per-
formance is greatly influenced by privacy protection achieved
by adding noise to raw data. Moreover, the study [13] has
shown that the Laplace mechanism can be used to achieve
ε-local differential privacy. Therefore, the noise drawn from
a Laplace distribution with zero mean is added to the training
data to investigate the impact of privacy protection, where the
standard deviation σ is approximately proportional to 1/ε.
Moreover, k-nearest neighbors (KNN) [37] is adopted to
evaluate the performance, where our proposed basic mech-
anism is compared with the random selection algorithm.
Meanwhile, the total cost of each candidate user is distributed
over (1, 10)$ and the number of candidate users is fixed as
m = 20 and m = 30, respectively. Moreover, the average
indoor localization error of 50 testing data is adopted as the
metric to evaluate the system performance.

B. RESULTS
In the KNN solution, k neighbors of the target are selected
based on Euclidean distance or other distances to estimate
the target location. Fig. 8 investigates the impact of k on
the localization error. It is noted that when k = 3, both the
random selection algorithm and our proposed basic incentive
mechanism can achieve a lower localization error compared
to other values of k . Meanwhile, the localization error of
our proposed incentive mechanism is smaller than that of the
random selection algorithm.

Fig. 9 studies the effect of the limited budget on different
mechanisms under different user number, respectively, where
k = 3. As shown in Fig. 9, on one hand, the localization
error becomes lower with the increasing budget; on the other
hand, the localization error decreases with the increasing
user number. Compared to the random selection algorithm,
the proposed basic incentive mechanism can achieve a lower
localization error. Moreover, this experiment result is found
in line with the numerical simulation result.

Fig. 10 demonstrates the localization error under different
σ , in which σ denotes the standard deviation of the Laplace
distribution. The studies [13], [38] have shown that with
larger σ , larger noise has to be added to users’ data such

FIGURE 9. Budget vs localization error.

FIGURE 10. Privacy protection vs localization error.

that higher privacy protection level can be achieved which
increases the localization error.

IX. CONCLUSION AND FUTURE WORK
In this study, a novel metric of sensing quality for MCS-
based RSS fingerprint collection was proposed to character-
ize the joint impact of privacy protection and spatial coverage.
In the basic incentive mechanism, a greedy-based algorithm
was proposed to obtain an approximation solution for the
sensing quality maximization problem under a constrained
budget. Aiming to achieve the truthfulness of users’ private
costs, an auction-based incentive mechanism was proposed
and theoretically proved to meet the predefined properties.
Simulation results verified that our proposed mechanisms
outperformed the baseline schemes.Moreover, an experiment
based on real-world data was carried out to evaluate the
proposed basic incentive mechanism.

In the future, the P2P or D2D networking paradigm [39]
would be used as a cost and energy effective way to provide
the spatial coverage for crowdsourcing fingerprint collection.

APPENDIXES
APPENDIX A
PROOF FOR LEMMA 1

Proof: Based on (6), it is easily found that QS1 (L) = 0
given S1 = ∅. Then, consider that there are two arbitrary
subsets S1 ⊆ S2 ⊆ �: (1) if XS2 − XS1 = ∅, we
have QS1 (L) = QS2 (L); (2) given XS1 < XS2 , we have
QS1 (L) < QS2 (L). Consequently, QS1 (L) is proved to be non-
decreasing.

According to Definition 4, to prove that the sensing quality
function is submodular, we need to demonstrate that

QS1∪{u}(L)− QS1 (L) ≥ QS2∪{u}(L)− QS2 (L) (15)
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By leveraging MUs’ cover sets, |XS1∪{u}| − |XS1 | denotes
the amount of covered PoIs in MU u’s cover set Xu and not
in the set XS1 given a MU u ∈ � \ S2. It is found that
XS1∪u − Xu ≥ XS2∪u − Xu. Hence, it suffices to show that
the inequality (15) can hold. Moreover, the marginal sensing
quality from adding an additional user is non-negative which
demonstrates that the objective function satisfies the law of
diminishing returns.

To summarize, we have proved that the objective function
is non-decreasing submodular.

APPENDIX B
PROOF FOR APPROXIMATION RATIO
OF ALGORITHM 1

Proof: The study [31] has shown that: (1) the candidate
solution with the largest weight is selected as the approxi-
mation solution, whose associated cost does not exceed the
limited budget; (2) the value of coverage quality achieved by
the approximation solution is at least 1 − 1/e times greater
than the optimal value of the coverage quality achieved by
arbitrary subset. In this context, we have reduced our problem
to the classical budgeted maximum coverage problem as
well as captured the relation between these two problems.
Therefore, for τ ≥ 3, the approximation factor achieved by
our designed algorithm is greater than (1− 1/e).

APPENDIX C
PROOF FOR THEOREM 1

Proof: To prove the truthfulness of our proposed
auction-based mechanism, it requires to show that our pro-
posed mechanism meets Theorem 1. On one hand, base on
marginal contribution per bid, user i who submits a lower bid
will be sorted in the same or a prior position; on the other
hand, the platform’s valuation function is monotone. Hence,
the monotonicity can be maintained.

Next, we show that the payment for each winner is the
critical value. In the payment determination phase, users are
essentially sorted according to their marginal contribution per
bid. For user i, if bi > pi, it will be pushed backward after
the position of the last user ij ∈ �−i. Since its marginal
contribution per bid is lower than thatN th user, it will not be
selected after the (N + 1)th iteration. If bi < pi, it is selected
as a winner according to the winner selection rule.

In summary, our designed auction mechanism is truthful.

APPENDIX D
PROOF FOR LEMMA 2

Proof: First, consider that ∅ = S ⊂, . . . ,⊂ Sk ⊆ �,
due to the submodularity of the platform’s valuation function,
we have ν(S)

b(S) ≥
ν(Sk )
B . Then, for contradiction, we assume

that user r ∈ Sk reports a bid br > νr (S)B
ν(Sk )

and it still can be
selected as a winner. Before user r is added to the winner set,
we have r = argmaxi∈�\S

νi(S)
bi

. Based on the threshold set

in the winner selection phase, we have νr (S)
br
≥

2ν(S∪{r})
B .

We make an assumption that S ∪ {r} ( Sk ∪ S. If not we
have S ∪ {r} = Sk ∪ S and then

νr (S)
br
≥

2ν(S ∪ {r})
B

≥
2ν(Sk )
B
≥
ν(Sk )
B

(16)

Therefore, we have br ≤
νr (S)B
ν(Sk ) and get a contradiction.

Then, we set M = Sk\S and incorporate r and
Lemma 2 into Sk ∪ S and S ∪ {r}, respectively. For g0 ∈
M\{r}, according to Lemma 2, we have

ν(Sk ∪ S)− ν(S ∪ {r})
b(Sk ∪ S)− b(S ∪ {r})

≤
νg0 (S ∪ {r})

bg0
≤
νr (S)
br

(17)

Meanwhile, we have obtained that br >
νr (S)B
ν(Sk ) and thus we

have νr (S)
br

<
ν(Sk )
B . Combined with (17), we can get

ν(Sk ∪ S)− ν(S ∪ {r})
b(Sk ∪ S)− b(S ∪ {r})

<
ν(Sk )
B

(18)

Thus, we get b(Sk ∪ S)− b(S ∪ {r}) ≤ b(Sk ).
According to the inequality (17), for j ∈ [k], we have

ν1(S)
b1
≥ . . . ≥

νk (S)
bk
≥

2ν(Sk )
B . Besides, it is proved that

winning user truthfully reports its bid. Therefore, we could

get b(Sk ) =
∑k

j=1 bi ≤
B
2

∑k
j=1 νj(Sk )
ν(Sk ) = B/2. Based on these

analytics, we can have

ν(Sk )− ν(S ∪ {r})
B/2

<
ν(Sk )
B

(19)

As a result, we have ν(Sk ) < 2ν(S ∪ {r}). Besides, we know
that νr (S)br

≥
2ν(S∪{r})

B and we have νr (S)
br

>
ν(Sk )
B . Hence,

the contradiction with br <
νr (S)B
ν(S) is proved.

In summary, the critical payment for winner r has a upper
bound νr (S)B

ν(S) .
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