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ABSTRACT In recent years, residual learning has shown excellent performance on convolutional neural
network (CNN)-based single-image super-resolution (SISR) tasks. However, CNN-based SISR approaches
have focused mainly on the design of deep architectures, and the rectified linear units (ReLUs) used in
these networks hinder shallow-to-deep information transfer. As a result, these methods are unable to utilize
some shallow information, and improving model performance is difficult. To solve the above issues, this
paper proposes an image SR reconstruction method based on a generative adversarial network with a
residual dense architecture. First, before ReLU activation, the number of feature channels is expanded by
a factor of 6∼9 using a 1 × 1 convolutional layer, which improves the utilization of shallow information.
Next, the original discriminator is replaced with a relativistic average discriminator, thereby improving the
authenticity of the discriminative network. Finally, preactivation features are used to improve the perceptual
loss, thus providing stronger monitoring for brightness consistency and texture restoration. Experimental
results show that the proposed algorithm improves the utilization of shallow information in a deep network.
Structural similarity (SSIM) index evaluations show that the overall utilization of shallow information is
increased by 105.52%. In addition, the average runtime is 0.42 sec/frame, nearly 3.6 times faster than those
of traditional methods.Moreover, the recovered images have an average natural image quality evaluator value
of 3.4 and high perceptual quality, showing that the proposed method is suitable for image reconstruction
applications in fields such as agriculture and medicine.

INDEX TERMS Super-resolution, residual block, relativistic average discriminator, generative adversarial
network, perceived quality.

I. INTRODUCTION
Image super-resolution (SR), in which algorithms are
used to reconstruct an image from low resolution (LR)
to high resolution (HR), is an important class of image
processing techniques. In addition to improving image
perceptual quality, image SR techniques are in high
demand for applications such as agricultural imaging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hossein Rahmani .

SR improvements can help enhance the performance of
various computer vision tasks [1]–[5]. As an essential
artificial intelligence tool, deep learning has gradually
been introduced into the field of image SR reconstruc-
tion [6]–[9]. From the early convolutional neural network
(CNN)-based approaches (such as SRCNN [10]) to the
more recent generative adversarial network (GAN)-based
approaches (such as SRGAN [11]), continuous advancements
have been achieved in research on image SR reconstruc-
tion [10]–[14].
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At present, deep-learning-based SR models such as
SRCNN [10], EDSR [15], VDSR [13], and RCAN [16]
have achieved significant improvements in terms of the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index. However, these models typically use the min-
imum absolute deviation (l1) or the minimum squared error
(MSE or l2) as the loss function; as a result, the generated
images are too smooth, and they easily lose details and texture
information [11]. As an alternative to the above models,
a GAN consists of two different subnetworks, namely, a gen-
erative network and a discriminative network, rather than sim-
ply a single network, and GANs adopt an adversarial training
method [17], [18]. Compared with other generative models,
such as Boltzmann machines and generative stochastic net-
works (GSNs), GANs do not need complex Markov chains
and can produce more transparent and realistic samples.

The purpose of using GANs is to restore image texture
information and improve the overall quality of images. The
SRGAN model added an adversarial loss function to the
original l2 loss function [11]. Compared with the outputs of
the SRCNN, FSRCNN [19], DRCN [17] and DRRN [20],
the images reconstructed with SRGAN are more realistic.
However, the PSNR and SSIM scores of SRCNN tend to
be relatively low, and it can easily produce visual arti-
facts. In EnhanceNet [21], perceptual and texture matching
losses were introduced into the traditional MSE loss func-
tion, and the perceptual quality of SISR was improved via
joint countermeasure training; however, this model produces
high-frequency noise, and the reconstructed SR images lack
high-frequency details. Under the original SR framework,
single-image SR with feature discrimination (SRFeat) was
proposed based on two kinds of discriminators: one acting in
the image domain and one acting in the feature domain. The
generator includes long-range jump connections to improve
the mobility of remote information [22]. However, the batch
normalization (BN) layer uses only a small batch of data
rather than the entire training set to calculate the mean and
variance; this is equivalent to introducing noise during the
gradient calculations and is not suitable for noise-sensitive
GANs. Based on the SRGAN model, the enhanced SR
GAN (ESRGAN) model was introduced by using nested
residual-in-residual dense blocks (RRDBs) to improve the
network structure. The BN layer was removed, and the deep
network was trained using residual scaling and small initial
network parameters. A deep network improves image quality;
however, as the network depth increases, shallow informa-
tion is less fully utilized, ultimately resulting in the lack
of further image enhancement. Moreover, ESRGAN focuses
primarily on image enhancement while ignoring image
authenticity; thus, it can easily generate erroneous texture
information [23].

While deep network structures can improve image qual-
ity, as the number of layers increases, it becomes increas-
ingly difficult for the model to converge, leading to an
unstable model effect, inconsistent brightness of the recon-
structed images, and insufficient use of shallow information.

Although BN layers can accelerate the network convergence
speed and enable a high learning rate to be used, the introduc-
tion of noise often causes the reconstructed images to contain
artifacts.

To address the above issues, this paper proposes an image
SR reconstruction algorithm based on variant residual dense
blocks (VRDBs) for GANs. This approach resolves the
underutilization of shallow information by enhancing the
channel information characteristics. Better brightness mon-
itoring and the improved stability of the model structure help
not only to produce higher-quality images but also to avoid
unrealistic textures.

II. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORKS
Although CNN-based SISR models have achieved break-
throughs in both accuracy and speed, the images they recon-
struct lack fine textural details for images with large sampling
factors [24]–[26]. These SISRmodels are driven by the objec-
tive loss function. Current mainstream algorithms, such as
SRCNN, FSRCNN [19], DRCN, and DRRN, focus primarily
on the MSE loss. Thus, while the resulting recovered images
have a high PSNR, they usually lack high-frequency details,
and their visual effect is usually unsatisfactory. In contrast,
a GAN model consists of a generator and a discriminator
and adopts a pairwise adversarial approach. The generator,
which is responsible for creating the SR images, attempts
to trick the discriminator into failing to distinguish between
a real HR image and an artificial reconstructed SR image.
Using this approach leads to the generation of SR images
with better perceptual qualities; however, the PSNR value
corresponding to the reconstructed SR image is usually lower
than that of the original HR image, indicating that the popular
PSNR evaluation metric cannot robustly evaluate the per-
ceptual differences between SR and HR images [11], [23].
To solve the above problem, the SRGAN model was pro-
posed, which changes the loss function by replacing the
traditional MSE loss with a perceptual loss and a con-
tent loss while simultaneously introducing a GAN to con-
vert the content loss in the traditional pixel space into a
similarity of adversarial properties; finally, SRGAN intro-
duces a deep residual network to extract detailed textures
from images [11]. In addition to a pixel-level MSE loss,
EnhanceNet uses two other loss terms: first, a perceptual loss
function is defined as l1, which is on the intermediate fea-
ture representation of the pretraining network [27]; second,
a texture-matching loss function is used to match LR images
with HR images. A texture-matching loss function is also
quantized into l1 between the Gram matrix calculated from
the depth feature. The entire network architecture is trained
in the reverse direction, where the goal of the generative
network is to gain the ability to deceive the discriminator.
Based on the SRGANmodel, the ESRGANmodel [23] offers
three improvements: (1) the basic network unit is changed
from a residual unit to an RRDB; (2) the GAN is replaced
with an improved version, namely, a relativistic average
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FIGURE 1. Residual network structure: (a) diagram of the overall residual network; (b) a local residual block.

GAN (RaGAN); and (3) experiments have demonstrated that
using the VGG feature before activation can provide stronger
brightness monitoring for the reconstructed image, and thus,
the reconstructed image is darker after activation. Using VGG
features before activation also helps produce sharper edges
and more luxurious textures. This is because the use of dense
features before activation provides stronger supervision than
the use of sparse features after activation.

B. DEEP CONVOLUTIONAL NEURAL NETWORK
The design of neural network structures has become an
essential part of deep learning. Using a deep network model
helps to output high-quality images, but as the number
of network layers increases, network convergence becomes
more difficult to achieve, and exploding and vanishing gra-
dient problems are more likely to occur. To address these
challenges, researchers have modified the network connec-
tions and developed residual learning strategies; the overall
residual network and the residual block structure are shown
in Figure 1. Residual networks can be classified mainly
into networks focusing on global and local residual learning.
Global residual learning aims to restore the high-frequency
information lost during the conversion from LR to HR
images. Finally, the LR image and the learned residual
information are combined to form the reconstructed HR
image [28], [29].

Local residual learning, which is similar to residual
learning in ResNet, is used to alleviate the degradation
caused by increasing the depth and learning ability of the
network [30], [31]. As the number of network layers
increases, the features in each convolutional layer will cor-
respond to receptive fields of different sizes. However,
the Laplacian pyramid SR network (LapSRN) [14], EDSR,
and MemNet [32] models fail to fully use the information
from each convolutional layer. Although the proposed gating
unit in the memory block controls short-term memory [23],
a local convolutional layer cannot directly access subsequent
layers, and thus, it is difficult to make full use of the informa-
tion from all the internal layers of a network. Consequently,
researchers often add complex network connections (such as
dense connections) to residual blocks.

A densely connected layer uses the feature mappings from
all the previous layers as its input; then, its own feature map-
ping is used as the input to all the subsequent layers, leading to
l ·(l−1)/2 dense blocks (where l is the total number of layers
with dense connections). Dense connections not only help

to alleviate the vanishing gradient problem, enhance signal
propagation and promote feature reuse but also significantly
reduce the number of parameters by enabling the use of low
growth rates and the squeezing of channels after joining.
Tong et al. [33] used a dense block structure to construct a
69-layer SRDenseNet model by inserting dense connections
between different dense blocks. In addition, Zhang et al. [29]
proposed a CNN-based residual structure with wide-channel
activation (WDSR_A and WDSR_B). On the premise of
maintaining the original calculation cost, the number of fea-
ture channels before activation was increased, and the feature
channel was extended before the rectified linear unit (ReLU)
allowed more information to pass through while simultane-
ously maintaining the nonlinearity of extremely deep neural
networks. Consequently, low-level SR from the shallow layer
can be more easily propagated to the final layer, which can
produce a better image reconstruction effect. This method
was promoted in [34], [35].

C. LOSS FUNCTION
Early SR models mainly used either the minimum abso-
lute deviation l1 (used by models such as LapSRN, EDSR,
and MemNet) or the MSE (used by models such as
SRCNN, VDSR, and the dense-deep backprojection network
(D-DBPN) [36]) as the loss function for SR image reconstruc-
tion. The formulas are as follows:

l1 =
1

n× m

∑i=n

i=1

∑j=m

j=1

∣∣Yi,j − f (xi,j)∣∣, (1)

l2 =
1

n× m

∑i=n

i=1

∑j=m

j=1
(Yi,j − f (xi,j))2, (2)

where Yi,j is a pixel value in the real image, f (xi,j) is the
pixel value at the corresponding position in the reconstructed
image, and n and m represent the image dimensions.

However, the use of these loss functions results in insuf-
ficient image texture information remaining after the recon-
struction, and the image is too smooth and does not match
human visual perception. In an adversarial neural network,
both an adversarial loss and a content loss can be applied to
make the image look more natural; the content loss ensures
that the reconstructed image has characteristics similar to
those of the original LR image [11]. Adversarial loss is simi-
lar to the loss used in traditional GAN applications: the main
innovation lies in the content loss. The content loss can be
defined as a Euclidean distance loss based on the differences
between the reconstructed HR image and the original image.
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FIGURE 2. Overall network architecture of the proposed algorithm.

FIGURE 3. Network diagram of the algorithm proposed in this paper.

The adversarial loss formula is as follows:

lSRGen =
∑n=N

n=1
− logDθD(GθG(ILR)), (3)

where DθD(GθG(ILR)) denotes the probability that the recon-
structed image is a real, accurate image.

The content loss function consists of l2 and the VGG loss
after activation. The calculation formula for the VGG loss
function is as follows:

lSRVGG/i,j =
1

Wi,j × Hi,j

∑x=Wi,j

x=1

∑y=Hi,j

y=1
(φi,j(IHR)x,y

−φi,j(GθG(IHR))x,y)2, (4)

where φi,j indicates that the j-th convolution is activated in
VGG19 and that the feature map is obtained before the
i-th max-pooling layer and Wi,j and Hi,j are the dimensions
of the feature map.

III. PRINCIPLE OF THE PROPOSED MODEL
To avoid the insufficient use of shallow information,
SR models such as EDSR, SRDenseNet, the residual decon-
volutional network (RDN) [30], and D-DBPN use jump con-
nections and other connection methods. By contrast, rather
than using various jump connections, this paper considers that
the use of nonlinear ReLUs hinders the flow of information
from shallow to deep layers [37]. To address this problem,
a 1 × 1 convolutional layer is inserted before activating the
ReLU to expand the number of feature channels by a factor
of 6-9. This approach maintains a high degree of nonlinearity
in the deep neural network while improving the utilization
of shallow information, endowing the neural network with

a better effect when predicting dense pixels. Based on the
above considerations, this paper uses 1 × 1 convolution to
expand the feature combination before activating the ReLU
in each VRDB, allowing more information to pass through
and producing both a better texture effect and an increased
PSNR value. In addition, to obtain more detailed texture
information, residual scaling and the leaky ReLU unsatu-
rated excitation function are used in the model network. The
BN layer is removed, and a 5 × 5 convolution kernel is
used instead of the original 3 × 3 convolution kernel to
increase the size of the receptive field. In the design of the
loss function, this paper uses preactivation features instead
of the perceptual loss function Lpercep after activation. The
discriminative power of the discriminator is improved by
using the relativistic average discriminator DRa instead of
the standard discriminator [23]. The overall network structure
diagram of the proposed algorithm is shown in Figure 2.

A. MODEL NETWORK STRUCTURE
The proposed SR image restorationmethod is based primarily
on the existing GAN and SRDenseNet methods. The overall
network structure is illustrated in Figure 3. First, a convolu-
tional layer is used to learn the characteristics of the lower
layer; then, upsampling is performed in two steps, each time
by a factor of 2, to learn the upsampling filter parameters.
Finally, a convolutional layer produces an HR output image.
The three main contributions of this paper are as follows:

(1). The BN layer is removed, and each residual block
is multiplied by a scaling factor β to remove noise and
strengthen the stability of the network model, resulting in a
deep network model that is more suitable for training.
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FIGURE 4. Residual network structure comparison: (a) structural diagram of an RDB; (b) VRDB diagram.

(2). Every group of three VRDBs is treated as a complete
RDB. A deep network with 22 weighted layers is used, and
the final number of neurons is 64. A 3×3 convolution kernel
is used to extract image features. Each VRDB module is
composed of 4 WDSR_B [37] and leaky ReLU layers with
dense jump connections and a convolutional layer to extract
local image features.

(3). The 128-layer VGG ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) network structure is used
for the discriminative network. The VGG feature extractor is
a filter with a 3× 3 convolution kernel, a step size of 1, and a
fill mode of the same size. Thus, the overall model structure
can be expressed as follows:

F1(Y ) = f (W1 ∗ ILR + b1)
F2(Y ) = G1(F1(Y ))
F3(Y ) = G2(F2(Y ))
...

F23(Y ) = G22(F22(Y ))
F24(Y ) = f (W23 ∗ F23(Y )+ b23)
YHR1 = P(W24 ∗ F24(Y )+ b24)
YHR2 = f (W25 ∗ YHR1 + b25)

,

(5)

where ILR is the input LR image, Wj(j = 1, 2, · · · 25) is the
convolution filter, ∗ represents a convolution operation, and
f (x) is the excitation function.Gi(F(Y )) is a nonlinear feature
extraction function:

Gi(F(Y )) = β × D(D(Fi(Y ))),

D(Fi(Y )) = fi+1, i = 1, 2, · · · 22;β ⊂ (0, 1). (6)

D(x) uses a stable connection to output fi+1 for an inputFi(Y ),
P(x) denotes the upsampling of the extracted image features
to obtain an HR image, and YHR2 is the final SR image.

B. LOCAL RESIDUAL NETWORK MODEL
Increasing the network depth is beneficial for obtaining
more useful texture information. However, vanishing and
exploding gradients represent obstacles when training deep

FIGURE 5. Network structure diagram of a WDRB.

networks, making it difficult for such a network to converge.
To increase the network convergence speed, a combination
of local residual learning with a multipath mode and mul-
tiweight recursive learning is used. The specific connection
mode and structure are shown in Figure 4, where Figure 4(a)
shows the RDBs used in SRDenseNet and Figure 4(b) shows
the VRDB module proposed in this paper.

The VRDB module consists of four WDSR_B and leaky
ReLU layers with dense jump connections and one convo-
lutional layer. Together, one WDSR_B layer and one leaky
ReLU layer form a wide-channel activation residual block
(WDRB). The network structure used in this paper is depicted
in Figure 5. The WDSR_B design of the linear low-rank
convolution stack also increases the computational overhead
of activation. In theWDSR_B design, all the activated ReLUs
are applied only between two extended sets of features (fea-
tures with an increased number of channels). Shi andChu [37]
also showed the benefits of such wide-channel activation that
are achieved through more extensive activation and linear
low-rank convolution. This model improves the accuracy of
SR image reconstruction without requiring additional param-
eters or calculations. A comparison of the results before and
after wide-channel activation is provided in Figure 6.

First, the input fn yields more abundant texture informa-
tion when processed with the wide-channel activation layer
(WDSR_B). Then, the image feature extraction process is
completed by the leaky ReLU layer. The specific network
structure is shown in Figure 4(b). Next, the input passes
sequentially through three identical pairs of WDSR_B and
leaky ReLU layers through jump connections to further
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FIGURE 6. Comparison of the full-channel 7th WDRB before and after activation: (a) 7th WDRB before activation; (b) 7th WDRB after
activation.

FIGURE 7. Comparison among residual block structures: (a) conventional residual block; (b) wide-channel residual
structure; (c) wide-channel activated residual block; and (d) the WDRB proposed in this paper.

extract deeper image features. Finally, after a 3 × 3 convo-
lutional layer, the high-frequency image features are learned
and added to fn to obtain fn+1. In this local residual network
structure, the local residual units are stacked sequentially, and
different residual units have different inputs. Subsequently,
a multipath jump connection structure is used such that all
the remaining units share the same input. Compared with the
recursive mode, this multipath mode is more conducive to
learning and is not easily susceptible to overfitting.

C. COMPARATIVE DESIGN OF RESIDUAL MODULES
ReLUs are commonly used, unsaturated activation functions
that make the output of a network sparse, thereby reducing
the number of calculations while retaining the information

pertaining to the main features. However, it is easy to lose
other small texture information. Nevertheless, the loss of fine
texture information should be avoided as much as possible.
This paper considers the use of a 1 × 1 convolution ker-
nel to expand the number of feature channels before acti-
vation, which is helpful for alleviating the sparsity of the
network output after activation [38]. To this end, this paper
improves upon and develops a WDRB that is suitable for
GAN structures (as shown in Figure 7(d)). The proposed
image SR reconstruction method based on a GAN generates
more image feature information than does the SR model.
Therefore, this paper adds a convolutional layer and a leaky
ReLU layer on the basis of the original WDSR_B to bet-
ter retain and extract effective image feature information.
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Different from Figure 7(a), (b), and (c), the residual blocks
are directly connected in series. In this paper, four WDSR_B
layers and a convolution layer are connected as a VRDB by
using dense jump connections. The effective use of shallow
information to speed up network calculations is also con-
ducive to generating higher-quality reconstructed images.

The wider residual block shown in Figure 7(b) allows more
influx of shallow information [39] than does the structure
shown in Figure 7(a) [15] but also adds additional calcula-
tions. In contrast, the version in Figure 7(c) increases the
number of input channels to the active layer without increas-
ing the parameters [37]. The number of parameters required
for the residual block in Figure 7(a) isW = 2×W1 ×W2 ×

k2 = 2×W 2
1×k

2, which is equivalent to r = 1. In the residual
block calculations illustrated in Figure 7(c), the number of
parameters required isW = 2×Ŵ1×Ŵ2×k2 = 2×Ŵ 2

1 ×k
2,

where k represents the convolution kernel size. To ensure that
the number of parameters does not increase, Ŵ1 = 1

/√
rW1,

and the corresponding W2 = r × 1
/√

r =
√
rW1. The

proposed WDRB has the advantages of the block illustrated
in Figure 7(b) but requires only the number of calculations
of that shown in Figure 7(a). W1 or Ŵ1 and W2 or Ŵ2
replace the weights required before and after convolution,
respectively [29].

D. PERCEPTUAL LOSS
To improve the overall perceptual quality of the final
SR images, this paper uses a relativistic average discrimi-
nator, denoted by DRa, instead of the standard discriminator.
The standard discriminator used in SRGAN can be expressed
as D(x) = σ (C(x)), where σ is the sigmoid function and
C(x) is the nontransformed discriminator output. DRa can be
expressed as DRa(xr , xf ) = σ (C(xr ) − IExf [C(x)]), where
IExf represents the operation of averaging all the fake data in
the mini-batch. The discriminator loss can be defined [23] as
follows:

LRaD = −Exr [log(DRa(xr , xf ))]

−Exf [log(1− DRa(xf , xr ))]. (7)

The adversarial loss function is expressed as follows:

LRaG = −Exr [log(1− DRa(xr , xf ))]

−Exf [log(DRa(xf , xr ))]. (8)

In Formula (8), xf = G(xi), where xi represents the input
LR image. The adversarial loss of the generative network
includes both xf and xr . Therefore, the generator benefits
from the gradient of both the data generated during training
and the actual data, while in SRGAN, only the generated
data exert an effect. This discriminator modification helps the
network learn to generate sharper edges and more delicate
textures.

Regarding the design of the loss function, the perceptual
loss function Lpercep based on the preactivation constraint
features is used instead of the loss function after activa-
tion, as in SRGAN. Thus, in combination with Formula (8),

the loss function of the generator is obtained as follows:

LG = Lpercep + λLRaG + ηl1, (9)

where l1 = IExa ‖ G(xi) − y ‖1 is the minimum absolute
deviation (l1) loss between the estimated recovered image
G(xi) and the real image y and λ and η are coefficients that
balance the different loss terms [23].

E. EVALUATION INDICATORS
To better evaluate the performances of various image
SR algorithms, the PSNR, SSIM, and natural image quality
evaluator (NIQE) [40] can be used as image quality evalu-
ation metrics. The PSNR is a full-reference image quality
evaluation indicator. Let MSE denote the mean square error
between the current image X and the reference image Y ; let
H and W denote the image height and width, respectively;
and let n denote the number of bits per pixel (generally 8),
meaning that the number of possible gray levels of a pixel
is 256. The PSNR is expressed in units of dB. The larger the
PSNR is, the smaller the distortion. The MSE and PSNR are
calculated as follows:

MSE =
1

H ×W

∑i=H

i=1

∑j=W

j=1
(X (i, j)− Y (i, j))2,

PSNR = 10 log10(
(2n − 1)2

MSE
). (10)

The SSIM is another full-reference image quality evalu-
ation metric that measures image similarity from three per-
spectives: brightness, contrast, and structure. SSIM values
closer to 1 indicate greater similarity between the original (x)
and reconstructed image blocks (x̂) and represent a bet-
ter reconstruction effect. The formula for calculating the
SSIM is as follows:

SSIM (x, x̂) =
(2uxux̂ + C1)(2σxx̂ + C2)

(u2x + u
2
x̂ + C1)(σ 2

x + σ
2
x̂ + C2)

. (11)

In Formula (11), ux and ux̂ represent the means of image
blocks x and x̂, respectively; σx , σx̂ and σxx̂ represent the
variances of image blocks x and x̂ and their covariance,
respectively; and C1 and C2 are constants.
The PSNR and SSIM are the most commonly used objec-

tive indicators for image evaluation. However, they are based
on the errors between corresponding pixels; that is, they
evaluate image quality based on error sensitivity. Since these
measures do not consider the visual characteristics of the
human eye, the evaluation results are often inconsistent with
human subjective perception. Therefore, this study uses the
NIQE, an objective evaluation measure for image quality that
more closely reflects the subjective evaluation of the human
eye.

The formula for calculating the NIQE is as follows:

D(v1, v2,
∑
1

,
∑
2

) = ((v1 − v2)T(

∑
1+
∑

2

2
)−1(v1−v2))

1/2.

(12)
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TABLE 1. List of public SR image datasets.

Here, the means and variance matrices of the multivariate
Gaussian (MVG) models for the natural and distorted images
are v1, v2,

∑
1 and

∑
2. The larger the values of these param-

eters are, the better the image quality. The MVG models are
calculated as follows:

fx(x1, x2, · · · , xk ) =
exp[− 1

2 (x − v)
T ∑−1(x − v)]

(2π )k/2
∣∣∑∣∣1/2 , (13)

where x1, x2, · · · , xk (k = 1, 2, · · · n, n ∈ N∗) denote the
extracted image features, v is the mean, and

∑
is the variance

matrix. Here, v and
∑

can be obtained through maximum
likelihood estimation.

IV. RESULTS AND DISCUSSION
A. MODEL TRAINING PARAMETERS
In this study, the DIV2K dataset was used as the train-
ing set [41]. A comparative analysis was then performed
using four standard datasets: Set14 [42], BSD100 [43],
Urban100 [44], and BSD200 [43]. The characteristics of each
dataset and the differences among them are shown in Table 1.
The bicubic degradation model was used in the experiments.
The PSNR, SSIM, and NIQE were used to evaluate the
SR images based on the Y channel in the YCbCr color space.
Among them, the NIQE is a no-reference quality indicator
that is more consistent with subjective quality evaluations
based on the human visual system. To improve the network
convergence speed and visual effect, each batch of images
was cropped to 128 × 128 subpixel blocks, and the train-
ing data were composed of the cropped HR pixel blocks.
The training dataset contained a total of 32,208 images. The
Adam optimizer was used to train the model with settings of
β1 = 0.9 and β2 = 0.99. The learning rate was initially set
to 10−4, and attenuation by a factor of two was performed
for every 2 × 105 small batches. The generator was trained
using the loss function in Formula (9) with λ = 5×10−3 and
η = 1 × 10−2. The generative and discriminative networks

FIGURE 8. LG_loss versus the number of iterations with different
numbers of network layers.

were alternately updated until the relativistic average discrim-
inator could continuously discriminate between the real and
reconstructed images with a probability of 0.5, at which time
the model was deemed to have converged. Generators with
two different structures were tested: one contained 16 residual
blocks with a capacity similar to that of SRGAN, and the
other was a deeper model with 22 RDBs. The proposed
model was implemented using the PyTorch framework on an
NVIDIA 1060 GPU.

B. RESIDUAL LAYER OPTIMIZATION
Network depth is an essential factor that affects the quality of
SR images [45], [46]. Increasing the network depth enables
more features to be extracted. However, the deeper the net-
work is, the worse its convergence behavior becomes, making
it more susceptible to overfitting [13].

In this study, the size of the dataset was increased, and a
local residual network structure was used to accelerate net-
work convergence while effectively avoiding overfitting. At a
magnification of 4, network models with 16 and 22 residual
layers were trained separately. To ensure complete network
convergence, 200,000 iterations were performed. Figure 8
shows the relationship between the LG_loss for the 16-layer
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FIGURE 9. Changes in the PSNR with the number of iterations: (a) average PSNR value on Set14 versus the number of iterations; (b) rate of change
in the PSNR.

FIGURE 10. Comparison of RDBs with and without wide-channel activation: (a) feature map of the 22ndRDB layer without wide-channel
activation; (b) feature map of the 22ndRDB layer with wide-channel activation.

and 22-layer networks and the number of iterations. This
figure shows that the final LG_loss and PSNR tend to become
stable and approximately parallel, indicating that the net-
work has fully converged and that no overfitting phenomenon
has occurred. To further verify the validity of the model,
Set14 was selected as the test set, and the average PSNR
was used as the evaluation index. Figure 9(a) shows that the
average PSNR in the test data set (Set14) changes with the
number of iterations. Figure 9(b) presents a graph showing
the PSNR growth rate curve, demonstrating that the average
PSNR of the 22-layer network is slightly larger than that of
the 16-layer network. The exact values are shown in Table 4.
The convergence of the 16-layer residual network is signifi-
cantly faster than that of the 22-layer network. The 16-layer
residual network begins to converge after 70,000 iterations,
whereas the 22-layer residual network begins to converge
only after 115,000 iterations. These results show that when

a model with high convergence speed and only moderate
accuracy is required, the 16-layer residual network should
be selected. When the perceptual quality of SR images is
of greater concern, the 22-layer residual network should be
adopted, as it yields better average PSNR and SSIM values
and better image quality. This paper focuses on the perceptual
quality and visual effect of SR images; therefore, the 22-layer
network model is selected for subsequent experiments.

C. ACTIVATION COMPARISON WITH DIFFERENT
NUMBERS OF FEATURED CHANNELS
To verify whether using 1 × 1 convolution to expand the
number of feature channels can improve the utilization of
shallow information, this paper selected the feature visual-
ization of the RDB layer. The butterfly image in the Set5 [44]
dataset was used as the input image. The LR images are
shown in Figure 2. Figure 10 shows a comparison between
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FIGURE 11. PSNR and SSIM curves for the 22-layer RDB network with and without wide-channel activation: (a) PSNR curve for the 22-layer RDB
network with and without wide-channel activation: (b) SSIM curve for the 22-layer RDB network with and without wide-channel activation.

FIGURE 12. Compare the 7th WDRB without wide-channel activation before and after: (a) 7th WDRB before
activation; (b) 7th WDRB after activation.

the RDBs with and without the 1×1 convolutional expansion
of the number of feature channels. Figure 11 presents the
further verification of the results. As the number of network
layers increases, the utilization of shallow information is
significantly reduced, and thus, fewer features are extracted.
To test this hypothesis, this article compares the feature maps
of the 7th WDRB with and without wide-channel activation
(see Figure 6 and Figure 12). A comparison of Figure 6(b)
and Figure 12(b) clearly shows that more feature information
is retained by using a WDRB. The experiments show that
expanding feature channels before ReLU activation is helpful
for alleviating network sparsity after activation (as shown
in Figure 6 and Figure 12).

Figure 10 shows that the feature information of the
22nd layer is quite different after wide-channel activation.

There is a serious loss of RDB feature information with-
out wide-channel activation, whereas the RDB layer with
wide-channel activation retains distinct feature information.
The shallow information of the network is lost in the deeper
layers, resulting in a lower utilization rate; thus, a worse
performance is achieved. By contrast, the activation of a
wide feature channel enables better retention of the original
shallow feature information and improves the utilization rate.

In Figure 11, the experimental results show that as the
number of network layers increases, either the PSNR or
the SSIM in each RDB layer decreases compared to that in
the first layer. After activation, the PSNR or SSIM signifi-
cantly increases, and the overall perceived quality is better,
which indicates that the RDB feature map activated with
wide channels includes more shallow information than that
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FIGURE 13. Variation in the training process under different feature expansion parameters and residual scaling
parameters.

without wide-channel activation. The average PSNR after
activation is 17.27, which is 2.30 higher than that before
activation, and the overall utilization of shallow information
increases by approximately 15.34%. According to the SSIM
evaluation, the average SSIM values after and before activa-
tion are 0.46 and 0.22, respectively. Therefore, the utilization
of shallow information overall improves by approximately
105.52%; that is, after wide-channel activation, the utilization
of feature information is significantly improved.

D. ABLATION ANALYSIS
An ablation analysis was performed for the residual scaling
parameter (β = 0.1, 0.2, 1) and the feature expansion param-
eter (r = 1, 5, 6, 7). First, the existence of residual scaling
and feature expansion channels are investigated. If feature
expansion and residual scaling are not present, they are both
set to 1; otherwise, the default values are used for feature
expansion and residual scaling (6 and 0.2, respectively).
Set14 is used as the test dataset, and the PSNR is used as
the image quality evaluation index. To further demonstrate
the effectiveness of feature expansion and residual scaling
on the model performance, the residual scaling parameters
are set to 0.1 and 0.2, and the feature expansion parameters
are set to 5, 6, and 7. The specific experimental results are
shown in Figure 13.

Figure 13 demonstrates that when the number of iterations
is 30,000, various structures may seem to converge. To better
reflect the influence of each parameter structure on themodel,
the average PSNR value of the RGB channel during training
epochs 30,000-100,000 was selected as the evaluation index.
The specific results are shown in Figure 14.

FIGURE 14. Comparison of the average PSNR values of RGB channels
under different parameter structures.

Figure 14 shows that when the feature expansion param-
eter is 6 and the residual scaling parameter is 0.2
(r = 6, β = 0.2), the average PSNR value is the
highest. In contrast, the average PSNR value is the lowest
when feature expansion and residual scaling are not used
(r = 1, β = 1 in Figure 14). In addition, from the comparison
of r = 6, β = 1 and r = 1, β = 1, the use of feature
expansion significantly improves the model performance,
while the simple use of residual scaling does not significantly
improve the network performance (r = 1, β = 1 and r = 1,
β = 0.2 in Figure 14). Therefore, it can be concluded that
when either feature expansion or residual scaling is employed
alone, the former has a greater impact on model performance
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FIGURE 15. Comparison among the textural details of the different algorithms on a comic image; the best results are
highlighted.

FIGURE 16. Comparison of the image authenticity among the different algorithms for image 138032; the best results are
highlighted.

than the latter. When the feature expansion parameter is 5,
a residual scaling parameter of 0.1 performs best. When
using the feature expansion parameter is 6, a residual scaling
parameter of 0.2 performs best. Hence, residual scaling has
little effect on the performance of the model with a feature
expansion parameter of 7.

E. QUALITATIVE ANALYSIS
When evaluating the image perception quality, we should
not only consider the high-frequency texture information and
visual effect of the image but also emphasize the image
restoration accuracy instead of blindly pursuing smooth but
unrealistic images. Therefore, the restoration of image tex-
tures, the generation of erroneous texture information, and
the existence of other undesirable (noisy or unrealistic) infor-
mation (such as artifacts, partial image details, and color dis-
tortion) are all critical considerations when evaluating image
quality. To test the effectiveness of the proposed algorithm,

the SRGAN [11], bicubic WDSR [37], EDSR+SRGAN, and
ESRGAN [23] models were compared with the two proposed
structural models.

WDSR is the winning model from NTIRE 2018; it uses
a wide-channel activation method similar to that proposed
in this study. The model in [39] uses a wide-channel resid-
ual block similar to DRRN. ESRGAN ranked first in the
PIRM2018-SR Challenge competition and obtained a higher
perceived quality index than both EDSR and DRRN [47].
The proposed models, called WDSRGAN16 and WDSR-
GAN22, and the other five models were tested on the
Set14, BSDS200, and Urban100 datasets (with a magnifica-
tion of 4). The experimental results show that the proposed
algorithm recovers more image texture details and that its
visual quality is the best (Figure 15). On ‘‘image 138032’’,
the ESRGAN model restores the detail of the rope poorly
and produces the wrong texture information (Figure 16).
On ‘‘img_011’’, the EDSR+SRGAN model suffers from
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FIGURE 17. Comparison of the color and brightness monitoring performance among the different algorithms on img_011;
the best results are highlighted.

color distortions at the edge of the tall building, which is blue
(Figure 17).

Comparing the various algorithms on the comic image
shown in Figure 15, the lower the NIQE value is, the better the
perceptual quality of the image. Among the tested algorithms,
the bicubic algorithm has the worst image restoration quality,
characterized by a high degree of ambiguity. A large amount
of high-frequency information is not recovered because sim-
ple linear interpolation is insufficient for the highly complex
task of image reconstruction. WDSR is used as the loss
function l2. For this kind of SR image, this loss function
restores only the primary outline information and the image
texture; hence, the

SR image feature information extracted byWDSR is insuf-
ficient. EDSR+SRGAN and SRGAN preserve more details
than do the above algorithms; however, their results often
contain artifacts and abnormal variations in image color.
This is because the GAN is sensitive to the noise intro-
duced by the BN layer. ESRGAN performs effectively in
terms of monitoring the image color and brightness and
recovering texture information; however, compared to the
real image, the restoration quality of the content is insuffi-
cient. WDSRGAN22 shows superior performance compared
to all the above algorithms, yielding an NIQE value of 2.72,
which is 19.76% lower than that of ESRGAN, indicating
higher-quality detail restoration compared with ESRGAN.
This is because the WDSRGAN22 network structure uses a
1 × 1 convolutional layer to expand the number of feature
channels by a factor of 6–9, thus improving the utilization of
shallow information and making the network more conducive
to the transmission of information. In addition, the proposed
residual network structure differs from the previous resid-
ual structure: three VRDBs are used to form a wide local
residual network block, and residual scaling is used, where
each VRDB structure contains dense jump connections. The
improvement in utilizing shallow information contributes to

the transmission of more information throughout the network
layers, thereby improving the quality of the restored image.
The map with the best perceptual quality perception is high-
lighted with bold font in each figure.

Figure 16 shows a comparison of the image authenticity
test results among the various algorithms. The SR images
reconstructed with WDSR and the bicubic algorithm are very
fuzzy, whereas SRGAN and EDSR+SRGAN successfully
restore the texture information of part of the rope image but
also introduce noticeable artifacts. Because of the excessive
pursuit by the ESRGAN model of an aesthetically pleas-
ing visual effect, the contents of the images restored by
ESRGAN do not match the original image information; in
fact, for imageswith rich texture information, ESRGANoften
produces texture information that fails to match the origi-
nal image. In contrast, the results of the proposed network
structure are more realistic with a minimum NIQE value
of 4.02.

In the comparison among the color and brightness
monitoring effects of the different algorithms presented
in Figure 17 (img_011), SRGAN, WDSR, ESRGAN,
and WDSRGAN16 show little differences in brightness
monitoring performance. However, the NIQE value of
WDSRGAN22 is 4.47; its generated image is sharper than
those generated by the other algorithms, and its bright-
ness is stronger than that of the SR images generated by
the other algorithms. The SR image reconstructed by the
EDSR+SRGAN algorithm exhibits an undesirable bluish
phenomenon, but it achieves the highest NIQE value.

In addition to the qualitative and quantitative analyses
performed on several commonly used image datasets with
high variability, a real underwater fish dataset was also used
to verify the reliability of the proposed algorithm. The same
six algorithms, i.e., the bicubic, SRGAN, ESRGAN, WDSR,
EDSR+SRGAN, and WDSRGAN algorithms, were tested
and compared on this dataset in Figure 18, and the quality
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FIGURE 18. Comparison among the enhancement and reconstruction results for a real underwater image of fish using the different
algorithms; the best results are highlighted.

TABLE 2. Average NIQE results on different datasets.

of the SR images was evaluated using the NIQE. Again,
the bicubic algorithm achieves the worst reconstruction effect
relative to the original image with an NIQE of 8.64. The
reconstruction effect of the proposed algorithm is the best
with an NIQE value of 3.26. The effect of the SRGAN is
suboptimal, although it can sharpen the fuzzy details of the
original image. These experimental results show that the
proposed algorithm is similarly suitable for enhancing real
underwater fish images, and it achieves the best performance
among the tested algorithms.

F. QUANTITATIVE ANALYSIS
This paper reports the results of testing the bicubic, SRGAN,
ESRGAN, WDSR, EDSR+SRGAN, 16-layer WDSRGAN,
and 22-layer WDSRGAN algorithms on four different
datasets: Set14, BSDS100, BSDS200 and Urban100 (at a
magnification of 4). The quality of the SR images was evalu-
ated using the NIQE, and the results are shown in Table 2.
Considering that the human eye is sensitive to brightness
contrasts and to better show the differences among the algo-
rithms, experimental calculations were performed on the
Y channel of the YCbCr color space to calculate the PSNR
and SSIM for the Y channel only. The results of these calcu-
lations are shown in Table 3 and Table 4.

As seen in Table 2, the NIQE value of WDSRGAN16 is
only slightly higher than that of WDSRGAN22, which
reports the lowest NIQE among all the algorithms considered
for the comparison with an average value of 3.4 (the lower
the NIQE value is, the better the image quality). The aver-
age NIQE value of WDSRGAN22 is 0.3 lower than that of
ESRGAN, which achieves the highest perceptual quality
score. The average NIQE value of WDSR is 6.84, indicating
that the resulting SR images do not match human perception;
they are too smooth and lack textural details. The SR images
produced through bicubic interpolation are the most ambigu-
ous with an average NIQE value of 7.62, which is 4.22 higher
than that of WDSRGAN22.

From the Y-channel PSNR and SSIM results presented
in Table 3 and Table 4, the PSNR and SSIM values of the
ESRGAN and WDSRGAN16 models are similar, but the

WDSRGAN22 model performs better. This shows that
strengthening the use of shallow information can help
improve network model performance. On the Set14 and
BSDS100 datasets, the average PSNR of WDSRGAN22 is
0.3 dB higher than that of ESRGAN, and the average SSIM
is 0.45 higher. Most notably, the average PSNR of WDSR-
GAN22 increases by 0.45 dB on the Urban100 dataset. Thus,
the proposed algorithm exhibits better performance, and is
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TABLE 3. Average Y-channel PSNR results on different datasets.

TABLE 4. Average Y-channel SSIM results on different datasets.

not only applicable for the SR processing of a wide variety of
images but also achieves higher image quality. Furthermore,
according to the results, the SRGAN model yields a lower
overall score than does WDSRGAN22 and tends to produce
unpleasant visual artifacts. TheWDSR algorithm, although it
achieves a higher score and obtains a sharper picture than the
bicubic algorithm, does not meet the requirements of human
visual perception.

G. ALGORITHM EXECUTION SPEED COMPARISON
An increase in network depth is beneficial for improving
image quality after reconstruction, but the resulting increase
in network complexity also reduces the execution speed and
increases the difficulty of network convergence. Therefore,
this paper presents the results of an experiment conducted to
compare the execution speeds of EDSR+SRGAN, SRGAN,
and WDSRGAN22, all of which are similar in structure.
The proposed reconstruction algorithm makes full use of
dense jump connections and residual learning, which signifi-
cantly reduces the computational complexity and improves
the running time. Although the WDSRGAN22 model has
approximately 85,470,908 parameters, its running time is
0.42 sec/frame, which is 3.6 times faster than that of SRGAN
(1.411 sec/frame), even though SRGAN has the same number
of parameters as WDSRGAN16. EDSR+SRGAN has a run-
time similar to WDSRGAN22, but its PSNR value is 1.1 dB
higher than that of WDSRGAN 22.

V. CONCLUSION
The WDSRGAN algorithm proposed in this paper achieves
higher perceptual image quality and a higher PSNR value
than previous algorithms. Based on the network structure
of the original SRGAN model, dense jump connections

are adopted in each VRDB module. Every set of three
VRDBs forms an RDB module, increasing the depth of the
network while maintaining a runtime speed of 0.42 sec/
frame—3.6 times faster than that of SRGAN. In addition,
1×1 convolution is used to combine the extended features in
VRDB. Based on the PSNR and SSIM evaluations of each
layer of feature images, the overall utilization of shallow
information increases by 15.34% and 105.52%, respectively.
An ablation experiment shows that a model network width
expansion setting of r = 6 and a residual scaling setting
of β = 0.2 are optimal. In tests on four standard datasets,
the average NIQE value of the reconstructed images is 3.4,
and the perceptual quality is the highest among all tested
algorithms. In qualitative image evaluations, the image tex-
ture restoration effect, the generation of erroneous texture
information, and the presence of noisy or unrealistic image
information are essential considerations.

The method proposed in this paper, which combines a
GAN with wide-channel activation for feature extraction,
offers beneficial improvements compared with existing algo-
rithms and has practical value for specific applications.
Future work can focus on further optimizing the network
model while ensuring the image quality to make the model
lighter and enable its applications in other fields, such as
medical imaging, hyperspectral imaging, and the SR recon-
struction of terahertz images.
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