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ABSTRACT In the next generation wireless communication paradigm, the number of devices are expected
to increase exponentially after the concept of Internet of Things (IoT). These devices are power constrained,
with limited processing capability. Therefore, in order to get the maximum advantage from these low power
IoT sensing devices, it is of utmost need to empower them. Similarly, the devices are not able to process
the computationally intensive applications. In this work, Wireless Power Mobile Edge Cloud (WPMEC) is
considered, which is an integration of Wireless Power Transfer (WPT) and Mobile Edge Cloud (MEC) to
address low power devices’ battery and computational capabilities. The WPMEC is charging the devices
in the first phase using the WPT and in the second phase, the devices are offloading their computational
intensive data to the MEC. Partial offloading scheme is first time introduced and analyzed with WPMEC.
Performance of proposed solution is evaluated in terms of overall network computational energy efficiency.
Extensive simulations have been carried out to validate the proposed solution. It is shown that the proposed
partial offloading scheme with WPMEC outperforms the binary and local computational schemes.

INDEX TERMS Wireless Power Transfer, Mobile Edge Cloud Computing, Eergy Efficiency.

I. INTRODUCTION
The demands for data rates and Quality of Services (QoS)
is exponentially increasing with the rapid evolution of infor-
mation technology devices, such as smart phones, tablets and
laptops. While new mobile devices are more and more pow-
erful in terms of computing capabilities, they are still not able
to handle applications that need real-time processing such as
wearable Virtual Reality (VR), self driving vehicular systems,
mobile health care, mobile governance and etc [1]. In addi-
tion, the recent development of Internet of Things (IoT)
technology is a key step towards smart and autonomous
control in industrial and business processes, such as smart
grids and smart home automation. The devices (e.g. sensors)
often are equipped with a limited battery and a low perfor-
mance processor because of the small size and to reduce the
production costs [2]. As a consequence, devices with lim-
ited computing capabilities are unable to accommodate and
process applications requiring scalable and high-performance
computations. Therefore, for the development of modern
IoT technology, it is of utmost requirement to address the
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issues related to power and computational capability of
IoT devices [3].

The concept of Wireless Power Transmitter (WPT) is
emerged as an effective solution to address the power con-
straints of low power devices, including the IoT devices. The
devices are continuously charged via WPT, where the WPT
uses the dedicated radio frequency for energy transmission.
The technology is able to transfer tens of micro watts at a
distance of more than ten meters. Therefore, WPT effectively
can charge low power devices. Using the advance signal
processing techniques, the improvement in the performance
of WPT in terms of energy transmission is foreseen in the
near future [4]. Therefore, one of the critical issue related to
low power devices (IoTs) can be addressed using the WPT.

The other main critical limitation of IoT devices is related
to their computational capabilities. Usually the IoT devices
act as sensors, where they sense data from their surrounding
environment, but are unable to process the data because of
limited battery and limited processing resources. To assist the
low power devices a concept of edge computing is addressed
by the researchers. Therefore, under a contract with a cen-
tralized infrastructure, a new paradigm namely Mobile Edge
Cloud (MEC) is proposed, where the MEC is located in the
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FIGURE 1. System Model For Mobile Edge Cloud.

vicinity of the devices, as shown in Figure 1. The position of
the MEC, in vicinity to the devices overcomes the latency
issue [5]. The MEC has less resource as compared to the
cloud. MEC, not only, provides the computational facility but
also the storage and caching services at the edge of mobile
devices. MEC is an emerging concept of 5G and B5G which
ensures the end to end delay requirement of less than 1ms.
In MEC and WPT assisted IoT network, the devices are able
to re-charge their batteries and to offload the computational
intensive applications to the MEC [5]. In this way the energy
consumption of the devices would be significantly reduced.
Therefore, for a better computational efficiency and to reduce
the end to end delay, the computational and communication
resources should be optimally allocated among the devices
and the MEC.

In the recent research work, two schemes for data offload-
ing to MEC are proposed. These schemes are named as the
binary offloading scheme and the partial offloading scheme.
In the binary offloading scheme, the whole data is either
computed locally on the device or is offloaded to the edge
server. In the partial offloading scheme, the complete task
is split into two parts, where one part is computed locally,
whereas the remaining part is offloaded to the MEC. One
advantage incurred from the partial offloading is the level of
achieved parallelism, where a portion of the task is computed
locally and in parallel at the same time other portion is com-
puted on the MEC. In [6], a weighted sum computational rate
maximization of MEC network is proposed, where the binary
offloading scheme is deployed with one server and several
mobile devices. In [7], an MEC is proposed with one energy
harvesting device and a dynamic offloading algorithm using
partial offloading scheme to minimize the execution cost.

In [8], an energy consumption minimization problem of
Access Point is addressed. In [9], the author presented
with Energy Harvesting the Reinforcement Learning-based
computation offloading system for IoT devices to achieve
the optimal offloading strategy without knowledge of the
MEC model, the computation latency model and the energy
consumption model. In [10], a concept of cooperative com-
munication is studied. Here the authors have considered
three nodes, where one of them is acting a relay and edge
computational device. A computational energy efficiency
maximization problem is discussed in [11] using MEC.
In [12] author formulate the cost minimization function in
order to construct a intelligent offloading framework for
5G enabled Vehicular systems. In [13] author model an
intelligent offloading for vehicular edge computing by using
the concept of deep reinforcement learning taken mobility
and non orthogonal multiple access into consideration, The
proposed solution addresses optimal allocation of resources
between mobile users and MEC.

In this work, the concept of Wireless Power Mobile Edge
Cloud (WPMEC) [6] is considered. The WPMEC is an inte-
gration of WPT and MEC. WPMEC is located at the Access
Point (AP), where the AP could be a base station, a Wi-Fi
router etc. The WPMEC is used for energy transfer to low
power devices and at the same time to receive computational
tasks from the devices. This work addresses partial offloading
scheme, Which is a direct measure of computational capabil-
ity of power constrained devices. To the best of our knowl-
edge, it is the first effort to study the WPMEC with partial
offloading scheme to overcome the computational capability
and battery limitation problems. In this work the terms users,
user devices and IoT are interchangeably used to address the
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FIGURE 2. Wireless Power Mobile Edge Cloud (WPMEC).

low power devices. The computational energy efficiency is
used as performance metric. The main contributions in this
work are as follow:

1) We formulate our problem as a joint optimal allocation
of transmission power, local computing chip frequency
as well as transmission time among mobile devices
and WPMEC in order to maximize the computational
energy efficiency of low power devices, which is a
direct measure of systems computing capabilities.

2) An algorithm is proposed which works on the principle
of contraction and expansion, and is based on Mesh
Adaptive Direct Search (MADS) algorithm. The pro-
posed algorithm reache the ε−optimal solution.

3) The fundamental trade-off between data size, offload-
ing and local computation is analyzed through exten-
sive simulations. Impact of user devices with different
priorities is analyzed in different offloading schemes.

Rest of the paper is organized as follow. The system model
for WPMEC is explained in Section II. While the proposed
solution is discussed in Section III. Results are discuss in
Section IV, and finally conclusion is drawn in Section V.

II. SYSTEM MODEL
In this work a Wireless Power Mobile Edge Cloud
(WPMEC), proposed in [6], is considered with one Access
Point (AP) and N mobile devices. The mobile devices con-
tain single antenna and are distributed uniformly. WPMEC
is integration of WPT and MEC, as shown in Figure 2.
The WPT uses radio frequency transmitter to continuously
charge the battery of mobile devices. Mobile devices harvest

FIGURE 3. Time Allocation in Mobile Edge Cloud (WPMEC).

and store energy for further processing and offload some
of their computational tasks to MEC located at AP. It is
assumed thatWPT andMEC are using the same frequency for
energy transferring and data offloading. To avoid their mutual
interference, TimeDivisionMultiplexing (TDM) technique is
applied, as shown in Figure 3, to separate communication and
energy transmission within mobile devices.

In order to implement TDM, the time frame T is divided
into two parts, where in time sub-frame aT themobile devices
harvest energy from AP, whereas during the remaining time
sub-frames T − aT the devices offload their computation
intensive task to MEC cloud using partial offloading scheme.
Using partial offloading parallel execution at the mobile and
MEC server is introduced, which means edge computing and
local computation takes place at the same time.

A. EDGE COMPUTING
The N uniformly distributed devices are represented by set
N = {1, 2, 3 . . . ,N }. These devices can offload some part
of their computational tasks to MEC. In order to reduce
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their mutual interference, devices offload their task using
TDM approach, as shown in Figure 3. The allocated time,
power and the channel between mobile devices and wireless
power MEC is represented by tn, pn and gn, respectively.
The total number of bits that need to be offloaded to cloud
is represented by rn, whereas noise power and bandwidth is
represented by δ2 and B, respectively. The total number of
offloaded bits in the allocated time by a mobile device n is
given as,

rn = B log2
(
1+

pngn
δ2

)
tn (1)

Similarly, the corresponding energy consumption during data
offloading is given as,

en = pntn + pr tn (2)

where, pn represents the transmission power of nth user in
time tn and pr represents the constant energy consumption
for signal processing and is same for all devices.

B. LOCAL COMPUTATION
In parallel to MEC computation, some part of the tasks are
computed locally by the correspondingmobile devices. Num-
ber of computational cycles needed to compute one bit of
data is represented by Cn. For local computation, the mobile
devices take entire time frame T to complete their task. The
total number locally computed bits by a mobile device n is
given as,

r ln =
Tfn
Cn

(3)

where fn represents the computational capability of the
mobile device, i.e. cycles per second. The energy consump-
tion by device n during local computation is given as,

E ln = εnf
3
n T (4)

where εn represents the computational energy efficiency.

C. PROBLEM FORMULATION
The objective of this work is to maximize the overall com-
putational efficiency of all the mobile devices connected to
WPMEC located at the AP. Mathematically, this problem
expressed as,

max
a,tn,fn,pn
∀n∈{1,··· ,N }

N∑
n=1

wn

(
B log2(1+

pngn
δ2

)tn +
Tfn
Cn

εnf 3n T + pntn + pr tn

)

C1 : a+
N∑
n=1

tn ≤ T

C2 : B log2
(
1+

pngn
δ2

)
tn +

Tfn
Cn
≥ Ln, ∀n

C3 : εnf 3n T + pntn + pr tn ≤ En, ∀n

C4 : 0 ≤ fn ≤ f maxn , ∀n

C5 : tn ≥ 0, pn ≥ 0 ∀n

C6 : a ∈ (0, 1) (5)

In (5), wn is a weighting factor used to prioritize the
users devices based on their QoS requirements. The objective
in (5) is a to maximize the overall network energy efficiency,
through optimal allocation of resources. The resources are the
offloading time, the power assigned to each user device, and
the devices’ computation capabilities. Constraint C1 states
that all the offloaded tasks must be completed with the
allowed time frame T . Here only transmission from device
to AP is considered, whereas the receiving time from AP to
device is ignored as the size of received data is very less and
comparatively it would take very little time. C2 states that the
total number of bits computed locally and at theMEC, should
be greater than minimum number of data bits Ln. Finally,
C3 states that total amount of energy consumed by the user
device should be less than or equal to the amount of energy
harvested by the user device form WPT located at AP.

III. OPTIMAL RESOURCE ALLOCATION
The problem in (5) is a non-linear non-convex problem.
Because of the non-convex aspect of the optimization prob-
lem, the traditional convex optimizers can’t be used to
solve (5).

An effective ε−optimal algorithm is proposed that is
based on Mesh Adaptive Direct Search (MADS) algorithm.
The proposed algorithm uses exploration and exploitation
method to maximize the problem search space. The pro-
posed algorithm is named as Joint Power Profile, Time Split-
ting and Chip Computing Frequency Optimization Algorithm
(JPTFA), as shown in Algo. 1.

The problem given in (5) is solved using the proposed
JPTFA, where JPTFA contains trail points that have been
evaluated using the function of black box. Results from these
tests are further analyzed and used to generate new trail
points. JPTFA iteration involves three phases, i.e. review,
search and poll phases. Theoretical search is being performed
by search phase with one trail point generated in conjunction
with previous successful route. JPTFA has the ability to
handle different types of inequality constraints, but can not
accommodate the constraints of equality.

JPTFA applies contraction and expansion iteratively in the
entire search space in order to find the optimum solution.
JPTFA depends on polls to determine the optimal solution
for the current location of the iteration. Iteration number j
starts with ‘0’. 9p

j determines the size of the poll and 9m
j

specifies the width of the mesh at jth iteration. The jth iteration
mesh points are defined by Mj, where Mj is identified by
putting the stencil at the current position z and moving 9m

j
(mesh steps) in compliance with the Dmj . Set M includes all
previously visited points lying on the mesh and the new trial
points around any of the previously visited points using the
instructions inDmj at distances9m

j . On setM , the problem (5)
is solved and the results are stored in set xmj . The value of
objective function at previous iteration, i.e. f (xmj−1), is com-
pared with the updated objective function value at current
points, i.e. f (xmj ). If the value of objective function obtained
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Algorithm 1 Joint Power Profile, Time Splitting and
Computing Chip, Frequency Optimization Algorithm
(JPTFA)

1 Initialization j← 0, 9m
j > 9

p
j > 0, xpj , x

m
j ;

2 0 < 2m < 2p < 1;
3 f ← (5);
4 Execution;
5 while Terminate criterion not met do
6 Mj =

⋃
z∈βj
{z+9m

j D
m
j };

7 xmj =

{
argmin
z∈Mj

f

Subject to: C1− C5 of (5)
;

8 if f (xmj ) > f (xmj−1) then
9 ζj =

⋃
z∈βj
{z+9p

j D
p
j };

10 xpj =

{
argmin
z∈ζj

f

Subject to: C1− C5 of (5)
;

11 if f (xpj ) > f (xpj−1) then
12 9

p
j+1 = 9

p
j ·2

p ;
13 end
14 else

15 9m
j+1 =

9m
j

2m ;
16 end
17 j← j+ 1;
18 end

at previous iteration is smaller than that of updated iteration,
it indicates an improvement. In case of no improvement,
the size of mesh in the next iteration, i.e. 9m

j+1, is increased
by a factor of 2m. This phenomenon is called expansion.
Usually polling stage is initiated after an improvement in

the mesh analysis. The polling points are attained by placing
the stencil at present location z and moving9p

j (poll steps) in
accordance with the direction mesh vectorDpj . As in the mesh
analysis, once again the optimization problem (5) is solved on
the set of polling points, i.e. ζj, and the results are stored in
set xpj . The value of objective function on polling points in
previous iteration, i.e. f (xpj−1), is compared with the objective
function value on the updated point, i.e. f (xmj ). In case of
improvement, the poll size9p

j−1 is further reduced by a factor
of2p. This phenomenon is called contraction. The algorithm
follows the contraction in the iterations when there will be
improvement found, whereas the algorithm expands its search
spacewhen the improvement could not be achieved on current
mesh points. The algorithm continues until it achieves the
ε−optimality.

As discussed earlier that MADS is basically pattern search
algorithm based on polling to find the near optimal solution.
The algorithm starts from a random location and attempts
to search for optimal solution in the proximity locations.
As shown in the Figure 4, the algorithm starts at point ‘a’

FIGURE 4. MADs Algorithm’s polling steps.

TABLE 1. Simulation parameters.

in the first iteration and it has to reach the optimal solu-
tion which is donated by a star in the grid. The stencil at
point ‘a’ has four direction and out of these four possibilities,
one is called the direction of descent where the objective
function converges. In the successive iterations the stencil
moves towards the solution where the objective function
shows convergence. For example, in the example it moves
from ‘a’ to ‘b’, then to ‘c’ and continues its direction in a
straight line till ‘e’. After ‘e’, the point reaches closer to the
optimal point. Now the grid is zoomed and the stencil starts
taking small steps in order to ensure near optimal solution.

IV. RESULTS AND DISCUSSION
The proposed solution is validated through extensive simula-
tions carried out in Matlab. The parameters used in the sim-
ulations are shown in Table 1 and taken from [11]. Channel
between AP and mobile devices is assumed to block fading,
means channel between AP and mobile devices remain con-
stant in entire duration of time T .
Figure 5 shows the comparison between complete local

computations and our proposed scheme in terms of the
achieved energy efficiency for N = 2. In this case, L1 = L2
and w1 = w2 = 1, which means minimum requirement of
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FIGURE 5. Computational energy efficiency vs. required computing data
size with N = 2.

FIGURE 6. Computational energy efficiency vs. required computing data
size with N = 2 and N = 5.

bits computation is same for both devices. It is clearly shown
that the computational energy efficiency decreases with the
increase of data requirements. This behaviour reflects that
more energy is required to compute large amount of data.
In this scenario, the proposed scheme performs better than
the complete local computations.

Figure 5 represents the fundamental trade off between
data size and computational complexity with partial offload-
ing and complete local computations. For small data size
computational energy efficiency for local computation and
proposed scheme is almost same. This implies that if the
energy required to compute task locally is less than the
energy required to offload, then it is better to perform task
locally. On the other hand if the data size and number of
users increase, computation at WPMEC become a better
choice. This effect is more prominent for N = 5, as shown
in Figure 6, where it is illustrated that the proposed scheme
performs better even for small data size, when the number of
devices increase.

FIGURE 7. Computational energy efficiency vs. required computing data
size for binary scheme, complete local computations and the proposed
partial offloading scheme with N = 2.

FIGURE 8. Computational energy efficiency vs. required computing data
size for binary and proposed schemes with N = 5.

Other than complete local computations and partial
offloading, there is another scheme known as binary offload-
ing. In the partial offloading scheme, the partial data is com-
puted locally and whereas the partial part of data is offloaded
to the MEC. In the binary offloading scheme, the decision
is to either compute the data locally or to compute it on
MEC. Therefore, in binary scheme complete data is either
computed on the user devices, or the complete data is com-
puted on the MEC using offloading. Figure 7 illustrates the
comparison between the proposed partial offloading scheme
and the binary offloading scheme. It is quite clear from the
Figure. 7 that the performance of proposed scheme and binary
offloading scheme is same for small number of user devices
and small data size. As soon as, the number of user devices
and the data size increase the proposed scheme outperforms
the binary offloading scheme even for small data size.

The computational energy efficiency of individual user
device increases if the priority increases. In this case, the pri-
ority is set using the weight factors. Figure 9 shows the
computational energy efficiency of individual devices, and
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FIGURE 9. Computational energy efficiency vs. required computing data
size for proposed schemes with different weights for each user device
with N = 5.

FIGURE 10. Computational energy efficiency vs. required computing data
size for binary and proposed schemes with different weights for each
user device with N = 5.

the results demonstrate that devices with high priority (weight
factor) have high computational energy efficiency as com-
pared to users having low priorities. This tremendous behav-
ior of model can be utilized in emergency scenario where life
of individual user is more important than overall computa-
tional energy efficiency. Figure 10 illustrates the comparison
among binary and proposed schemes with respect to the
priorities, where the priority is set equal in both cases. Results
depicts that computational energy efficiency using proposed
scheme dominate binary offloading scheme.

V. CONCLUSION
In this article an energy efficient maximization problem is
presented using the Wireless Power Mobile Edge Cloud
(WPMEC), by optimal allocation of resources amount user
devices. The proposed model is validated through exten-
sive simulations. The proposed solution outperforms other
schemes, like the binary scheme and local computation
schemes in terms of energy efficiency for different data sizes
and different priorities of devices. The results with different
priorities have endorsed the importance of WPMEC system
in emergency scenario.
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