
Received January 7, 2020, accepted February 11, 2020, date of publication February 18, 2020, date of current version February 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974783

Soft Sensor Modeling for Unobserved Multimode
Nonlinear Processes Based on Modified Kernel
Partial Least Squares With Latent
Factor Clustering
XIAOGANG DENG , (Member, IEEE), YONGXUAN CHEN , PING WANG , AND YUPING CAO
College of Control Science and Engineering, China University of Petroleum, Qingdao 266580, China

Corresponding author: Xiaogang Deng (dengxiaogang@upc.edu.cn)

This work was supported in part by the Research Fund for the Creative Research Team of Young Scholars at Universities in Shandong
Province of China under Grant 2019KJN019, in part by the National Natural Science Foundation of China under Grant 61403418, and in
part by the Key Programme of Research and Development of Shandong Province of China under Grant 2018GGX101025.

ABSTRACT To cope with the soft sensor modeling of unobservedmultimode nonlinear processes, this paper
proposes a modified kernel partial least squares (KPLS) by integrating latent factor clustering (LFC), called
LFC-KPLS. In the proposed method, the process data are first divided into several batches orderly, and then
projected onto the latent space by using the nonlinear functional expansion technology. In the latent space,
partial least squares method is applied to compute the regression coefficients between the input variables
and output variable of each batch. These regression coefficients, called the latent factors, can describe the
functional relationships in the unobserved multimode data. Therefore, the latent factors are used for mode
clustering so that the process data with similar functional relations can be clustered in one mode together.
For each mode, the nonlinear soft sensor is established based on KPLS. To assign the mode of the online
query sample, a mode identification strategy based on Bayesian inference is designed for the soft sensor
online prediction. Finally, two cases studies are adopted to validate the proposed method.

INDEX TERMS Soft sensor, nonlinearity, unobserved multimode, kernel partial least squares, latent factor
clustering.

I. INTRODUCTION
Realtime monitoring and control of quality variables play
a vital role in the complicated industrial processes [1], [2].
However, some important quality variables, such as the freez-
ing point of diesel oil in the refinery fractionators, and the
concentration of reactant production in the chemical reactors,
are often difficult to measure directly through the hardware
sensors. Even if the online quality analyzers are installed in
some units, they have the shortcomings of high price and
frequent maintenance. In most cases, these quality variables
are obtained only by the offline laboratory analyses. It has
the disadvantage of a significant time interval (often from
4 to 12 hours) so that the realtime control on the quality vari-
able is not practicable. Therefore, the soft sensor technique,
which builds a virtual software sensor by mining the math-
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ematical relationship between the easy-to-measure process
variables and the difficult-to-measure quality variables, has
been extensively implemented in the industrial plants. The
present soft sensor modeling methods can be divided into two
categories: model-based and data-based. The former builds
the soft sensor based on the accurate physical and chemical
mechanisms, which are often difficult to obtain in many
complicated processes. The latter performs the data mining
in the historical running data without the use of accurate
mechanical models, which is more popular in recent years
because of the available abundant process data [3].

Some typical data-driven soft sensor modeling methods
include partial least squares (PLS), Gaussian mixture regres-
sion (GMR) and extreme machine learning (ELM) [4]–[7],
etc. Among these methods, PLS has gained great atten-
tion in the soft sensor field because of its effectiveness.
Sharmin et al. [8], Zheng and Funatsu [9], Zheng and
Song [10] discussed the successful applications of PLS in
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different industrial units. However, the basic PLS models
are intrinsically linear while many real industrial processes
are with strong nonlinearity. To deal with the nonlinear soft
sensor modeling issue, a number of nonlinear extensions
of PLS have been proposed. In the early studies, quadratic
PLS [11] and neural network PLS [12] were developed,
which utilize the quadratic polynomial and neural networks
to model the inner nonlinear relation, respectively. Later,
Bang et al. [13] applied the fuzzy inference system to assist
the nonlinear PLS modeling. Considering that Gaussian pro-
cess regression (GPR) has the powerful nonlinear fitting abil-
ity, Liu et al. [14] designed a GPR-PLS method and tested it
on a real wasterwater treatment process (WWTP).

In recent years, kernel PLS (KPLS) has been developed as
one effective nonlinear PLS method [15]. Different to other
nonlinear PLS versions, KPLS avoids the explicit nonlinear
optimization via the kernel trick. Because of the simpleness
and effectiveness, KPLS has attracted enough attention in
the nonlinear soft sensor field. Zhang et al. [16] applied
KPLS to an industrial oil refinery fatory and demonstrated
its performance advantage over the linear PLS. To deal with
the batch process soft sensor modeling, Wang et al. [17]
developed a newmultiway KPLSmethod, which uses the fea-
ture vector selection to reduce the number of kernel vectors
for low computation loads. The KPLS modeling is based on
the sufficient training data. However, in some new industrial
process, the training data is often very limited. To cope with
this problem, Chu et al. [18] combined transfer learning
idea with KPLS modeling for an improved joint-Y KPLS
(JYKPLS) method, which transfers the rich information from
similar old processes to the new process model. To deal with
the collinear characteristic and enhance the model predic-
tion performance, Tang et al. [19] built a selective ensem-
ble KPLS (SENKPLS) method, where one double-layer
genetic algorithm is employed to optimize the parameters of
sub-models.

Apart from the process nonlinearity, the multimode oper-
ation is another common situation in industrial processes.
Due to the market demand changes, the process disturbances,
and the changeover of catalyst, etc., the process operation
modes are often changing. In this case, the single global
nonlinear soft sensor may not provide the best predictions.
Therefore, how to design the multimode nonlinear soft sensor
model is a valuable problem deserving deep discussions. The
researchers have developed many solutions for this problem,
which can be divided into two categories. One category
develops the local models by appling the just-in-time learn-
ing (JITL) strategy, while another category builds mutiple
models by the divide-and-rule (DAR) strategy. The JITL
method is also called lazy learning method because it only
collects the historical data as the training dataset and does not
need the offline model training.When an online query sample
is available, JITL constructs a local model by searching the
most relevant samples in the offline training dataset. For
dealing with the soft sensor modeling of multiphase batch
process, Jin et al. [20] developed a JITLKPLSmethod, where

a hybrid similarity including the sample similarity and phase
similarity is used to select the relevant training samples and
then the local KPLS soft sensor is built for each query sample.
To consider both the modeling accuracy and the efficiency,
Chen et al. [21] proposed a JITL method with selective
updating based on approximated linearity dependence (ALD)
and applied it to the soft sensor of roller kiln temperature.
The DAR method firstly identifies the process modes by
applying the data clustering technologies, and then builds
multiple local soft sensors corresponding to the different
clusters. At the online prediction procedure, the new sample
is assigned to one certain mode based on some similarity
index such as the distance similarity. The commonly used
data clustering methods include the K-means method, and
the fuzzy C means (FCM) method. Zhao et al. [22] pro-
posed an improved K-means based ensemble KPLS method.
Yuan et al. [23] utilized FCM to obtain different local clusters
and built the locally weighted PCR model for the query
sample. Gholami et al. [24] presented a soft sensor by com-
bining the FCM clustering with the support vector regression.
Wang et al. [25] designed a nonlinear multimode process soft
sensor, which applies a self organizing framework to build
the multimode KPLS and applies the conditional probability
density analysis to identify the sample mode. To overview
the present multimode soft sensor methods, both the JITL
and the DAR strategies can handle the soft sensor modeling
for many complicate processes including nonlinear and/or
multimode processes effectively. However, JITL involves a
larger computation loads because the local model is online
built for each query. Therefore, this paper focuses on the DAR
based soft sensor modeling method.

Although the present DAR based soft sensor methods
have achieved the significant success in the nonlinear mul-
timode processes. However, there are still some challenging
problems worthy of extensive study. One important problem
is the soft sensor modeling for the unobserved multimode
nonlinear processes. Almost all the past works focus on
the observed multimode processes, where there is often an
underlying assumption that the different operating modes can
be distinguished by investigating the magnitudes of the mea-
sured variables, that is the input variables of the soft sensor.
However, the unobserved multimode process, firstly dis-
cussed by Liu [26], is a different kind of multimode pro-
cess where the operating mode switching can not be directly
measured. For example, in the refinery units, when the crude
oil types or properties change, the process variables are
kept at the similar operation points, but the product quality
variables appears with multiple modes. Another example is
about the reactor. In some chemical reactors, the catalyst
activation energy degrades as time goes, which also brings the
unobserved multimode data. In these cases, different process
modes come with the similar measured variables, but the
inner mechanism between predictors and quality-related vari-
ables has changed. For the unobserved multimode proceess,
it is difficult to perform the mode division by the distance
similarity based clustering method.
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According to the above discussions, we propose a new soft
sensor for unobserved multimode nonlinear process based
on a modified KPLS by integrating latent factor clustering,
called LFC-KPLS. The contribution of the proposed method
is three fold. First, a soft sensor modeling framework is
designed for the unobserved multimode nonlinear processes.
To our best knowledge, we are the first to discuss the soft
sensor modeling method of the unobserved multimode non-
linear processes. Second, a latent factor clustering is designed
based on the functional extension technique. Different to the
traditional clustering methods, LFC clusters the multimode
data by measuring the similarity of nonlinear data relation-
ship, but not the similarity of sample distance. Third, a mode
identification method for the online query sample is proposed
by applying the Bayesian inference to compute the posterior
probability.

The remainder of this paper is organized as follows.
Section II overviews the preliminaries including the KPLS
and the FCM. Then the proposed methodology is introduced
in the Section III. Section IV gives two case studies of one
numerical system and the simulated continuous stirred tank
reactor. The last section offers some conclusions.

II. PRELIMINARIES
A. KERNEL PARTIAL LEAST SQUARES
Kernel partial least squares (KPLS) combines the kernel
technique with PLS for a nonlinear regression model [15].
For the given input matrix X ∈ Rn×m and the output vector
y ∈ Rn with n samples, KPLS first projects the nonlinear
original input data X into the linear latent space ψ(X) and
then performs the linear PLS modeling between ψ(X) and y,
which brings a PLS regression model as

y = ŷ+ e = ψ(X)b+ e (1)

where ψ(.) is the assumed nonlinear transformation, b is the
regression coefficient, ŷ = ψ(X)b is the output prediction
value, while e is the prediction error vector.
As the nonlinear mapping function ψ(.) is usually

unknown and can not be explicitly expressed, Eq. (1) can not
be directly used for the output prediction. To deal with this
problem, we expand the regression coefficient vector by the
input data matrix as

b = ψ(X)Tβ (2)

Combining the Eqs. (1) and (2) leads to a nonlinear PLS
model based on the kernel matrix, which is given as

y = Kβ + e (3)

where K = ψ(X)ψ(X)T is the kernel matrix with its (i, j)-th
element kij defined by

kij = ψ(xi)Tψ(xj) = ker(xi, xj) (4)

where xi, xj represent the i-th and j-th vector in the matrix
X , respectively, and ker(·, ·) denotes kernel function compu-
tation. The commonly used kernel function is the Gaussian

kernel function, expressed by [17]

ker(xi, xj) = exp(−
||xi − xj||2

2σ 2 ) (5)

where σ is the kernel width parameter.

Algorithm 1 The Solution Procedure of KPLS Model
1: Given the input matrix X , the output vector y, and the

retained kernel score vector number L.
2: Randomly initialize u (usually, u can be set to the output

variable y).
3: Compute the input score vector t = Ku and normalize it

by t/||t||.
4: Obtain the weight coefficient c = yT t.
5: Calculate the output score vector u = yc.
6: Repeat the steps 3 to 6 until convergence.
7: Deflate the kernel matrix and the output vector as K =

(I − ttT )K(I − ttT ), y = y− ttT y.
8: Go back to step 3 until all the L score vectors T =

[t1, t2, · · · , tL] andU = [u1, u2, · · · , uL] are found.

The solution of KPLS can be done by the classic NIPALS
algorithm [15], [16], listed in Algorithm 1. Based on the
KPLS algorithm, the regression coefficient vector β can be
established by

β = U(TTKU)TTT y (6)

where T is the input score matrix and U is the output score
matrix.

For the test input vector xt , its corresponding output
prediction is given by

ŷt = ktβ (7)

where kt = (ψ(X)ψ(xt ))T is the kernel vector corresponding
to the test vector.

B. FUZZY C-MEANS CLUSTERING
Fuzzy C-means (FCM) is a well-known data clustering
method and has been widely used for unsupervised data
pattern recognition [23], [24]. It groups all the training data
into C clusters with varying membership degrees. FCM is
be viewed as the improvement of the traditional K-means
clustering. Different to the K-means method where each data
point only belongs to one cluster, FCM assigns each data-
point to all clusters with different membership degrees. It has
been demonstrated that FCM outperforms the basic K-means
method in many cases.

Given the sample set X = {x1, x2, · · · , xn}, where
xi ∈ Rm is one sample, FCM is to find the cluster cen-
troid o1, o2, · · · , oC based on the following optimization
objective

min J = min
n∑
i=1

C∑
j=1

(µij)r ||xi − oj||2 (8)
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FIGURE 1. The schematic of the proposed method.

where µij is the membership degree of xi belonging to the
cluster oj, and r is the fuzziness exponent usually set to be
one real number greater than 1.

To solve this optimization function, an iteration procedure
is applied, which is described as follows.

Algorithm 2 The Solution Procedure of FCM
1: Randomly initialize the cluster centers
{o1, o2, · · · , oC }.

2: Compute the membership matrix U =

uij, 1 ≤ i ≤ n, 1 ≤ j ≤ C by the following expression

uij =
1∑C

k=1(
||xi−oj||
||xi−ok ||

)2/(m−1)
(9)

3: Update the cluster centers by the equation

oj =

∑n
i=1 u

m
ij xi∑n

i=1 u
m
ij

(10)

4: Repeat the steps 2 and 3 until convergence.

In this algorithm, the cluster number C is an important
parameter which is needed to be pre-specified. In the cases
with enough prior knowledge, it can be determined by expe-
rience. Without available knowledge, it can be set based on
the data-driven methodology [27].

III. THE PROPOSED LFC-KPLS METHOD
As mentioned in the introduction section, the unobserved
multimode processes data are distance indivisible. To develop
a soft sensor method for the unobserved multimode pro-
cess, three problems are involved. (1) How do we design
a soft sensor modeling framework? (2) For the distance-
indivisible data, how do we develop a cluster algorithm to
recognize the different modes? (3) For the online query sam-
ple, how do we identify its mode? Aiming at these questions,
we are to propose one latent factor clustering based KPLS
(LFC-KPLS) method for unobserved multimode process soft
sensing. Next, the details of themodeling framework, training

data clustering and online query sample mode identification
are introduced.

A. THE SOFT SENSOR MODELING FRAMEWORK
The whole schematic of the proposed LFC-KPLS method is
displayed in the Fig. 1. During the offline modeling stage,
the multimode KPLS model is built by the following steps.
Firstly, the training data are divided into serval batches along
the time orderly. Then, for each batch, the data are projected
into the latent space by the nonlinear function expression, and
the latent factors are computed to indicate the relationship
between inputs and output. Thirdly, FCM is applied to the
latent factors to obtain different modes, and for each mode,
a KPLS model is developed as the local soft sensor sub-
model. In the online application stage, one online query
sample is collected and its mode is identified by the Bayesian
inference technology. Based on the identified mode, the cor-
responding KPLS model is chosen to generate the output
prediction.

B. LATENT FACTOR CLUSTERING
For the unobserved multimode process, the process data
from the different modes have different input-output data
relationships, but may be very close in terms of the input
sample distance. Therefore, the traditional FCM algorithm,
depending on the distance similarity in Eq. (8), can not distin-
guish the data modes correctly, and it is necessary to develop
a new data clustering method. The new clustering method
should measure the data similarity based on the input-output
data relationship, which means the regression coefficient b
in Eq. (1). However, an assumed nonlinear mapping function
ψ(.) is applied so that it is difficult to measure the similarity
of the b directly. Thus, the key point focuses on the handling
of nonlinear function ψ(.).

To deal with the above problem, this section proposes
a new data clustering method called latent factor cluster-
ing(LFC). LFC first projects the original data onto a latent
space by some explicit expanded nonlinear functions, which
are used to substitute the implicit nonlinear function ψ(.).
Then LFC computes the input-output relationship factor in
the latent space, called latent factor. Based on the latent
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factors, the FCM is applied to cluster the different datamodes.
The details are clarified as follows.

For one input variable x, a simple nonlinear functional
expression is given as

G(x) = [g1(x) g2(x) · · · ] (11)

where gi(x) represents some kind of nonlinear transforma-
tion. In this paper, we adopt six nonlinear functions including
g1(x) = x, g2(x) = 1

1+e−x , g3(x) = sin(x), g4(x) = sin(πx),
g5(x) = cos(x), g6(x) = cos(πx) [28].
For the training dataset X ∈ Rn×m with multimode prop-

erty, it is divided into serval batches X1, X2, · · · , XN with
the same size by applying moving window technology. Each
batch is denoted as X i ∈ Rw×m, where w is the length of data
window and meets n = Nw. X i can be expressed by

X i =


xi,11 xi,12 · · · xi,1m
xi,21 xi,22 · · · xi,2m
. . .

. . .
...

. . .

xi,w1 xi,w2 · · · xi,wm

 (12)

where xi,jk represents the (j, k)-th sample in the data win-
dow X i.
Before applying the nonlinear latent space transformation,

the input and output vectors should be normalized for the
same magnitude range by the following way.

x̃i,jk =
xi,jk − xi,jmin
xi,jmax − xi,jmin

(13)

ỹi =
yi − yi,min

yi,max − yi,min
(14)

where xi,jmin, xi,jmax is the minimum and maximal values of
the j-th column input variable, respectively, and yi,min, yi,max
is the minimum and maximal values of the output variable,
respectively.

Then the corresponding latent space description is given by

G(X i) =


G(x̃i,11) G(x̃i,12) · · · G(x̃i,1m)

G(x̃i,21) G(x̃i,22) · · · G(x̃i,2m)

. . .
. . .

...
. . .

G(x̃i,w1) G(x̃i,w2) · · · G(x̃i,wm)

 (15)

The output vector corresponding to the matrix X i is
denoted as ỹi, which is the linear expression of the input
matrix G(Xi) depicted by

ỹi = G(Xi)bi + ei (16)

To solve the above problem by the basic PLS algorithm
will lead to the latent factor bi. Similar operations on all the
data batches bring a series of latent factors b1, b2, · · · , bN .
We further apply the FCM on these latent factors and the data
clusters are obtained.

To sum up, the novelty of LFC lies in two aspects. (1)
LFC clusters the data based on the input-output relation-
ship factor, but not the original sample distance. (2) LFC

provides a practicable nonlinear transformation by applying
the explicit expanded nonlinear functions, which may not
approximate the kernel function perfectly, but at least pro-
vides a viable solution to deal with the unknown ψ(.).

C. ONLINE MODE IDENTIFICATION BASED ON BAYESIAN
INFERENCE
For the multimode soft sensor, one important question is to
identify which mode the new query sample belongs to. In the
distance clustering based multimode soft sensor, the assign-
ment of new sample is determined by the spatial similarity.
Usually, two ways are used. One way depends on the dis-
tance between the new sample and the cluster centers, which
assigns the new sample to the cluster with the minimum
distance. The other approach applies the K nearest neighbor
method, which recognizes the cluster according to the K near-
est samples. However, for unobserved multimode processes,
both mode identification methods lose their feasibility.

To handle the above problem, this section proposes an
online mode identification strategy based on Bayesian infer-
ence. Assuming that the clustering on the training dataset
brings C modes {M1, M2, · · · , MC }, the occurrence prob-
ability of the mode Mj regarding the query sample xi is
obtained by

p(Mj|xi) =
p(xi|Mj)p(Mj)

p(xi)
(17)

where the p(xi) is the occurrence probability of xi, which can
be computed by

p(xi) =
C∑
j=1

p(xi|Mj)p(Mj) (18)

where p(Mj) is the prior probability of the mode Mj, while
p(xi|Mj) is the conditional probability of the sample xi under
the mode Mj. The prior probability p(Mj) can be estimated
by the training data or decided by the expert experience. The
conditional probability p(xi|Mj) is designed as:

p(xi|Mj) = exp(−(e(j)i )2/2) (19)

where e(j)i represents the estimation error of the j-th soft sensor
model on the sample xi. Theoretically, we compute this error
based on the the sample xi ’s estimated output fj(xi) and the
real output yi. However, in real applications, the real output
yi is unknown at the i-th sample instant. Therefore, we apply
the model estimation results at the (i − 1)-th time instant to
substitute the above expression, which results in

e(j)i = yi−1 − fj(xi−1), (20)

In fact, this applies an underlying assumption that the con-
tinuous two samples belong to the same mode. Considering
the real industries often run under the same mode for a long
period, this assumption is practicable.
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Finally, the mode M (xi) of the query sample xi can be
determined as the mode with the maximum posterior prob-
ability p(Mj|xi), that means

M (xi) = argmax
Mj

p(Mj|xi) (21)

D. SOFT SENSING PROCEDURE BASED ON LFC-KPLS
The proposed LFC-KPLS soft sensing procedure for unob-
servedmultimode processes involves two stages: offlinemod-
eling and online application. During the offline modeling
stage, the LFC-KPLS model is developed based on the train-
ing data, while at the online application stage, the query
sample is collected and its corresponding output is given
based on the developed soft sensor model. The details are
listed as follows.
Offline Modeling Stage:

• Gather the training dataset X , and standardize it with
their mean and variance.

• Perform the latent factor clustering on the standardized
training data to divide them into the C data modes
{X1, X2, · · · , XC

}.
• For each mode X i(1 ≤ i ≤ C), the local KPLS model is
developed.

Online Application Stage:

• Collect the query sample xi at the i-th sample instant, and
standardize it with the mean and variance of the training
data.

• Identify the mode M (xi) of xi using the Bayesian infer-
ence technology.

• Project the query sample onto the corresponding KPLS
model and obtain the soft sensor output prediction.

IV. CASE STUDY
This section applies two case studies to validate the pro-
posed multimode soft sensor method. One is the numerical
example, while another is about the continuous stirred tank
reactor (CSTR) system. The prediction performance of the
proposed method is evaluated by the index of the root means
squared error (RMSE). The better algorithm should be with
the smaller RMSE.

A. A NUMERICAL SYSTEM
To test the proposed method, a numerical system is designed
as follows [16]. Three nonlinearly-related input variables are
expressed by 

x1 = t2 − t + 1+ e1,
x2 = sin(t)+ e2,
x3 = t3 + e3.

(22)

where t is the random source variable with the uniform dis-
tribution in the range of [-1,1], ei(1 ≤ i ≤ 3) is the Gaussian
noise with zero mean and the variance of 0.01. Based on the
input variables, the output variables under three modes are

FIGURE 2. The plot of input-output variable.

computed as

y =


x1 + x1x2 + 3cos(x3)+ e4, mode 1
sin(x1)+ 2cos(x2)+ x3 + e4, mode 2
x21 + sin(x1x2)+ x3 + e4. mode 3

(23)

where e4 is the output noise with the same characteristic to
the input noise.

For each mode, 500 samples are simulated as the train-
ing dataset, while the other 300 samples are generated
to constitute the testing dataset. The input variables of
the training data are plotted in Fig. 2a-c, where the first
500 samples (No.1-500) belong to mode 1, the middle
500 samples (No.501-1000) are from mode 2, while the last
samples (No. 1001-1500) belong to mode 3. It is seen that the
input variables of all modes follow the similar distribution.
A three-dimensional plot of the input variables is plotted in
the Fig. 2d, which indicates clearly that the input variables
are distance indivisible. Furthermore, the output variable of
the training data is given in the Fig. 2e. We see that there is
no obvious distinction in view of the output variable. By ana-
lyzing the characteristics of the input and output variables,
the numerical system is a typical unobserved multimode
system. For this kind of system, it is a challenging problem
to build the corresponding soft sensor.

To deal with the soft sensor modeling of unobserved
multimode system, this paper proposes the improved KPLS
method by incorporating LFC. We first validate the effec-
tiveness of LFC. The training data are used to test whether
the proposed method can identify three different modes cor-
rectly. For a comparison, the basic FCM clustering is also
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FIGURE 3. Mode identification results.

TABLE 1. Mode identification rates (%) by FCM and LFC methods.

used for mode identification. The mode identification results
are plotted in Fig. 3 and summarized in Table 1. Fig. 3a
lists the mode identification results of FCM, where many
samples are misclassified with a low mode identification rate
of 32.68%. When the LFC is applied, the training samples
are divided into several batches. If the batch size is set to
15, 30, 50, respectively, the mode identification results are
given in Figs. 3b to 3d, correspondingly. It is observed that
if the batch size is set as 15, some samples from mode 1 is
wrongly recognized as the mode 2. When the batch size w
is chosen as 30, most of the samples are correctly identified
besides some samples in the mode switch procedure. In this
case, the mode identification rate is 97.33%. For a large
batch size w = 50, all the samples are correctly identified
with 100% mode identification rate. No matter what value
is used, the LFC outperforms the basic FCM method. In the
practice, the determination of the batch size is based on the
user experience.

Next we analyze the prediction performance of the pro-
posed method. For the method comparison, the basic KPLS
method and the FCM-KPLS method are also applied to
build the soft sensors. For all the used methods, the kernel
width parameter σ and the kernel score vector number L
are optimized by the intelligent difference evolutionary (DE)
algorithm. The prediction charts of three methods are shown
in Figs. 4, 5 and 6. TABLE 2 quantitatively compares the
RMSE values of different soft sensors. By Fig. 4, the basic
KPLS method can not predict the change of the output effec-
tively, which has a large RMSE of 1.2038.When FCM-KPLS
is used, as it is not able to distinguish the different modes,
its prediction performance is also unsatisfactory. The RMSE
of FCM-KPLS is even increased to 1.2088. That shows

FIGURE 4. The numerical system prediction results based on KPLS.

FIGURE 5. The numerical system prediction results based on KFCM-KPLS.

FIGURE 6. The numerical system prediction results based on LFC-KPLS.

TABLE 2. Model prediction performance by KPLS, FCM-KPLS and the
proposed method for the numerical system.

unreasonable mode partition can worsen the soft sensor per-
formance. With the proposed method, LFC can recognize the
multiple modes correctly and the soft sensor can provide the
remarkable performance improvement compared to the basic
KPLS and FCM-KPLS method. The RMSE is reduced to
0.3173. To sum up, by projecting data into nonlinear latent
space, the latent factor clustering based KPLS method can
solve the unobserved multimode soft sensor modeling issue
effectively.

B. THE CONTINUOUS STIRRED TANK REACTOR SYSTEM
The continuous stirred tank reactor system (CSTR) [29] is a
well-known industrial process and its diagram is illustrated
in Fig. 7. It has the characteristics of nonlinearity and multi-
mode because of the complex chemical reaction mechanism
and the process condition change. In CSTR system, the reac-
tant A is transformed into the product B through a irreversible
chemical reaction. The concentration of reactant A in the out-
put is one key quality variable, which is chosen as the output
y of the soft sensor. Eight auxiliary variables x1 to x8 are
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FIGURE 7. The CSTR system diagram.

TABLE 3. The variable list of the CSTR system.

FIGURE 8. The CSTR system prediction results based on KPLS.

selected as the inputs of the soft sensor and their descriptions
are demonstrated in table 3.

Mechanical simulation is carried out to generate the system
data, which involves two different operation modes. A total
of 7200 samples are collected from the process simulator
and one half is used as the training dataset while the other
half is applied as the testing dataset. The training data set is
firstly processed by the nonlinear latent space clustering to
identify the different process modes. We set the batch size
as 72 samples (2% of the whole training data). Therefore,
50 batches are obtained in the latent space. Three methods of
KPLS, FCM-KPLS and LFC-KPLS are applied to the CSTR
system soft sensor modeling. Then the testing data includ-
ing 3600 samples are projected on these three models for
performance comparison. Figs. 8 to 10 show the prediction
results of three different soft sensors and table 4 quantitatively
compares the prediction RMSE. By the Fig. 8, it is observed
that the prediction output of KPLS has a clear bias with the
real output. The corresponding RMSE is 0.5926 × 10−2.
When FCM-KPLS is applies, it can not identify the correct
data mode and therefore has a close performance with the
basic KPLS method. As LFC can recognize the data modes
effectively, the proposed LFC-KPLS method reduces the
RMSE to 0.2407 × 10−2. The Fig. 10 demonstrates that the

FIGURE 9. The CSTR system prediction results based on KFCM-KPLS.

FIGURE 10. The CSTR system prediction results based on LFC-KPLS.

TABLE 4. Model prediction performance by KPLS, FCM-KPLS and the
proposed method for the CSTR system.

output predictions are very close to the real values. Generally,
the applications on the CSTR system show that the proposed
method can build the more precise soft sensor in the case of
unobserved multimode data.

V. CONCLUSION
In this paper, a novel soft sensor modeling method called
LFC-KPLS is developed for the unobserved multimode non-
linear processes. The proposed method designs a modeling
framework for the unobserved multimode framework, which
can be generalized to many other similar data-driven soft
sensor modeling method. Besides the design of the modeling
framework, the other two important aspects in the proposed
method are the offline mode clustering for the unobserved
multimode data, and the online mode identification for the
query sample. Two case studies, including one numerical sys-
tem and the continuous stirred tank reactor system (CSTR),
are applied to test the proposed method. The application
results demonstrate that the LFC can identify the data modes
more effectively than the basic FCM method, and the pro-
posed soft sensor has a higher prediction precision compared
to the traditional KPLS and FCM-KPLS methods. However,
some limitations of the proposed method should be also
noted. As the moving window technique is applied to divide
the data batches, this method is based on the underlying
assumption that the process mode could last a period of time
and does not change suddenly, and the offline historical data
are enough plentiful for model training. In the case of limited
training data, some newmethods should be investigated in the
future work.
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