
Received January 16, 2020, accepted February 8, 2020, date of publication February 18, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974812

Dynamic Resource Allocation With RAN Slicing
and Scheduling for uRLLC and eMBB
Hybrid Services
LEI FENG 1, YUEQI ZI 1, WENJING LI 2, FANQING ZHOU 1,
PENG YU 1, AND MICHEL KADOCH 3
1Institute of Network Technology, Beijing University Posts and Telecommunications, Beijing 100876, China
2State Key Laboratory of Networking and Switching Technology, Beijing University Posts and Telecommunications, Beijing 100876, China
3Department of Electrical Engineering, Ecole de technologie superieure, Montreal, QC H3C 1K3, Canada

Corresponding author: Wenjing Li (wjli@bupt.edu.cn)

This work was supported in part by the Beijing Natural Science Fund-Haidian Original Innovation Joint Fund under Grant L192003, and in
part by the Fundamental Research Funds for the Central Universities through the State Grid Science and Technology project ‘‘Analysis of
Power Wireless Private Network Evolution and 4G/5G Technology Application’’ under Grant 2019RC09.

ABSTRACT To cope with the limited radio and power resources, designing energy- and cost-efficient
resource allocation strategy with RAN slicing and scheduling is important in ensuring the extreme QoS
of differentiated Internet of things (IoT) services. In this regard, we focus on guaranteeing the latency and
reliability of sporadic uRLLC uplink traffic while improving the quality of continuous eMBB services
(e.g., quality of the video) together in this paper. Firstly, a dynamic optimization model considering
power consumption and service quality is used to construct the cost function in both time domain and
frequency bandwidth for heterogeneous services, subject to the latency constraint. Secondly, given its
complexity, a novel two-timescale algorithm with employing Lyapunov optimization is designed, including
two sub-algorithms: long-timescale bandwidth allocation and short-timescale service control. In further,
the theoretical optimality is analyzed according to the relationships between control parameters and service
performances. The utility of our approach and its hard latency guarantee are also illustrated through
simulation results under tolerable power consumption.

INDEX TERMS 5G, network slicing, radio access network, resource allocation, heterogeneous services.

I. INTRODUCTION
As the evolution of wireless technologies, one important
motivation of the future cellular networks is to support hetero-
geneous services which have distinctive and extreme require-
ments for network performance. Especially, the devices
of Internet of things (IoT) require power reduction. And
ultra-reliable low latency communication (uRLLC) requires
extremely low latency (0.25-0.3 ms/packet) and high reliabil-
ity (99.999%) [1] and enhanced mobile broadband (eMBB)
requires high bandwidth (several 100 MHz to support gigabit
per second for high peak data rates) [2]. Since the traditional
one-size-fits-all network infrastructure may not accommo-
date a large expansion of heterogeneous services simulta-
neously, network slicing (NS) comes into play. With NS,
the radio network resource can be partitioned into logically
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independent resources, called radio access network (RAN)
slices, to provide a service-specific RAN [3]. Each slice is
customized and orchestrated to only provide what is neces-
sary for one kind of service, avoiding unnecessary overheads
and complexity [4]. Then heterogeneous services can be
aggregated at access sides and supported by a unified physical
infrastructure.

Due to the scarcity of inherent radio resources, a surge
in network traffic volume and densification of devices pose
technical challenges on implementing RAN slicing and
scheduling for differentiated services. Take the typical two
mainstream services, uRLLC and eMBB, as an example.
A video streaming eMBB traffic in one cell would like a
sufficiently high and stable quality of image or voice contents
so that some radio resources need to be guaranteed over its
transmission time-interval [5].While the power reduction and
ultra-low delay are common goals of IoT devices for uRLLC
services. If the uRLLC traffic is activated by some critical
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outside events in the same cell, it will rapidly occupy these
radio resources to obtain a low-latency performance and save
energy consumption as much as possible for future critical
communication. However, filling the corresponding latency
requirement of uRLLC comes at the expense of a degraded
QoS (quality of service) of eMBB and network utility.

In recent years, multi-operator RAN sharing based on
virtualization has been studied extensively [6], [7]. How-
ever, these studies only target on achieving optimal net-
work utility or resource utilization and ignore an explicit
characterization underlying extreme service requirements for
heterogeneous services. Some existing studies [1], [8] pro-
pose an innovative super-position/puncturing framework for
multiplexing uRLLC and eMBB traffic. Since the principle
is to overwrite part of ongoing eMBB transmissions when
sporadic uRLLC traffic appears, the approach could result in
QoS deterioration of eMBB services.

On the other hand, the realistic channel condition may be
frequency selective fading. RAN resource also needs to be
dynamically sliced and scheduled according to the preference
of heterogeneous services and future information (e.g., ser-
vice demands and channel states) in order to keep or update
the assignment in case of traffic or service changes. However,
such knowledge is difficult to predict because of time-varying
characteristic and so on. In this regard, 3GPP has proposed
an statically approach based on ‘‘fixed network resource
shares’’ [9]. However, the problem statement must not be
limited to static wireless resource scheduling as in [10], [11],
but also has to consider the instantaneous channel quality and
diversity in demands, in order to support such versatile and
ambitious use cases.

The aforementioned two respects raise extreme challenges
for dynamical RAN slicing and scheduling framework to
accommodate hybrid services. In this regard, this paper pro-
poses a dynamic resource allocation scheme, aiming at jointly
optimizing the power consumption and bandwidth alloca-
tion while satisfying the corresponding latency for sporadic
uRLLC traffic arrivals and the quality of eMBB services
as much as possible. Bandwidth allocation guarantees the
quality of eMBB services, which modeled by maximizing
the network utility with assigning a private share. The private
share stands for the priority of each slice which employs fair
utility for better resource allocation according to the service
requirements, thereby asymptotically maximizes utility for
eMBB users. The main contributions of this paper can be
summarized as follows.
• Previous work only focuses on achieving optimal net-
work utility or resource utilization without consider-
ing explicit characterization underlying extreme service
requirements. Therefore, we discuss the extreme service
requirements. The resource allocation model is con-
structed to describe the energy-efficiency requirement of
mission-critical IoT devices, network utility guarantee
and latency constraints. To establish their relationships,
we employ a queue update model with queue backlog,
generated data and transmission rate which also extra

considers reliability. Furthermore, the design of dynamic
framework for bandwidth allocation, service controlling
and scheduling are also discussed.

• Concluded from previous research, using a super-
position/puncturing framework for multiplexing uRLLC
and eMBB traffic will result in QoS deterioration of
eMBB services. In order to adapt to the time-varying
information and solve this problem, we extend the Lya-
punov optimization approach to two different time scales
aimed at facilitating the cost vs. latency trade-off under
reliability constraint. A novel two timescale resource
allocation strategy is also designed with deriving ana-
lytical bounds of the proposed problem.

• Existing studies mainly talk about network-level spec-
trum sharing without explicit characterization for het-
erogeneous services. Thus network slicing has been
proposed as a promising paradigm to solve this prob-
lem. Given its computational complexity, we address
the problem with an alternative minimization algorithm
including two sub-algorithms: the latency and transmit
power control (LTPC) for uRLLC services and ser-
vice quality decision (SQD) for eMBB services using
network slicing technology. The proposed two sub-
algorithms can be guaranteed to converge to the global
optimal solutions by Gauss-Seidel method. Heteroge-
neous services with limited resources now satisfy both
uRLLC latency and eMBB throughput requirements.

The numerical simulation results verify that our algorithm
outperforms BSRA (Bandwidth Slicing and Resource Allo-
cation algorithm) [12], ACS (Alternative Concave Search
algorithm) [13] and Loading Balancing [14] ones in terms of
hard latency and power consumption.Moreover, the proposed
algorithm can implement a similar performance compared
with the semi-offline method which ideally assumes that the
future IoT service patterns and network channel information
can be learned in advance.

The structure of this paper is as follows. In Section II,
we present relevant work, outlining an overview of existing
contributions and shortcomings in regard to network resource
sharing, bandwidth scheduling and active or passive dynamic
resource allocation. In Section III, we formally propose the
system model with introducing the transmission rate, net-
work utility and latency of queue. Section IV formulates the
sliced RAN uplink resource allocation problem, introduces
the Lyapunov optimization, and designs the two timescale
and alternative minimization algorithms. Section V evaluates
the performance of proposed algorithms and analyzes results.
Finally, the paper summarizes our findings in Section VI.

II. RELATED WORK
The implementation of the slice resource allocation is essen-
tially similar to the principle of radio resource sharing in
wireless communication networks. In recent years, research
on multi-operator RAN sharing based on virtualization has
received great progress. Among them, Network Function
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Virtualization (NFV), as a promising enabling technology,
can effectively promote spectrum sharing between hetero-
geneous service devices without increasing network deploy-
ment costs [15], [16]. For instance, reference [17] compares
the sharing between two kinds of resources, physical resource
sharing and virtual resource sharing. The results show that
virtual resource sharing provides better performance at the
expense of complexity. For RAN resource sharing, refer-
ence [18] speculates on congestion of future request traffic
and uses a random auction approach to solve the capacity
allocation problem between multiple virtual network oper-
ators (VNO). Reference [19] introduces a dynamic queue
to analyze the average delay of data which is generated by
mobile terminals in downlink transmission and proposes a
delay-aware resource sharing scheme for RAN. Considering
that network slice is a collection of similar services, a larger
number of network resource sharing methods provide some
valuable algorithms that can be used for allocating resources
to slices in wireless networks. However, existing studies
mainly focus on network-level spectrum sharing under the
traditional cellular architecture without an explicit charac-
terization on heterogeneous services, which will not be able
to fulfill the requirements of current fast-growing broadband
multimedia services and ultra-low latency services.

In response to the above issues, network slicing technol-
ogy has drawn extensive attention due to its advantages in
supporting a surge of hybrid services and improving resource
utilization in RAN [13], [20]. Reference [21] formulates the
NS framework as a weighted throughput maximization prob-
lem for multi-tenant H-CRANs (heterogeneous cloud radio
access networks) which defines NS as a process of sharing
computational resources. On the other hand, there are also
many algorithms for the multi-tenant RAN slicing [7], [22].
By assigning different shares for operators in the network
infrastructure, the operators with higher share are expected to
get more resources with a higher priority. Specifically, both
two algorithms have proposed the static resource allocation
which can customize slices, aiming at maximizing network
utility. Although the above research mentioned network slic-
ing, none of them considers the heterogeneous services and
their extreme performance requirements in terms of hard
latency.

In the context of the existing resource allocation mod-
els described above, this work covers the following gap
in the literature: a dynamic resource allocation scheme
for heterogeneous services with limited resources, meeting
both uRLLC latency and eMBB throughput requirements.
Reference [23] considers the service performance factor (i.e.,
delay) and studies the bandwidth allocation strategy for edge
computing traffic offloading. However, 5G future networks
need to carry numerous heterogeneous services, generally
classified as uRLLC, eMBB and mMTC (massive machine-
type communications). Compared to optimize latency and
power consumption, some eMBB services, such as video
streaming, prefer high throughput to guarantee the suffi-
ciently high and stable quality of image or voice contents.

Delay-optimized resource allocation may result in excessive
consumption of network resources due to unnecessary latency
reduction. In addition, from a more practical angle, the strat-
egy for optimizing the energy consumption generated in data
transmission at the expense of increased service delay is of
less significance. The main reason is that the average mobile
device generates less energy in sending requests, which is
far lower than the power generated by the central processing
unit (CPU).

In this paper, we focus specially on the design of dynamic
framework for uRLLC and eMBB which has been pre-
viously investigated by [1], [8]; however, all these works
differ substantially from ours in terms of scope, crite-
rion or approach. Reference [1] proposes an innovative super-
position/puncturing framework for multiplexing uRLLC and
eMBB traffic in 5G cellular systems, taking into account
various models for the eMBB rate loss associated with
uRLLC superposition/puncturing. Furthermore, reference [8]
develops a joint multi-user preemptive scheduling strategy
to simultaneously cross-optimize system spectral efficiency
and uRLLC latency. The principle is that the uRLLC traffic
instantly overwrites part of the ongoing eMBB transmissions
when the network appears sporadic uRLLC traffic, which
considers a fundamentally different problem from the one
addressed in our paper.

Dealing with dynamic resource allocation, two algorithms
are widely studied: active and passive resource allocation.
Reference [24] proposes an active pre-allocation mecha-
nism for virtual radio resources, including inter-chip pre-
allocation and on-chip scheduling, but it is limited by the
accuracy of the model. When the prediction error occurs,
resource redundancy or deficiency would be touched off,
resulting in destructive QoS. Reference [25] proposes a time-
dependent pricing bandwidth consumption scheme for mul-
timedia streaming applications. The principle is that soft-
ware defined network (SDN) technology allowed multimedia
streaming media users to negotiate their QoS parameters as
needed, encouraging delay-tolerant users to release resources
for latency-sensitive services in advance. Indeed, due to the
unpredictable characteristics of future service requirements
and channel state, the solution is not effective in dealing with
sudden heterogeneous service requirements, especially the
uRLLC service. In order to shield time-varying network con-
ditions, passive resource allocation is more widely applied to
radio resource scheduling. A common approach is to directly
process the current load task with the queue, allocating
resources accurately without future wireless channel states.
A related dynamic resource allocation model often consid-
ered for heterogeneous services is the so-called "Bandwidth
Slicing and Resource Allocation (BSRA) algorithm" [12].
The algorithm proposes an algorithm for power allocation
and quality decision in a coexistence scenario of uplink IoT
services and downstream video streaming services. However,
the scheme has been limited to the case of resource allocation
for delay-tolerant services, which can lead to poor perfor-
mance in the heterogeneous services with uRLLC requests.
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In the following, we present a dynamic resource allocation
framework to facilitate RAN slicing among heterogeneous
services. It aims to jointly optimize the bandwidth allocation
and power consumption for IoT devices while satisfying the
corresponding latency for sporadic uRLLC traffic arrivals and
the quality of eMBB services asmuch as possible. To describe
the dynamic model, we extend Lyapunov optimization to a
novel two timescale scheme to solve the proposed problem.
An alternative minimization algorithm is then designed to
obtain the optimal resource allocation decisions in theory
according to the stabilized threshold. The numerical results
verify the effectiveness of our algorithm.

III. SYSTEM MODEL
In this section, we describe the mathematical model of
resource allocation including RAN and latency of queue
update.

A. TRANSMISSION RATE FOR HYBRID SERVICES
A coexistence scenario of two different wireless services
(i.e. uRLLC service and eMBB service) is considered in
SDN-enabled wireless RAN to allocate the shared resource.
The uRLLC traffic is characterized by small and sporadically
data-package, requiring ultra-low latency and high reliability.
3GPP TR38.913 regulates uRLLC’s latency indicators that
uplink and downlink latency of its user plane are also limited
to 0.5ms. On the contrary, eMBB services are featured with
large payloads, considering high peak data rates or other
high bandwidth to guarantee sufficiently high and stable
quality (e.g., of image or voice contents). To support such
services simultaneously, the controller allocates correspond-
ing resources for specific network slices and controls the
performance of IoT devices.

The details of dynamic resource allocation framework are
shown in Fig. 1. The concept of queue backlog is used to
describe the relationship between the amount of generated
data and transmitted data, which updates over time. During
the whole RAN transmission process, the generate traffic
such as traffic control and video information are transferred
to/from data centers in the core networks through a BS
(Base station). The power of IoT devices and the quality
of video then can be controlled in response to the network
condition [12]. We reserve some radio resources for uRLLC
and eMBB slices in advance, while sharing others according
to the queue backlog to customize the frequency bandwidth
slice.

According to the characteristics of two heterogeneous ser-
vices, we propose a dynamic algorithm with two timescales.
The long timescale provides dynamic radio resource alloca-
tion policies for two different services, subject to the latency
deadline. The short timescale dynamically controls the power
consumption of IoT devices and the quality of eMBB ser-
vices. To model the time division system, we use t to repre-
sent a time-slot and T (= mt,m = 0, 1, 2, . . .) to represent
the long timescale, i.e., a time period. At each time slot
tk (= kT , k = 0, 1, 2, . . .), the system performs the update of

FIGURE 1. Radio resource allocation framework for Network slicing.

FIGURE 2. An example of different time scales T and T1.

bandwidth slicing and allocation strategy. For each time slot
t ∈ [tk , tk + T − 1], the system will control and schedule the
service request of the hybrid service, i.e., the power control
and quality decision. In addition, the dynamic arrival and
transmission of requests are represented by queue updating,
which also used to describe the latency.

In this system, time is divided into long timeslots which are
further sub-divided into short timeslots. From a scheduling
perspective, eMBB and uRLLC resource allocations occur at
long timeslot and service control occurs at the short timeslot.
Long timeslot length of our model scales with the sub-carrier
spacing, where sub-carrier spacing is 30kHz and slots per
sub-frame is 2, slot length is 1 ms/2 (=500µs). The short
timescale is subject to the granularity of mini-slot, dynami-
cally controlling the energy consumption of IoT devices and
the request quality of eMBB services. An example of these
different time scales is given in Fig. 2. In this example, T (=8)
denotes long timescale for dynamic radio resource allocation
and T1 (=4) denotes short timescale for user scheduling,
where T = 2T1.
We use O to denote the set of services, U to denote the

user set and |U | to denote the total number of users. U is
partitioned into two user subsets according to service types,
i.e., uR and uM where |U | = |uR| + |uM |. uR and uM rep-
resent the uRLLC and eMBB service devices existing in the
network respectively and |uR| and |uM | represent the number
of uRLLC and eMBB devices respectively. The total number
of bandwidth resources is represented by BW . BWR(tk ) and
BWM (tk ) are two resource subsets allocated to uRLLC and
eMBB services at the time slot tk , respectively, where BW =
BWR(tk )+BWM (tk ). We assume the allocated bandwidth will
not change during the entire time period T .

Moreover, let C represent the set of sub-channels and |C|
represent the number of sub-channels, which is defined as
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the smallest resource unit allocated to transmission traffic
over a period of time. For simplicity, we assume that the
channel conditions are flat over entire BW during the entire
time period T and each sub-channel has the same bandwidth,
expressed as BW

|C| . Therefore, the bandwidth BWR(tk ) and
BWM (tk ) are determined by the number of sub-channels. We
use Co(tk ) to denote the number of sub-channels allocated to
the service o ∈ O at the time slot t , then CR(tk ) and CM (tk )
represent the number of sub-channels allocated to uRLLC
and eMBB services respectively. By the way, o denotes one of
the service of uRLLC or eMBB. In this regard, the bandwidth
of each service o can be represented as BWo(tk ) = BW

|C| Co(tk ).
In the data transmission process, both of the uRLLC

services and eMBB services are considered as the FDMA
(Frequency Division Multiple Access)-like strategies. At
beginning time slot tk of k − th long timescale, all users
are equally allocated the total bandwidth. Thus, the allocated
bandwidth of any user u requesting uRLLC or eMBB service
o is BWo,u(tk )(=

BWo(tk )
|uo|

). In this equation, O represents the
service set of uRLLC and eMBB and o ∈ O represents a kind
of services (uRLLC or eMBB services).

To better describe the sporadic uRLLC services, we define
a binary variable bR,uR (t) to illustrate the traffic status of
uRLLC device uR, i.e., bR,uR (t) ∈ {0, 1}. bR,uR (t) = 1
indicates that the IoT device uR generate traffic for scheduling
uRLLC services at time slot t , and bR,uR (t) = 0 otherwise. In
particular, the expression of uRLLC transmission rates must
additionally consider extreme latency and reliability require-
ments. We additionally consider the short packet structure
and transmission error rate of the uRLLC traffic, which is
different from Shannon’s capacity formula [26] that eMBB
services follow. The transmission rate for the uRLLC device
uR and eMBB device uM is given by (1) and (2) respectively.

rR,u
(
BWR(tk ),PR,u(t), t

)
= bR,u(t) · BWR,u(tk )

{
log2

[
1+ δcR,u(t)

]
−

√
Vk
n
Q−1(εck )

}
= bR,u(t) ·

CR(tk )
|C|

BW
|uR|

{
log2

[
1+ δcR,u(t)

]
− ψ

}
, (1)

rM ,u
(
BWM (tk ), t

)
= BWM ,u(tk ) log2

{
1+ SN c

M ,u(t)
}

=
CM (tk )
|C|

BW
|uM |

log2
{
1+ SN c

M ,u(t)
}
, (2)

where δcR,u(t) =
gcR,u(t)PR,u(t)

σ 2
, δcM ,u(t) =

gcM ,u(t)PM ,u(t)

σ 2
. PR,u(t)

and PM ,u(t) are the transmit power of uRLLC and eMBB
services, where PR,u(t) can be controlled by the system for
power consumption and PM ,u(t) is fixed. gcR,u(t) and g

c
M ,u(t)

are channel gain-to-noise ratio of two kind of services. σ is
the noise power. We use ψ to denote the reliability factor,
which is expressed by ψ =

√
Vk/nQ−1(εck ). We consider

the short packet structure of the uRLLC traffic, so that the
maximum transmission rate is related to the transmission
error rate. Vk = 1− 1

[1+δcR,u(t)]
2 denotes the so-called channel

dispersion which can be approximated to 1 [27]. It mea-
sures the random variation of the channel relative to the
deterministic channel of the same capacity. Q−1(·) denotes
the inverse of the Gaussian Q function and εck denotes the
transmission error rate. Due to the high reliability and ultra-
low latency requirements, in order to avoid re-transmission,
the transmission error rate εck should be set to a low thresh-
old, thereby ψ can be considered as a constant. More-
over,we assume that rates for uRLLC and eMBB services
are bounded as rR,u(BWR,u(tk ),PR,u(t), t) ≤ rR,max and
rM ,u(BWM ,u(tk ), t) ≤ rM ,max , respectively.

B. OVERALL NETWORK UTILITY
According to the service type, we assume that each kind
of slice is assigned a private share, reflecting benefits that
the slice obtains from a given resource allocation. In this
setting, the design principle of resource allocation consists
of two points. I) RAN resources are shared among services
according to the private share. II) The resources are also fairly
shared among devices of the service.

Let O denote the service set and So denote the private
share for service o ∈ O, so that

∑
o∈O So = 1. Private

shares are assigned for weighting according to communica-
tion requirements of frequency bandwidth and traffic flow,
which guides the fair resource allocation and network uti-
lization. A larger private share means a higher priority for
radio resource. For instance, we assign a larger private share
for video call services in order to give it a higher priority
in occupying resources (e.g. bandwidth), which means the
quality requirement of image or speech can be better ensured.
We define the overall network utility N (t) as the sum of the
services’ utilities Fo(t) weighted by the private share. The
network utility is defined as follows:

N (t) =
∑
o∈O

So · Fo(t). (3)

The service utility Fo(t) is the sum of devices’ utilities,
resources of each service are fairly shared among devices.
According to the fairness criteria [6], [7], [22], a service
utility is logarithmic in its resource/bandwidth, expressed by:

Fo(t) =
∑
u∈Uo

φu · fu
(
BWo,u(tk )

)
= φu

∑
u∈Uo

log
(
BWo,u(tk )

)
, (4)

where Uo denotes the device set of service o and φu is the
relative priority of device u ∈ Uo. For simplify, we define
that φu is the same amongst all devices of the service o, such
that φu ≥ 0 and

∑
u∈Uo φu = 1. Therefore, φu = 1/|Uo|.

Combining the equations (3) and (4), we can rewrite the
network utility as follows:

N (t) =
∑
o∈O

∑
u∈Uo

So
|Uo|
· log

(
BWo,u(tk )

)
=

∑
o∈O

∑
u∈Uo

ω(o,u) · log
(
BWo,u(tk )

)
, (5)
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whereω(o,u) denotes the device weight of device u, defined as
the private share of service o which is divided by the current
number of the IoT devices. That is, the device weight ωo is
equal amongst its current devices, i.e., ωo = So/|Uo|. We
use Nmax to denote the maximum network utility at the time
slot t and the degree of network utility is then defined in a
normalized form as:

H (t) =
N (t)
Nmax =

∑
o∈O

∑
u∈Uo

ωo · log
(
BWo,u(tk )

)
Nmax . (6)

C. LATENCY OF QUEUEING
For each time slot t , new random traffic is generated by each
terminal and certain traffic can also be transmitted by the
base station. Suppose that Au(t) denotes the amount of data
generated by device u and ru(t) denotes the amount of data
transmitted by device u, the queue backlog of device u is then
denoted by Qu(t) at the time slot t . Obviously, the updated
queue backlog Qu(t + 1) at time slot t + 1 can be derived
by queue backlog Qu(t), generated data Au(t) for processing
and transmitted data ru(t) at the previous time slot t . If the
amount of data that can be transmitted in a time slot is greater
than the sum of the backlogged and generated data from the
previous time slot, the current queue backlog will be none. On
the contrary, when the transmission rate of the base station is
insufficient, or amounts of connected devices and generated
data are both large, the queue backlog will increase over time
until the system crashes. In this setting, we use Qo,u(t + 1)
to denote the queue backlog of device u for service o and
Ao,u(t) to denote the amount of data generated of device u
for service o. Among that, o denotes one kind of uRLLC
services or eMBB services (i.e., AR,u(t) and AM ,u(t)). The
queues of two heterogeneous services both updates over time
based on the following queuing dynamics:

Qo,u(t + 1) = max
[
Qo,u(t)− ro,u(t), 0

]
+ Ao,u(t)

(t ∈ 0, 1, 2, . . .). (7)

Extending from the standard Little’s Law [28], the average
transmission latency is proportional to the average queue
length. Nevertheless, relying merely on the average queue
length fails to account for the extreme value of queue length
constraints. In [29] and [30], a probabilistic distribution of
the queue length is proposed to solve the extreme latency
and reliability constraint, however, the hard latency is still
possible to be not satisfied. To better demonstrate and assess
the extreme latency of uRLLC services, hard latency is pro-
posed. With the maximum queue length, each calculation
can constrain the worst-case latency. According to the actual
communication situation, we assume that the uRLLC traffic
is sporadic and follows a specific distribution with a threshold
for traffic control. In other words, there is an upper limit to
the traffic generated by each uRLLC device, and the absolute
latency is expressed as:

To,u(t) :=
qmaxo,u (t)

ro,u(t)
(8)

where qmaxo,u (t) is the maximum queue length of device u for
service o that appears at the time slot t . And To,u(t) is the
hard latency. Considering the ultra-low latency requirement
for uRLLC services and high throughput requirements for
eMBB services, the constraint of above queue backlog is:

Qo,u(t) ≤ qmaxo,u (t) ≤ Q
max
o − Ao,u(t)

= ro,u(t)Tmaxo − Ao,u(t), (9)

whereQmaxo represents the maximum length of queue backlog
that service o can tolerate, and Tmaxo represents the max-
imum latency threshold of the service o. We assume that
the system can estimate the unfinished traffic data in their
queues accurately [31]. Throughout the paper, if the queue
Qo,u(t) subjects to the definition of queue stability in (10),
we can prove that the queue is strongly stable [32]. That is,
if the maximum length of queue backlog time is bounded,
the worst-case latency is limited as well.

lim sup
T→∞

1
T

T−1∑
t=0

E
{
Qo,u(t)

}
<∞. (10)

IV. PROBLEM STATEMENT AND ALGORITHM DESIGN
In this section, we formulate the optimization problem that
will drive (i) the guarantee of ultra-low latency deadline
and reduction of power consumption for sporadic uRLLC
traffic and (ii) the improvement of service quality for eMBB
services. Therefore, we formulate the problem model by
minimizing the cost function and design the algorithm with
Lyapunov optimization. Besides, we propose the optimal
solution in terms of resource allocation decision strategy,
optimal RAN resource allocation and service schedule.

A. PROBLEM FORMULATION
For the sporadic uRLLC service, RAN transmission must
guarantee ultra-low latency (1ms) and high reliability while
reducing the power consumption of IoT devices as much as
possible. On the other hand, the eMBB service aims at maxi-
mizing the service quality for all users with high throughput.
Since fulfilling the ultra-low latency requirements comes at
the expense of a degraded QoS of eMBB services, we employ
queue backlog to reasonably schedule the relationship among
latency, power consumption, and network utility. Motivated
by this, we formulate the cost function and propose the
problem with the objective of minimizing the total cost. The
optimization problem is then formulated as:

(P) : min
(BWo,PR,AM )

lim
T→∞

1
T

T−1∑
t=0

E
{
c(t)

}
, (11)

lim
T→∞

sup
1
T

T−1∑
t=0

E
{
QR,u(t)+QM ,u(t)

}
<∞, (12)

BWR ≥ BWmin
R ,BWM ≥ BWmin

M ,

BWR + BWM = BW , (13)

qmaxR,u (t) ≤ Qmax
R − AR,u(t), qmaxM ,u(t) ≤ Qmax

M − AM ,u(t),
(14)
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where c(t) denote the cost function, formulated as the
sum of average power consumption of uRLLC devices
and the negative value of the network utility, i.e.,
c(t) =

∑
u∈UR

PR,u(t)
PmaxR

bR,u(t) − H (t). Furthermore, BWo =(
BWR(t),BWM (t)

)∞
t=0, PR =

(
PR,u(t),∀u ∈ UR

)∞
t=0, AM =(

AM ,u(t),∀u ∈ UR
)∞
t=0 and BWmin

R and BWmin
M denote the

minimum bandwidth requirements for uRLLC and eMBB
services, respectively. Constraint (12) is queue stability con-
dition, constraint (13) guides the bandwidth allocation, and
constraint (14) restricts the latency from exceeding the maxi-
mum latency threshold. Where qmaxR,u (t) and q

max
M ,u(t) represent

the maximum queue length of uRLLC and eMBB devices u
at the time slot t , respectively. Qmax

R and Qmax
M represent the

maximum queue backlogs that uRLLC and eMBB services
can tolerate, respectively. In this problem, we need to deter-
mine the bandwidth allocation, transmit power and service
quality for each IoT device at each time slot. However, in gen-
eral, P is difficult to solve as it is a stochastic optimization
problem and optimal decisions are temporally correlated [19].

B. ALGORITHM DESIGN
Since the queue state is coupling among different time slots,
achieving the above goal will be difficult by the conventional
convex optimization [33]. Thus, we employ Lyapunov opti-
mization to derive the bandwidth allocation, latency guar-
antee, transmit power control and service quality decision
algorithms. It takes two timescales to obtain analytical perfor-
mance boundaries inherited from [14]. In this regard, we first
define the quadratic Lyapunov function L(t) as:

L(t) ,
1
2

{ ∑
u∈UR

Q2
R,u(t)+

∑
u∈UM

Q2
M ,u(t)

}
. (15)

Let Q(tk ) = {QR,u(t), u ∈ UR;QM ,u(t), u ∈ UM },∀t ∈
[tk , tk + T − 1] be the queue backlog vector. Thus, the Lya-
punov drift function which is defined as the expected change
over the time period T can be written as:

1T
(
L(tk )

)
, E

{
L(tk + T )− L(tk )|Q(tk )

}
. (16)

Next, we use the penalty function which is the sum of cost
functions to design Lyapunov drift-plus-penalty function for
uRLLC and eMBB services at time slot t . The Lyapunov drift-
plus-penalty function can be expressed as:

τ (tk ) = 1T
(
L(tk )

)
+ V E

{ Tk+T−1∑
t=tk

c(t)|Q(tk )
}
, (17)

where V is a control parameter in the proposed algorithm,
used to balance the cost function (i.e., power consumption
and network utility) and hard latency. For instance, when the
control parameter V is large, the system will prefer to reduce
the transmit power and improve service quality rather than
optimize the latency. We then derive an upper-bound of τ (tk )
using queueing dynamics under any feasible BWo(t), PR,u(t)
and AM ,u(t), as specified in the following lemma.

Lemma 1: Let V > 1 and tk = kT where k = 0, 1, . . .
For arbitrary BWo(t), PR,u(t) ∈ [0,PR,max] and AM ,u(t) ∈
[0,AM ,max], we have:

τ (tk )

≤ cons1 · T + V E
{ Tk+T−1∑

t=tk

c(t)|Q(tk )
}

− E
{ Tk+T−1∑

t=tk

∑
u∈UR

QR,u(t)
[
rR,u

(
BWR(tk ),PR,u(t), t), t

)
−AR,u(t)

]
|Q(tk )

}
− E

{ Tk+T−1∑
t=tk

∑
u∈UM

QM ,u(t)

[
rM ,u

(
BWM (tk ), t

)
− AM ,u(t)

]
|Q(tk )

}
, (18)

where cons1 ,
(
|UR|(A2R,max + r2R,max) + |UM |(A

2
M ,max +

r2M ,max)
)
/2, and AR,max is the fixed maximum generated traf-

fic of uRLLC services.
Proof: The proof is similarly based on the principle

of queuing dynamics in (7), which is omitted due to space
limitation.
One of the design intents of Lyapunov optimization is to

determine a control action for minimizing the right hand side
(R.H.S.) of (18). However, the prior knowledge of future
queue backlog may not always be available, which depends
on the task generated processes Ao,u(t), resource alloca-
tion solutions, and time-varying network conditions. In this
regard, we take an approximation to assume the future values
of queue backlogsQR,u(t) andQM ,u(t) during [tk , tk+T −1]
are roughly equal current values, i.e.,QR,u(t) ≈ QR,u(tk ) and
QM ,u(t) ≈ QM ,u(tk ) for all tk ≤ t ≤ tk + T − 1 [14]. The
upper bound of drift-plus-penalty τ (tk ) "loosen" as shown in
the following lemma.
Lemma 2: Let tk = kT where k = 0, 1, . . . Under any

feasible value of BWo(t), PR,u(t) and AM ,u(t), we have:

τ (tk )

≤ cons2 · T + V E
{ Tk+T−1∑

t=tk

c(t)|Q(tk )
}

− E
{ Tk+T−1∑

t=tk

∑
u∈UR

QR,u(t)
[
rR,u

(
BWR(tk ),PR,u(t), t), t

)
−AR,u(t)

]
|Q(tk )

}
− E

{ Tk+T−1∑
t=tk

∑
u∈UM

QM ,u(t)

[
rM ,u

(
BWM (tk ), t

)
− AM ,u(t)

]
|Q(tk )

}
, (19)

where cons2 · T , cons1 + (T − 1)
(
|UR|(A2R,max + r

2
R,max)+

|UM |(A2M ,max + r
2
M ,max)

)
/2.

Proof: The proof is similarly based on the principle
of queuing dynamics in (7), which is omitted due to space
limitation.
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Withminimizing R.H.S. of (19) in terms of BWo(t), PR,u(t)
and AM ,u(t), we can determine the bandwidth allocation
for two services, which are latency and power consumption
control for uRLLC and service quality decision for eMBB.
When determining bandwidth allocation of the k − th long
timescale at time slot tk , the future channel gain states during
[tk , tk + T − 1] are not able to know. Due to the wireless
channel quality is rarely changed over short time period [13],
statistics of channel states are similar with the most recent
ones. Therefore, we address the above issue by approximating
the future channel gain-to-noise radio gcR,u and gcM ,u during
the new time period [tk , tk+T−1] are the same as the current
value [12].

C. PERFORMANCE ANALYSIS
In this subsection, we will provide a theoretical result, which
analyzes optimal bounds on the power and service quality
performance (average cost) of our proposed problem over
all stable queue. In such theoretical algorithm, we assume
that future information such as the channel gains is known in
advance and achieve the optimum by exhaustive searching,
called semi-offline algorithm. The performance is character-
ized in Theorem 1.
Theorem 1: Suppose there exists an ε > 0 such that

A + ε1 ∈ 3, where A = (A1,A2, . . . ,Au) represents a given
job generated rate vector and has Au = E{Au(t)}. Au(t) is
the generated rate of device u at time slot t . 3 denotes the
capacity region of the system – i.e., the closure of set of rates
A to ensure the queue stability expressed in (10). 1 is the
vector of all 1’s. Then, we have:

QT , lim sup
K→∞

1
K

K−1∑
k=0

{ |UR|∑
u=1

E{QR,u(kT )}

+

|UM |∑
u=1

E{QM ,u(kT )}
}
≤
cons2 + Vcmax

ε
,

csemi , lim sup
K→∞

1
K

E{c(t)} ≤ c∗ +
cons2
V

, (20)

where k denotes the number of time period T , which achieves
tk = kT for all k = 0, 1, . . . ,K − 1. cmax denotes the
maximum cost for the traffic arrival rates A, c∗ denotes the
minimum time-average cost for all users, and csemi denotes
the optimal cost of semi-offline scheme.

Proof: See [34], which is omitted due to space limita-
tion.

D. OPTIMAL SOLUTION
The resource allocation decision for heterogeneous services
is made through solving the optimization problem to min-
imize R.H.S. of (19). The exhaustive search scheme is an
approach, however, it needs to solve all possible combina-
tions with high computational complexity. In this regard,
we design a two timescale framework and propose a more
computationally efficient sub-optimal scheme to address the
allocation decision by an efficient alternative minimization

FIGURE 3. Flow diagram of proposed alternative minimization algorithm.

algorithm. The two-timescale algorithm makes a decision on
bandwidth allocation every T time slot. Service controlling
and scheduling (i.e., latency and power consumption control
for uRLLC services and quality decisions for eMBB services)
are made at each short time slot. Thus, we first design the
resource allocation decision strategy according to the stabi-
lized threshold. Then we introduce the bandwidth allocation
algorithm and two sub-algorithms for service control.

1) RESOURCE ALLOCATION DECISION STRATEGY
According to the Lyapunov stability theorem and Lya-
punov’s second method, the system can reach a stable state
when 4T (L(tk )) can be stabilized within a certain range.
Assume that the stability threshold for ensuring the normal
operation of system is γ , we can visually determine whether
the system has remaining network resources to further opti-
mal latency or reduce power consumption and improve ser-
vice quality. The relationship is expressed as follows:

E
[
τ (tk )

]
≤ γ. (21)

Fig. 3 shows our alternative minimization algorithm based
on Lyapunov optimization. For every T time slot (long
timescale), if the drift-plus-penalty function satisfies the con-
dition of (21), it indicates that the system is stable and may
have remaining resources based on the current allocation
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decision. At this time, the network determines the optimal
network utility (ONU) scheme as the bandwidth allocation
policy, and can appropriately reduce the power consumption
for uRLLC devices and improve the service quality for eMBB
users. On the contrary, if the value of drift-plus-penalty func-
tion is greater than the stability threshold (i.e., E

[
τ (tk )

]
>

γ ), the queue backlog is large and the system is unstable,
which may cause system failure. The system then uses the
optimal power consumption (OPC) scheme to allocate band-
width and appropriately increases the power consumption and
reduces the service quality to stabilize the queue backlog. For
each short timescale, notice that determining the control and
scheduling policy needs to both compare with the threshold
γ and consider the bandwidth allocation policy in the current
period. When E

[
τ (tk )

]
> γ and the bandwidth allocation

policy is OPC, the system should significantly increase power
for uRLLC devices and reduce the service quality for eMBB
users, enabling the system to stabilize as fast as possible.

2) OPTIMAL BANDWIDTH ALLOCATION
For the bandwidth allocation, the proposed algorithm is sum-
marized in Algorithm 1 to solve the deterministic optimiza-
tion problem at each T time slot. We first assign the same
bandwidth at the beginning time slot as there is no previous
network information for reference. It is not difficult to iden-
tify that the optimization problem is monotonous in terms of
bandwidth, and then the optimal solution is (BWmin

R ,BW −
BWmin

R ) or (BW −BWmin
M ,BWmin

M ). In order to directly search
for the optimal solution, we design two resource allocation
policies to find the solution

(
BWR(tk ),BWM (tk )

)
by an alter-

native manner. The allocation policies are OPC scheme and
ONU scheme, which are determined depending on the stabil-
ity threshold γ . If the system determines the OPC scheme,
we calculate the corresponding temporary power consump-
tion Popt,1R and Popt,2R by LTPC algorithm in the case of
BWR = BWmin

R or BWR = BW − BWmin
M , respectively. After

calculating Dopt,1 and Dopt,2 at two possible combination of
bandwidth allocation (BWmin

R ,BW − BWmin
R ) and (BW −

BWmin
M ,BWmin

M ) in step 7 of Algorithm 1, we make a decision
for bandwidth allocation, and the formulations of Dopt,1 and
Dopt,2 are expressed by:

Dopt,1 =
∑
u∈UR

BWmin
R,uQR,uopt,1(t)(tk )

(
log2

(
1

+ SN c
R,uopt,1 (t)

)
− ψ

)
+

∑
u∈UM

BWM ,uQM ,u(tk ) log2
(
1+ SN c

M ,u(t)
)
,

(22)

Dopt,2 =
∑
u∈UR

BWR,uQR,C(t)(tk )
(
log2

(
1

+ SN c
R,uopt,2 (t)

)
− ψ

)
+

∑
u∈UM

BWmin
M ,uQM ,u(tk ) log2

(
1+ SN c

M ,u(t)
)
,

(23)

where uopt,1 and uopt,2 denote the device which are sched-
uled with the corresponding transmit power PR,uopt,1 (t) and
PR,uopt,2 (t) respectively. On the other hand, if the system
determines the ONU scheme, we calculate the W opt,1 and
W opt,2 as two possible combination of bandwidth allocation
(BWmin

R ,BW − BWmin
R ) and (BW − BWmin

M ,BWmin
M ) in step

10,11 of Algorithm 1 to make a decision for bandwidth
allocation.

Algorithm 1 Bandwidth Allocation Algorithm.
Input : Queue backlog Qo,u(tk ), stability threshold γ .
Output: Optimal solution BWo(tk ).

1 for every time slot tk = kT , k = 0, 1, 2, . . . do
2 if k = 0 then
3 BWR(tk ) = BW/2 and BWM (tk ) = BW/2.
4 else
5 Assume the channel gain-to-noise radio gcR,u and

gcM ,u during the new time period [tk , tk + T ) are
the same as that during [tk − T , tk ).

6 end
7 if

[
τ (tk )

]
> γ then

8 Apply Algorithm 2 to calculate the bandwidth
allocation solution

(
BWR(tk ),BWM (tk )

)
.

9 end
10 else if

[
τ (tk )

]
≤ γ then

11 Apply Algorithm 3 to calculate the bandwidth
allocation solution

(
BWR(tk ),BWM (tk )

)
.

12 end
13 end

Algorithm 2 Optimal Power Consumption (OPC) Algo-
rithm.
Input : Qo,u(tk ), BWmin

R , BWmin
M

Output: Optimal solution BWi.

1 for every time slot tk = kT , k = 0, 1, 2, . . . do
2 Apply LTPC to calculate the temporary power

consumption Popt,1R and Popt,2R when BWR = BWmin
R

and BWR = BW − BWmin
M , respectively.

3 Calculate Dopt,1 and Dopt,2 by formulation (22) and
(23) respectively,

4 if Dopt,1 ≥ Dopt,2 then
5 BWR = BWmin

R , BWM = BW − BWmin
R .

6 else
7 BWR = BW − BWmin

M , BWM = BWmin
M .

8 end
9 end

3) OPTIMAL LATENCY, TRANSMIT POWER AND SERVICE
QUALITY
For each bandwidth allocation case, we obtain the short time-
scale solutions for the service controlling and scheduling.
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Algorithm 3Optimal Network Utility (ONU) Algorithm.

Input : BWmin
R , BWmin

M , ωi,u
Output: Optimal solution BWi.

1 for every time slot tk = kT , k = 0, 1, 2, . . . do
2 Apply SQD to calculate Aopt,1M ,u and Aopt,2M ,u when

BWR = BWmin
R and BWR = BW − BWmin

M ,
respectively.

3 CalculateW opt,1
=
∑

u∈UR ωR,u log(BW
min
R )+∑

u∈UM ωM ,u log(BW − BW
min
R ), and

W opt,2
=
∑

u∈UR ωR,u log(BW − BW
min
M )+∑

u∈UM ωM ,u log(BW
min
M ).

4 if W opt,1
≥ W opt,2 then

5 BWR = BWmin
R , BWM = BW − BWmin

R .
6 else
7 BWR = BW − BWmin

M , BWM = BWmin
M .

8 end
9 end

By dividing the problem for minimizing R.H.S. of (19) into
two sub-algorithms, the latency and transmit power con-
trol (LTPC) for uRLLC service and service quality decision
(SQD) for eMBB services, the bandwidth allocation problem
can be solved. Since the problem is jointly convex with
respect to PR,u(t) and AM ,u(t) and the feasible region is the
Cartesian product of those variables. Our algorithm can be
guaranteed to converge to the global optimal solution, termed
as the Gauss-Seidel method in literature [23].

a: LATENCY AND TRANSMIT POWER CONTROL (LTPC)
The LTPC algorithm controls transmit power to schedule hard
latency and power consumption. After decoupling SP1 from
the R.H.S. of (19), the optimal transmit power for uRLLC
devices can be obtained with a fixed bandwidth allocation
solution

(
BWR(tk ),BWM (tk )

)
by solving:

(SP1) : minV
PR,u(t)
PR,max

−QR,u(t)rR,u
(
PR,u(t), t

)
,

0 ≤ PR,u(t) ≤ PR,max . (24)

Thus, for every time slot t ∈ [tk , tk + t − 1], the optimal
solution of transmit powers is achieved at either the stationary
point of the objective function SP1 or one of the boundary
points (0,PR,max). For all uRLLC devices, optimal transmit
powers are given in closed form by:

P∗R,u(t) =
{
max

{PmaxR Qr,u(t)BWR(tk )
ln 2 · V

−
σ

gcR,u(t)
, 0
}
,PR,max

}
, u ∈ UR. (25)

b: SERVICE QUALITY DECISION (SQD)
The SQD algorithm controls the service quality of eMBB
services to schedule hard latency and service quality (e.g.,
the served content size). For every time slot t ∈ [tk , tk+t−1],

we need to decide the service quality for each eMBB devices
to maximize the follow metric:

(SP2) : maxQM ,u(t)
(
rM ,u(t)− AM ,u(t)

)
,

0 ≤ AM ,u(t) ≤ AM ,max . (26)

With the fixed bandwidth allocation solution, SP2 is a lin-
ear program in terms of AM ,u(t), the optimal solution should
be one of the boundary points similar to SP1.

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
First, this section defines the main indicators for perfor-
mance evaluation and introduces the related system sim-
ulation parameters, including the hard latency, the power
consumption of IoT devices, and user satisfaction to evaluate
service quality. The latency and power consumption have
been defined in the previous section, so we only define per-
formance indicators for quality of service, also known as user
satisfaction. The degree of user satisfaction analyzes the value
of AM ,u(t) and is modeled as service quality USi(AM ,u(t))
divided by user’s personalized quality requirement USmaxi
[5], expressed as follows:

Mi(AM ,u(t)) =
USi(AM ,u(t))

USmaxi
, (27)

where USi(AM ,u(t)) = βi log2((AM ,u(t)) denotes the ser-
vice quality of eMBB user i and βi reflects the characteris-
tics of requested services, which follow peak signal-to-noise
ratio [35].

In the simulation, we assume that the RAN scenario only
contains one BS which provides radio resources for slices to
support heterogeneous services. The total bandwidth is set to
100MHz. There are 3 kinds of uRLLC slices providing radio
resource for 15 uRLLC devices and 3 kinds of eMBB slices
for 15 eMBB users, which are located at a random distance
between 10m and 500m from the BS. As for the channel
gains, we use the small-scale fading channel model [23]
which is exponentially distributed with unit mean.

For uRLLC services, the minimum bandwidth is set to
25MHz and the maximum transmit power is set to 1W [36].
The reliability factor ψ can be seen as a constant in for-
mulating the transmission rate and set to 10−5. According
to 3GPP standard, the upper bound of RAN side latency
threshold is set to 1ms. Each service device generates data
randomly. The average arrival rate is set to 600kbps following
Poisson distribution and the maximum average arrival rate is
1Mbps. For eMBB services, the minimum bandwidth is set
to 50MHz and the typical value of transmit power is set to
8W [37]. The upper bound of RAN side latency threshold is
set to 5ms. The finite set of service content size requested by
the user is selected randomly between 3.5Mbits to 9Mbits,
which is set according to the YouTube video streaming using
popular H.264 codec. What’s more, the private share is set
based on the fraction of arrival rates of all devices at each
time slot [22]. In addition, we first fix the timescale T for
bandwidth allocation to be 240 time slots and run experiments
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FIGURE 4. Avg. power cost for uRLLC services (a) /average degree of user
satisfaction for eMBB services (b) vs. the control parameter V .

with different V values. Then we fix the trade-off parameter
V to be 4Mbit2 ∗W−1 and vary T from 30 time slots to
1080 time slots, which is a sufficient and efficient range for
exploring the proposed algorithm.

B. NUMERICAL RESULTS
From the problem model, we can notice that the performance
of proposed algorithm depends on control parameter V and
timeslot parameter T . For all comparison schemes, we show
average values (power consumption, user satisfaction and
latency) over arrival data sets.

First, we analyze the relationship between the power con-
sumption for uRLLC services (Fig. 4(a)) and/or the degree
of user satisfaction for eMBB services (Fig. 4(b)) under
different control parameter V with the fixed T (= 240 time
slots) in Fig. 4. From Fig. 4(a), we can notice that as the
parameter V goes from 3 to 8, the power consumption for
uRLLC services reduces from 1W to about 0.09W. That is to
say, if the control parameter V is sufficiently large, the power
consumptionwill converge to the optimal power consumption
and it reduces inversely proportional to the parameter V .
When the parameter is set to the value smaller than 3,
the power consumption is an average of around 1W, which is
the maximum power cost set to uRLLC services. The reason
is that the proposed algorithm adjusts V to balance power
consumption and latency reduction. A larger V means that
the algorithm is suitable for a power-sensitive situation. Con-
versely, a smaller V means that it has stricter requirements on
latency reduction. Thus, the algorithm schedules uRLLC ser-
vices with the maximum power to achieve ultra-low latency
and system stability. Meanwhile, as shown in Fig. 4(b),
we observe that when V goes to infinity, the average degree
of user satisfaction for eMBB services decreases almost lin-
early and it is regarded as unbounded until to minimum
value. Because (i) our algorithm considers both satisfying

FIGURE 5. Power consumption vs. latency for uRLLC services.

the requirements of uRLLC and eMBB services, especially
the ultra-low latency constraints, and (ii) our algorithm is not
service quality conserving and can adjust the arrival rate (e.g.
the video quality) according to the total queue backlog and
power cost. In addition, we observed that the degree of user
satisfaction peaks when V is small (< 3), since the algorithm
schedules enough power for uRLLC services, leaving more
bandwidth resources for eMBB services. Thus, the results of
Fig. 4 verify the trade-off between the ultra-low latency and
power consumption/service quality as shown in Theorem 1.

In order to further evaluate power consumption and hard
latency, we analyze the relationship between the power con-
sumption and latency among different V value setting for
uRLLC services. As shown in Fig. 5. We ignore the relation-
ship for eMBB services, as latency constraints merely make
a little sense. We can notice that the hard latency is inversely
proportional to power consumption, which means that the
latency increases as the power consumption decreases and the
growth increase with V value. Thus, the proper V should be
set at the beginning according to the actual scenario require-
ments. For instance, when the maximum latency threshold is
set to about 15ms, V = 4.25/4.5 can be a good choice, since
the power is low enough (far lower than the ones at V = 4.00
and very close to V = 4.75). On the other hand, the service
quality also basically meets the requirements of eMBB users
at this moment, whose average degree of user satisfaction
exceeds 90%, as shown in Fig. 4(b).

When analyzing the impact of T value, we main consider
three algorithms for comparison, BSRA (Bandwidth Slicing
and Resource Allocation) algorithm [12], ACS (Alternative
Concave Search) algorithm [13], and Loading Balancing
algorithm [14]. BSRA also uses Lyapunov optimization to
deal with the timescale problem, however, it pays more atten-
tion to power reduction for IoT devices and ignores hard
latency. ACS transforms the optimization problem into a
biconcave maximization problem, which considers the opti-
mal bandwidth slicing and spectrum efficiency. In the Load
Balancing algorithm, the amount of workload is proportional
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FIGURE 6. Avg. power cost/latency of all schemes under different T
values.

to service capacity, regardless of power cost, so it should have
good latency characteristics.

First, we vary T from 30 timeslots to 1080 timeslots and
fixV to be 4.00. Corresponding results of different algorithms
are shown in Fig. 6. In Fig. 6(a), we can notice that changing
T has a relatively small effect on our proposed algorithm in
terms of reducing power consumption, far less than that on
ACS and Loading Balancing. The average fluctuation of our
algorithm’s power consumption is between 4.7% and 9.3%.
On the contrary, the power consumption of BSRA varies
significantly with T , which results in higher power reduc-
tions than the proposed algorithm. The phenomenon can be
attributed to the scheduling principle of our algorithm: the key
point is to ensure both the ultra-low latency requirement and
the service quality while reducing the power consumption for
IoT devices, rather than minimizing power consumption on a
large scale. From Fig. 6(b), we note that T plays an important
role in hard latency variation and may result in performance
deterioration. Our algorithm has a lower latency than other
schemes in most cases. In the extreme case, the hard latency
increases proportionally and becomes high when T = 1080
time slots. This is not surprising - recall that the bound of
queue size given in Theorem 1, the cons2 term is proportional

FIGURE 7. Avg. queue backlog/total cost for the proposed algorithm vs.
semi-offline (exhaustive searching) algorithm in different long timescales.

to T , i.e., the latency increases with T . Similar to V , a
proper T should also be chosen to balance the two desirable
objectives according to actual scenario requirements. With a
reasonable choice of T , for example, when T is 240, we can
ensure that the power consumption is within an acceptable
range while ensuring low latency. In Fig. 6(b), the BSRA
algorithm does not have latency limitation for 1ms. When
T is larger enough, the hard latency may exceed 1ms. Thus,
compared with the BSRA algorithm, our proposed algorithm
can better reflect the advantages in hard latency control.

Our proposed algorithm only uses current queue backlog
and channel states, rather than future wireless information.
The objective is to minimize the upper bound of cost with
choosing the bandwidth allocation every T time slots, and
choosing power consumption and service quality every sin-
gle time slot. We assume there is a theoretical algorithm
(called Semi-offline algorithm), which can obtain partial
future wireless channel states and achieve the optimum over
all stable queue by exhaustive searching, though it is not
practically implementable. In such exhaustive searching algo-
rithm, the optimal cost is the theoretical result analyzed in
Theorem 1 and can be the optimal baseline for our proposed
algorithm to obtain the performance gap. Fig. 7 compares
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our algorithm with the semi-offline (exhaustive searching)
algorithm, in terms of queue backlog and system cost. Queue
backlog is a key metric for hard latency and system stability,
defined in the third chapter. The average system cost is the
objective of our problem model, the sum of power con-
sumption and negative network utility. With the same latency
constraint, it can be seen that the proposed algorithm achieves
similar performance to the theoretical result, especially when
T is close to 100. Fig. 7(a) proves that our algorithm can
effectively ensure the stability of the system queue and hard
latency requirement, as the queue backlog is similar to the
semi-offline (exhaustive searching) algorithm. When reach-
ing T = 1000, the queue backlog length of our algorithm
is longer and the cost is higher, from Fig. 7(b). According to
our optimization goals, higher cost means lower performance.
Thus, we can conclude that when it is greater than 1000T,
the performance of our algorithm is lower than the optimal
solution (baseline).

The above experience reveals that the proposed algorithm
can perform better for uRLLC and eMBB hybrid services.
Therefore, in this section, we use average power consump-
tion, user satisfaction, hard latency and total cost to evaluate
the performance. As the performance depends on parameters
V and T , we first show corresponding results under different
V values. It proved that our proposed algorithm can balance
the relationship between power consumption and user sat-
isfaction, i.e., when V is large, the algorithm outperforms
scheme in power cost reduction. We then analyze the rela-
tionship between power consumption and latency for uRLLC
services, which proves the hard latency guarantee. As for
parameter T , it also plays an important role in the trade-off
between latency and power cost. Finally, we compare our
proposed algorithm with the theoretical one, which proves
that our model achieves similar performance of exhaustive
searching algorithm (the optimal solution).

VI. CONCLUSION
In this paper, we propose a dynamic resource allocation algo-
rithm with RAN slicing and heterogeneous services schedul-
ing, in order to ensure the extreme QoS of differentiated
IoT services. We first present the mathematical model with
the objective of minimizing total cost, formulated with the
sum of power consumption of uRLLC devices and the neg-
ative value of the network utility. The problem model also
obeys latency constraints and considers the error rate, which
is used to guarantee the latency and reliability for uRLLC
services. Then we employ the Lyapunov optimization to
design a two timescale algorithm, long-timescale bandwidth
allocation and short-timescale service control. Performance
analysis was conducted for our algorithm, which explicitly
characterizes the relationship between the control parame-
ters and services performance, including power consumption
and user satisfaction. With comparing, we proved that our
algorithm outperforms BSRA, ACS and Loading Balancing
algorithms in terms of hard latency and total cost.
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