
Received January 14, 2020, accepted February 13, 2020, date of publication February 18, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974919

A Survey of Approximate Quantile
Computation on Large-Scale Data
ZHIWEI CHEN 1 AND AOQIAN ZHANG 2
1School of Software, Tsinghua University, Beijing 100084, China
2Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Corresponding author: Aoqian. Zhang (aoqian.zhang@uwaterloo.ca)

This work was supported in part by the National Key Research and Development Plan under Grant 2019YFB1705301, and in part by the
National Natural Science Foundation of China under Grant 61572272 and Grant 71690231.

ABSTRACT As data volume grows extensively, data profiling helps to extract metadata of large-scale data.
However, one kind of metadata, order statistics, is difficult to be computed because they are not mergeable or
incremental. Thus, the limitation of time andmemory space does not support their computation on large-scale
data. In this paper, we focus on an order statistic, quantiles, and present a comprehensive analysis of studies on
approximate quantile computation. Both deterministic algorithms and randomized algorithms that compute
approximate quantiles over streaming models or distributed models are covered. Then, multiple techniques
for improving the efficiency and performance of approximate quantile algorithms in various scenarios, such
as skewed data and high-speed data streams, are presented. Finally, we conclude with coverage of existing
packages in different languages and with a brief discussion of the future direction in this area.

INDEX TERMS Data profiling, order statistics, approximate quantile, streaming model, distributed model.

I. INTRODUCTION
Data profiling is a set of activities to describe the metadata
about given data [1]. It is crucial for data analysis, especially
for large-scale data. It helps researchers to understand data
distribution [2], discover duplicates [3], detect anomalies
[4], determine thresholds [5], etc. Such information provides
guidance for other data preprocessing work such as data
cleaning [6], which can subsequently improve the perfor-
mance of data mining dramatically [7]. When preprocessing
large-scale data, data profiling is attached great importance
to and faces its own challenges. Because of large data size,
classic brutal methods are not applicable any more for their
intolerable complexity of both time and space. Researchers
have spent decades on figuring out new ways to compute
the metadata which can be calculated easily on small data.
The metadata can be divided into two categories based on
scalability: aggregation statistics and order statistics [8].

Aggregation statistics are named for their property that
they are mergeable and incremental, which makes them rela-
tively easy to be computed no matter how large the data is.
For examples, sum, mean values, standard deviations, min
or max values are all aggregation statistics. For streaming
models [9], [10], where data elements come one by one with

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiqiang Wang .

time, we can trace and update aggregated results covering
all arrived data by incrementing new results continuously.
Time complexity and space complexity are both O(1). As for
distributed models [11], where data are stored in nodes of
a distributed network, the overall aggregation statistics can
be obtained by merging results from each node. The total
communication cost of this computation isO(|v|), where |v| is
the number of network nodes. However, order statistics, such
as quantiles, heavy hitters, etc., do not preserve such property.
So, we cannot compute them by merging existing results with
newly produced results in a straight way. In order to compute
them, many customized data structures or storage structures
are proposed for these order statistics, trying to turn them into
a mergeable or incremental form in some way.

In this summary, we focus on one order statistic, quantiles.
They help to generate the description of the data distributions
without parameters. In other words, they are able to reflect
the cumulative distribution function (cdf), thus the probability
distribution function (pdf), of data at low computational cost.
Pdf is widely used in data cleaning and data querying. For
example, in data cleaning, it is applied to demonstrate the
distance distribution among values of the same attribute so
as to identify misplaced attribute values [12]. And in data
querying, it helps to set an appropriate correlation filter,
improving efficiency for set correlation query over set records
in databases [13]. Therefore, quantiles are regarded as one of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 34585

https://orcid.org/0000-0001-6073-7651
https://orcid.org/0000-0003-4059-6913
https://orcid.org/0000-0003-2090-5512

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

the most fundamental and most important statistics in data
quality analysis in both theory and practice. For instance,
many data analysis tools, including Excel,MATLAB, Python,
etc., have quantile-computing functions as built-in compo-
nents or libraries. In the Sawzall language, which is the basic
for all Google’s log data analysis, quantile is one of the seven
basic statistic operators defined, along with sum, max, top-k,
etc. [14]. Besides, quantiles are widely used in data collection
and running-state monitoring in sensor networks [15], [16].
When a dataset contains dirty values, compared with mean
values and standard deviations, quantiles andmedian absolute
deviations are more objective and more accurate to reflect
data center and data deviation [17]. They are less sensitive
to outliers. In temporal data, where imprecise timestamps are
prevalent, even if some timestamps are delayed very long
or have inconsistent granularity, quantiles are still able to
specify appropriate temporal constraints on time interval,
helping to clean the data [18]. In addition, quantile algorithms
have been widely used as subroutines to resolvemore compli-
cated problems, such as histograms and dynamic geometric
computations [19].

A quantile is the element at a certain rank in the dataset
after sort. Algorithmic studies can be traced back to 1973 at
least when linear-time selection was invented [20]. In classic
methods of computing φ-quantile over a dataset of size N ,
where φ ∈ (0, 1), first we sort all elements and then return
the one ranking bφNc. Its time complexity is O(N logN) and
space complexity is O(N) obviously. However, in large-scale
data, the method is infeasible under restrictions of memory
size. Munro et al. has proved that any exact quantile algo-
rithm with p-pass scan over data requires at least �(N 1/p)
space [21]. Besides, in streaming models, quantile algorithms
should also be streaming, which means they are permitted
to scan each element only once and need to update quantile
answers instantaneously when receiving new elements. There
is no way to compute quantiles exactly under such condition.
Thus, approximation is introduced in quantile computation.
Approximate computation is an efficient way to analyze
large-scale data under restricted resources [22]. On one hand,
it raises computational efficiency and lower computational
space. On the other hand, large scale of the dataset can
dilute approximation effects. Large-scale data is usually dirty,
which also makes approximate quantile endurable and appli-
cable in industry. Significantly, the scale of data is relative,
based on the availability of time and space. So, the rule about
how to choose between exact quantiles and approximate
quantiles differs in heterogeneous scenarios, depending on
the requirement for accuracy and the contradiction between
the scale of data and that of resources. When the cost of
computing exact quantiles is intolerable and the results are
not required to be totally precise, approximate quantiles are a
promising alternative.

We denote approximation error by ε. A ε-approximate
φ-quantile is any element whose rank is between r − εN and
r + εN after sort, where r = bφNc. For example, we want
to calculate 0.1-approximate 0.3-quantile of the dataset

FIGURE 1. An example of a ε-approximate φ-quantile, where ε = 0.1 and
φ = 0.3.

11, 21, 24, 61, 81, 39, 89, 56, 12, 51. As shown in Figure 1,
we sort the elements as 11, 12, 21, 24, 39, 51, 56, 61, 81, 89
and compute the range of the quantile’s rank, which
is [(0.3− 0.1)× 10, (0.3+ 0.1)× 10] = [2, 4]. Thus the
answer can be one of 12, 21, 24. In order to further reduce
computation space, approximate quantile computation is
often combined with randomized sampling, making the deter-
ministic computation becomes randomized. In such case,
another parameter δ, or randomization degree, is introduced,
meaning the algorithm answers a correct quantile with a
probability of at least 1− δ.
There are 3 basic metrics to assess an approximate quantile

algorithm [23]:
• Space complexity It is necessary for streaming
algorithms. Due to the limitation of memory, only algo-
rithms using sublinear space are applicable [24]. It cor-
responds to communication cost in distributed models.
In a distributed sensor network, communication over-
head consumes more power and limits the battery life
of power-constrained devices, such as wireless sensor
nodes [25]. So, quantile algorithms are aimed at low
space complexity or low communication cost.

• Update time It is the time spent on updating quantile
answers when new element arrives. Fast updates can
improve the user experience, so many streaming algo-
rithms take update time as a main consideration.

• Accuracy It measures the distance between approximate
quantiles and ground truth. Intuitively, the more accurate
an algorithm is, the more space and the longer time it
will consume. They are on the trade-off relationship.
We use approximation error, maximum actual approx-
imation error and average actual approximation error as
quantitative indicators to measure accuracy.

We collected and studied researches about approximate
quantile computation, then completed this survey. The survey
includes 72 papers, which propose algorithms, varying from
data sampling to data structure transformation, and tech-
niques for optimization. Important algorithms are listed in
Table 1. The remaining parts of this survey are organized
as follows: In Section II, we introduce deterministic quan-
tile algorithms over both streaming models and distributed
models. Section III discusses randomized algorithms [26].
Section IV introduces some techniques and algorithms for
improving the performance and efficiency of quantile algo-
rithms in various scenarios. Section V presents a few off-
the-shelf tools in industry for quantile computation. Finally,
Section VI makes the conclusion and proposes interesting
directions for future research.

34586 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

TABLE 1. Approximate quantile algorithms.

II. DETERMINISTIC ALGORITHMS
An algorithm is deterministic while it returns a fixed answer
given the same dataset and query condition. Furthermore,
quantile algorithms are classified based on their application
scenarios. In streaming models, where data elements arrive
one by one in a streaming way, algorithms are required to
answer quantile queries with only one-pass scan, given the
data size N [27] or not [28], [30], [31], [40], [41]. Except to
answering quantile queries for all arrived data, Lin et al. [29]
concentrates on tracing quantiles for the most recent N ele-
ments over a data stream. In distributed models, where data or
statistics are stored in distributed architectures such as sensor
networks, algorithms are proposed to merge quantile results
from child nodes using as low communication cost as pos-
sible to reduce energy consumption and prolong equipment
life [16], [32], [34], [36], [38].

A. STREAMING MODEL
The most prominent feature of streaming algorithms is that
all data are required to be scanned only once. Besides, the
length of the data stream may be uncertain and can even
grow arbitrarily large. Thus, classic quantile algorithms are
infeasible for streaming models because of the limitation
of memory. Therefore, the priority of approximate quan-
tile algorithms for streaming models is to minimize space
complexities. In 2010, Hung and Ting [42] have proved
that any comparison-based ε-approximate quantile algorithm
over streaming models needs space complexity of at least
�(1

ε
log 1

ε
), which sets a lower bound for these algorithms.

Both Jain and Chlamtac [43] and Agrawal and Swami
[44] proposed algorithms to compute quantiles with one-pass
scan. However, neither of them clarified the upper or lower
bound of approximation error. In 1997, Alsabti et al. [40]
improved the algorithm and came up with a version
with guaranteed error bound, referred to as ARS97. Its
basic idea is sampling and it includes the following
steps:

1) Divide the dataset into r partitions.
2) For each partition, sample s elements and store them in

a sorted way.
3) Combine r partitions of data, generating one sequence

for querying quantiles.

ARS97 is targeted at disk-resident data, rather than stream-
ing models. Nevertheless, its idea to partition the entire
dataset and maintain a sampled sorted sequence for quantile
querying inspires quantile algorithms over streaming models
afterwards.

The inspired algorithm is referred to as MRL98 proposed
by Manku et al. [27]. It requires the prior knowledge of the
lengthN of data stream. Similar with ARS97,MRL98 divides
the data stream into b blocks, samples k elements from each
block and puts them into b buffers. Each buffer X is given
a weight w(X), representing the number of elements covered
by this buffer. The algorithm consists of 3 operations:

• NEW Put the first bk elements into buffers successively
and set their weights to 1.

• COLLAPSE Compress elements from multiple buffers
into one buffer. Specifically, each element from an
input buffer Xi would be duplicated w(Xi) times. Then
these duplicated elements are sorted and merged into
a sequence, where k elements are selected at regular
intervals and stored in the output buffer Y , whose weight
w(Y) =

∑
i w(Xi)

• OUTPUT Select an element as the quantile answer from
b buffers.

NEW and OUTPUT are straightforward, so the algo-
rithm’s space complexity depends mainly on how to trigger
COLLAPSE. MRL98 proposed a tree-structure trigger strat-
egy. Each buffer X is assigned a height l(X) and l is set to
minil(Xi). l(X) is set as the following standard:

• If only one buffer is empty, its height is set to l.
• If there are two or more empty buffers, their heights are
set to 0.

VOLUME 8, 2020 34587

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

FIGURE 2. The collapsing strategy with 3 buffers. A node corresponds to
a buffer and its number denotes the weight.

• Otherwise, buffers of height l are collapsed, generating
a buffer of height l + 1.

By tuning b and k , MLR98 can narrow the approximation
error within ε. Figure 2 demonstrates the trigger strategy
when b = 3. The height of the strategy tree is logarithmic,
thus the space complexity is O(1

ε
log2(εN)).

The limitation of MRL98 is that it needs to know the
length of the data stream at first. However, in more cases,
the length is uncertain and may even grow arbitrarily large.
In such case, Greenwald and Khanna [28] proposes cele-
brated GK01 algorithm, distinguished by its innovative data
structure, Summaries, or S for short. The basic idea is that
when N increases, the set of ε-approximate answers for
querying φ-quantile expands as well, so correctness can be
retained even if removing some elements. S is a collection of
tuples in the form of (vi, gi,1i), where vi is the element with
the property vi ≤ vi+1, gi and 1i are 2 integers satisfying
following conditions:∑

j≤i

gj ≤ r(vi)+ 1 ≤
∑
j≤i

gj +1i (1)

gi +1i ≤ b2εNc (2)

r(vi), whose bounds are guaranteed by (1), is the ground truth
of vi’s rank. Obviously, there are at most gi+1i−1 elements
between vi−1 and vi. (2) makes sure that the range is within
b2εNc− 1. Therefore, for any φ ∈ (0, 1), there always exists
a tuple (vi, gi,1i), where r(vi) ∈ [b(φ − ε)Nc, b(φ + ε)Nc],
and thus vi is a ε-approximation φ-quantile. To find the
approximate quantile, we can find the least i satisfying:∑

j≤i

gj +1i > 1+ bεNc + maxi(gi +1i)/2 (3)

and return vi−1 as the answer. S also supports several
operations:
• INSERT Search S to find the least i so that vi > v
and insert (v, 1, b2εNc) right before the tuple ti =
(vi, gi,1i).

• DELETE Update gi+1 as gi+1 = gi+1 + gi and delete
ti. To maintain (2), ti is removable only when it satisfies

gi + gi+1 +1i+1 ≤ b2εNc (4)

• COMPRESS It can be found that DELETE is adding
g of the deleting tuple to that of its predecessor. So we

FIGURE 3. Structure of SW model.

can delete multiple successive tuples, ti+1, ti+2, . . . , ti+k
at the same time by updating gi as gi = gi + gi+1 +
gi+2+· · ·+ gi+k and removing them. GK01 proposed a
complicated COMPRESS strategy to reduce the size of
S as small as possible: it executes when ti, ti+1, . . . , ti+k
are removable on the arrival of every 1

2ε elements.

It proves that the maximum size of S is 11
2ε log(2εN). So, its

space complexity is O(1
ε
log(εN)).

GK01 is for computing quantiles over all arrived data.
Sometimes quantiles of the most recent N elements in
a stream are required. Lin et al. [29] expanded GK01
and proposed two algorithms for such case: SW model
and n-of-N model.

SW model is for answering quantiles over the most recent
N elements instantaneously, where N is predefined. The
model puts the most recentN elements into several buckets in
their arriving order. Rather than original elements, each buck-
ets stores a Summary [28] covering εN

2 successive elements.
The buckets have 3 states as illustrated in Figure 3:

• A bucket is active when its coverage is less than εN
2 .

At this time, it maintains a ε
4 -approximate S computed

by GK01.
• A bucket is compressed when its coverage reaches

εN
2 . The ε

4 -approximate S would be compressed to ε
2 -

approximate S by an algorithm COMPRESS.
• A bucket is expired if it is the oldest bucket when the
coverage of all buckets exceeds N . Once expired, the
bucket is removed from the bucket list.

By maintaining and merging buckets, SW model answers
quantile queries of elements covered by all unexpired buck-
ets. However, when an old bucket is just expired and the
active bucket has not been full, the coverage of all unexpired
buckets N ′ is less than N . The difference between N and N ′

is at most b εN2 c − 1. An algorithm LIFT was proposed to
resolve the problem: if 0 ≤ N − N ′ ≤ b εN2 c, it can convert
a ε

2 -approximate S ′ covering N ′ elements to a ε-approximate
S covering N elements. Its worst case space complexity is
O(1

ε
log(ε2N)+ 1

ε2
).

The distinction of n-of-N model is that it answers quan-
tile queries instantaneously over the most recent n elements
where n is any integer not larger than a predefined N . It takes
advantage of the EH-partition technique [45] as shown in
Figure 4. The technique classifies buckets, marking buckets at
level i as i−bucket whose S covers all elements arriving since
the bucket’s timestamp. There are at most d 1

λ
e+ 1 buckets at

each level, where λ ∈ (0, 1). When a new element arrives, the

34588 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

FIGURE 4. Structure of the EH-partition technique in n-of-N model, where
λ = 0.5.

model creates a 1−bucket and sets its timestamp to the current
timestamp. When the number of i−buckets reaches d 1

λ
e+2,

the two oldest buckets at level i are merged into a 2i− bucket
carrying the oldest timestamp iteratively until buckets at all
levels are less than d 1

λ
e + 2. Because each bucket covers

elements arriving since its timestamp, merging two buckets
is equal to removing the later one. Lin et al. also proved that
for any bucket b, its coverage Nb satisfies

Nb − 1 ≤ λN (5)

In order to guarantee that quantiles are ε-approximate, λ is set
to ε

ε+2 . Each bucket preserves a ε
2 -approximate S. Quantiles

are queried as follows:
1) Scan the bucket list until finding the first bucket b

making Nb ≤ n.
2) Use LIFT to convert Sb to a ε-approximate S covering

n elements.
3) Search S to find the quantile answer.

According to (5), n−Nb ≤
εNb
ε+2 . Mark its predecessor bucket

as b′ and we have Nb′ > n, thus n− Nb ≤ Nb′ − Nb − 1, and
furthermore n − Nb ≤ b εn2 c. So, LIFT can be applied to Sb.
The worst case space complexity is O(1

ε2
log2(εN)).

Arasu and Manku [30] generalized SW model and came
up with fixed- and variable- size sliding window approximate
quantile algorithms. A window is fixed-size when insertion
and deletion of elements must appear in pairs after initializa-
tion. The fixed-size sliding windowmodel defines blocks and
levels as Figure 5. Each level preserves a partitioning of the
data stream into non-overlapping blocks of equal size. Blocks
and levels are both numbered sequentially. Assuming the
window size is N , the block b in level l contains a Summary
[28], denoted asF(N , ε) in this model, which covers elements
with arriving positions in the range [b2l εN4 , (b+1)2l εN4 −1].
Similar with SW model, a bucket is assigned one of 3 states
at any point of time:
• A block is active if all elements covered by it belong to
the current window.

• Abucket is expired if it covers at least one element which
is older than the other N elements.

FIGURE 5. Levels and blocks in the fixed-size sliding window model.

• A bucket is under construction if some of its elements
belong to the current window while others are yet to
arrive.

The highest level with active blocks or blocks under con-
struction L is log2(

4
ε
). Blocks in levels above are marked

expired. For each active block in level l, aF(N , εl) is retained,
where εl = ε

2(2L+2)2
(L−l). When a block is under construc-

tion, GK01 computes its F(N , εl2), and it is converted to a
F(N , εl) in the same way as COMPRESS in SW model.
The F(N , εl) occupies O(1εl) space. Arasu et al. proved that
using a set of Summaries covering N1,N2, . . . ,Ns elements
each with approximate error ε1, ε2, . . . , εs, a ε-approximate

quantile can be computed, where ε = ε1N1+ε2N2+···+εsNs
N1+N2+···+Ns

.
Thus, the fixed-size sliding window model can computes
ε-approximate quantiles over the last N elements using
O(1

ε
log 1

ε
logN) space. Contrary to a fixed-size window,

a variable-size window bears no limitation on insertion and
deletion, so the window size keeps changing. Arasu et al.
used V (n, ε) to denote a epsilon-approximate Summary cov-
ering n elements, where n is the current size of the window.
When a new element arrive, it becomes V (n + 1, ε), and
when the oldest element leaves, it gets V (n− 1, ε). Besides,
Fn(N , ε) is defined as a restriction of F(N , ε) to the last n
elements as Figure 6. Fn(N , ε) is the same as F(N , ε) except
that only blocks whose elements all belong to the most n
recent elements, instead of N elements, are assumed active.
V (n, ε) can be constructed by a set of Fn(N , ε) in the form of
{Fn(2k , ε2),Fn(2

k−1, ε2), . . . ,Fn(
2
ε
, ε2)}, where k is an integer

satisfying 2k−1 < n ≤ 2k . V (n, ε) is maintained under
various operations as follows:
• INSERT Update all Fn(N , ε) in V (n, ε) by increment-
ing n. If n + 1 = 2k + 1, create F2k (2

k+1, ε2) from
F2k (2

k , ε2) and insert the new element into it, thus getting
F2k+1(2

k+1, ε2).
• DELETE Compute Fn−1(2k , ε2) from Fn(2k , ε2).
If n− 1 = 2k−1, remove F2k−1 (2

k , ε2).
• QUERY In order to query ε-approximate quantiles over
the most n′ ≤ n recent elements, find the integer l
satisfying 2l−1 < n ≤ 2l . Then query Fn(2l, ε2) and
return the answer.

The space complexity of the variable-size sliding window
model is O(1

ε
log 1

ε
log(εN) logN).

In 2019, Liang et al. [31] extended the problem and
resolved approximate quantile queries over uncertain data
streams. More specifically, it focuses on maintaining quantile
Summaries [28] over data streams whose elements are drawn
from individually domain space, represented by continuous

VOLUME 8, 2020 34589

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

FIGURE 6. Fn(N, ε), a restriction of F (N, ε) to the last n elements.

or discrete pdf. An uncertain data stream Su is a sequence
of elements as {eu1, e

u
2, . . .}, each of which is drawn from

a domain Di with pdf fi : Di → (0, 1] such that∑
p∈Di fi(p) = 1. So, Su is a concise representation of

exponential or infinite number of possible worlds W. Each
world W = {pi|pi ∈ Di, i = 1, 2, . . .} is a deter-
ministic stream with probability Pr(W) =

∏
pi∈W fi(pi).

Therefore, the definition of approximate quantiles is gen-
eralized as the element p ∈ Di of eui ∈ Su such that∑

W∈W Pr(W)q(r, rpW) −
∑

W∈W Pr(W)q(r, rpminW) ≤ εN ,
where rpW is the rank of p inW and pmin is the element mini-
mizing

∑
W∈W Pr(W)q(r, rpW). Liang et al. proposed 2 error

metric functions as q(r, rpW), the squared error function
q(r, rpW) = (r−rpW)2 and the related error function q(r, rpW) =
r − rpW . Following GK01, an online algorithm, namely
UN-GK, is introduced. UN-GK adjusts tuples in Summaries
as vi = pi ∈ Dj of euj ∈ S

u, gi = PCmin(pi)−PCmin(pi−1), and
1i = PCmax(pi)− PCmin(pi), where PCmin(p) and PCmax(p)
is the lower bound and the upper bound of probabilistic
cardinality [46] of elements in Su no larger than p. And (2) is
modified as gi +1i ≤ 2εPC(Su), where PC(Su) is the prob-
abilistic cardinality of all elements in Su as PC(Su) = |Su|.
In this way, a ε-approximate quantile can be queried anytime
over an uncertain data stream, and its space complexity is
O(1

ε
log(εPC(Su))).

B. DISTRIBUTED MODEL
In distributed models such as sensor networks, communica-
tion between nodes consumesmuch energy and cuts down the
battery life of power-constrained devices. In addition, data
transmission takes most of the running time of algorithms.
Therefore, the priority of approximate quantile algorithms
over distributed models is to reduce the communication cost
by decreasing the size of transmitted data.

In 2004, Shrivastava et al. [16] designed an approximate
quantile algorithm on distributed sensor networks with fixed-
universe data, named as q-digest. Fixed-universe data refers
to elements from a definite collection. Q-digest uses a unique
binary tree structure to compress and store elements so that
the storage space is cut down. The size of the fixed-universe
collection is denoted as σ and the compress coefficient is
denoted as k . Figure 7 is the structure of a q-digest tree,
which exists in each network node. Each node of the tree
covers elements ranging from v.min to v.max, recording the
sum of their frequencies as count(v). Each leaf represents
one element in the universe, in other words, v.min = v.max.
Take node d as an example, its coverage is [7, 8] and there

FIGURE 7. Structure of a q-digest tree, where n = 15,k = 5, σ = 8.

are 2 elements in this range. Besides, each node v of the tree
must satisfy:

count(v) ≤ b
n
k
c (6)

count(v)+ count(vp)+ count(vs) > b
n
k
c (7)

where vp is v’s parent node and vs is its sibling node. (6)
guarantees the upper bound of v’ coverage to narrow approxi-
mation error while (7) demonstrates when to merge two small
nodes so that the storage cost can be reduced.

Q-digest proposed an algorithm COMPRESS to merge
nodes of a tree:

1) Scan nodes from bottom to top, from left to right, and
sum up count(v) and count(vs) when (7) is violated.

2) Store the sum in vp.
3) Remove the count in v and vs.

In order to reduce data communication, we number nodes
in the tree from top to bottom, from left to right and only
transmits nonempty nodes in the form of (id(v), count(v)),
in which way every transmission contains only O(log σ +
logN) data. For example, node c in Figure 7 is transformed
to (6, 2). When a network node receives q-digest trees from
other nodes, it merges them with its own tree by adding up
count of nodes representing the same elements and apply-
ing COMPRESS. After merging all q-digest trees in the
network, we can query quantiles by traversing the ultimate
tree in postorder, summing up count of passed nodes until
the sum exceeds bφNc. The queried quantile is v.max of
the current node. The total communication cost of q-digest
is O(1

ε
|v| log σ), where |v| denotes the number of network

nodes.
In the same year, Greenwald and Khanna [32] proposed

an algorithm on distributed models, referred to as GK04.
Unlike q-digest, GK04 does not require that all data be
fixed-universe. It maintains a collection of ε

2 -approximate
Summaries [28], denoted as Sv, in each node v in the sensor
network. More specifically, Sv = {S1v , S

2
v , . . . , S

k
v }, where

S iv covers niv elements, and S iv is classified as class(S iv) =
blog nivc. In the network, data are transmitted in the form
of Sv. When data arrives at a node, it combines its own Sv
with the coming Sv by iteratively merging Sv of the same

34590 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

class from bottom to top. Once the iteration ends, a prun-
ing algorithm is applied to S iv to reduce the number of its
tuples to log nv

ε
+ 1 at most. The pruning would bring up

the approximation error of S iv from ε′ to ε′ + ε
2 log nv

at most,
so a ε-approximate S is computed after merging Sv from all
nodes. GK04 only transmitsO(1

ε
log2 N) data, where N is the

number of all data in the network. Moreover, if the height of
the network topology is far smaller than N , Greenwald et al.
improved GK04 to reduce the total communication cost to
O(|v|

ε
logN log(h

ε
)). Its basic idea is to apply a new operation,

REDUCE, whichmakes sure that all nodes transmits less than
O(log h

ε
) Summaries, after merging and pruning.

Q-digest and GK04 are both offline algorithms that com-
pute quantiles over stationary data in distributed models.
Besides, there are also algorithms focusing on distributed
models whose nodes receiving continuous data streams.
In 2005, Cormode et al. [33] proposed a quantile algorithm
for the scenario that multiple mutually isolated sensors are
connected with one coordinator, which traces updating quan-
tiles in real time. Its goal is to ensure ε-approximate quan-
tiles at the coordinator while minimizing communication
cost between nodes and the coordinator. In general, each
remote node maintains a local approximate Summary [28]
and informs the coordinator after certain number of updates.
In the coordinator, the approximation error ε is divided
into 2 parts as ε = α + β:

• α is the approximation error of local Summaries sent to
the coordinator.

• β is the upper bound on the deviation of local Summaries
since the last communication.

Intuitively, larger β allows for large deviation, thus less com-
munication between nodes and the coordinator. But because
ε is fixed, α is smaller, increasing the size of Summaries sent
to the coordinator each time. In other words, α and β are on
the trade-off relationship. To resolve the trade-off, Cormode
et al. introduces a prediction model in each remote node that
captures the anticipated behavior of its local data stream.With
the model, the coordinator is able to predict the current state
of a local data stream while computing the global Summary
and the remote node can check for the deviation between
its Summary and the coordinator’s prediction. The algorithm
proposes 3 concise prediction models:

• Zero-InformationModel assumes that there is no local
update at any remote node since the last communication.

• Synchronous-Updates Model assumes that at each
time step, each local node receives one update to its
distribution.

• Update-Rates Model assumes that updates are
observed at each local node at a uniform rate with a
notion of global time.

Using prediction models to reduce communication times, the
total communication cost of this algorithm is O(|v|

ε2
logN).

In 2013, Yi and Zhang [34] proposed an algorithm in the
same scenario and optimized the cost to O(|v|

ε
logN). The

algorithm divides the whole tracking period into O(logN)

rounds. A new round begins whenever N doubles. It first
resolves the median-tracking problem, which can be easily
generalized to the quantile-tracking problem. Assume thatM
is the cardinality of data, fixed at the beginning of a round, and
m is the tracking median at the coordinator. The coordinator
maintains 3 data structures. The first one is a dynamic set
of disjoint intervals, each of which contains between εM

8
and εM

2 elements. The others are 2 counters C .1(L) and
C .1(R), recording the number of elements received by all
remote nodes to the left and the right of m since last update
respectively. They are guaranteed with an absolute error at
most εM

8 by asking each remote node to send an update
whenever it receives εM

8|v| elements to the left or the right of
m. When |C .1(L)−C .1(R)| ≥ εM

2 ,m is updated as follows:

1) Compute the total number of elements to the left and
the right of m, C .L and C .R and let d = 1

2 |C .L−C .R|.
2) Compute the new median m′ satisfying that
|r(m) − r(m′) − d | ≤ εM

4 , where r is the rank of
element in all data. Replacemwithm′.m′ can be found
quickly with the set of intervals. First find the first
separating element e1 of the intervals to the left of M .
Then compute n1, the number of elements at all remote
sites that are in the interval [e1,m]. If |n1 − d | ≤ εM

2 ,
e1 is m′. Otherwise find the next separating element ei
and count the number ni until |ni − d | ≤ εM

2 , then set
m′ to ei.

3) Set C .1(L) and C .1(R) to 0.

Yi et al. has proved that m is at most εM elements away from
the ground truth. Step 1 needs to exchange O(|v|) messages.
As for Step 2,m′ can be found after at mostO(1) searches and
the cost of each search is O(|v|), making the total cost O(|v|).
Because each update increases N by a factor of 1 + ε

2 , m is
updated at mostO(1

ε
) times. So, the total communication cost

isO(|v|
ε
) each round andO(|v|

ε
logN) for the whole algorithm.

III. RANDOMIZED ALGORITHMS
Generally, randomized approximate quantile algorithms are
combined with random sampling. They first sample a part
of data and compute overall approximate quantiles with
this portion. With less data taken into computation, the
computation cost is cut down. In fact, many determinis-
tic quantile algorithms propose randomized versions in this
way [30], [34], [35].

A. STREAMING MODEL
Back to 1971, Vapnik and Chervonenkis [47] proposed a
randomized quantile algorithm with space complexity of
O(1

ε2
log 1

ε
). This benchmark were raised to O(1

ε
log2 1

ε
) by

Manku et al. [35] in 1999, referred to as MRL99. MRL99
does not require prior knowledge of the data size N and
occupies less space in experiments when φ is an extreme
value. The algorithm are improved based on MRL98 [27] so
they have the identical frame with only minor differences in
the operation NEW:

VOLUME 8, 2020 34591

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

1) For each buffer, randomly select an element among r
consecutive elements.

2) Repeats this operation k times to get k initial elements.
3) Set the buffer’s weight to r .

Notice that MRL99 equals with MRL98 if r = 1. Because of
the collapsing strategy as Figure 2, the larger weight a buffer
has, the greater chance there its data must be retained while
collapsing. If r is kept consistent, the probability of newly
arrived data being selected will go down continuously. So r
should keep changed dynamically, meaning the sampling is
nonuniform. MRL99 initially sets r to 2 and traces a parame-
ter h, representing the maximum height of all buffers. When a
buffer’s height reaches h+i for the first time, where i ≥ 0, r is
doubled. By tuning h, b and k , MRL99 manages to compute
approximate quantiles with a probability of at least 1− δ.
Recalling two sliding window models in Section II-A,

Arasu et al. proposed the fact that the quantile of a random
sample of size O(1

ε2
log δ−1) is an ε-approximate quantile

of N elements with the probability at least 1 − δ. To sam-
ple elements of specific size, a fast alternative is to ran-
domly select one out of 2k successive elements, where k =
blog2 N/(

1
ε2

log δ−1)c. In this way, k grows logarithmically
along with the data stream as required, so the approximation
error and the randomization degree are guaranteed.

Another algorithm was proposed by Agarwal et al. [36],
which is based on Summaries [28]. Its basic idea is to sample
tuples from multiple Summaries and merge them to com-
pute approximate quantiles with low space complexity. There
are two situations while merging: same-weight merges and
uneven-weight merges. Same-weight merges are for merging
two Ss covering the same number of elements. It contains
following steps:

1) Combine the two Ss in a sorted way.
2) Label the tuples in order and classify them by label

parity.
3) Equiprobably select one class of tuples as the merged

result Smerged .

Assuming each S covers k elements, if we have k =

O(1
ε

√
log(1

εδ
)), the algorithm will answer quantile queries

with a probability of at least 1−δ. Uneven-weight merges are
for merging two Ss of different sizes, which can be reduced
to same-weight merges by a so-called logarithmic technique
[32]. The space complexity of the algorithm is O(1

ε
log1.5 1

ε
).

However, Agarwal et al. just proposed and analyzed the
algorithm in theory without implementation. Afterwards, Fel-
ber and Ostrovsky [37] came up with a randomized algorithm
whose space complexity is O(1

ε
log 1

ε
) but also did not realize

it. Besides, this algorithm is not actually useful but only
suitable for theoretical study because its hidden coefficient
of O is too large.

B. DISTRIBUTED MODEL
As for distributed models, Huang et al. [38] proposed a
randomized quantile algorithm which brings down total

communication cost from O(|v| log2 N
ε
) in GK04 [32] to

O(1
ε

√
|v|h), where h denotes the height of the network topol-

ogy. It contains two version: the flat model and the treemodel.
For the flat model, all other nodes are assumed to be directly
connected to the root node. The algorithm is designed as
following steps:
1) Sample elements in node v with a probability of p and

compute their ranks in v, denoted as r(a, v) where a is
a sampled element.

2) Transmit sampled elements, as well as ones from its
child nodes, to its parent node vp.

3) Find predecessors of a, denoted as pred(a, vs), in v’s
sibling nodes vs.

4) Estimate the rank of a in vs, denoted as r̂(a, vs), accord-
ing to r(pred(a, vs), vs).

5) Compute the approximate rank of a in vp as r(a, vp) =∑
r̂(a, vs)+ r(a, v).

If elements are not uniformly distributed in the network and
some nodes contain the majority, the total communication
cost will increase dramatically as the effect of load imbalance.
The algorithm resolves the problem by tuning p based on data
amount in each node:
• If the amount is greater than N/

√
|v|, p is set to 1/(εNv).

• Otherwise, p is set to 2(
√
|v|/(εN)).

The inconsistent probability of sampling makes sure that
O(1

ε
) elements are sampled at most in each node no matter

how many elements there exist at first. After transmitting
all sampled elements to the root node, the element a whose
rank r(a, vroot) is closest to bφNc is returned as the queried
quantile. For the treemodel, things becomemore complicated
for two reasons. First, an intermediate node may suffer from
heavy traffic going through if it has too many descendants
without any data reduction. Second, eachmessage needsO(h)
hops to reach the root node, leading to the total communica-
tion ofO(h

√
|v|/ε). To resolve the first problem, Huang et al.

proposed a algorithm MERGE in a systematic way to reduce
data size. As for the second problem, the basic idea is to
partition the routing tree into t connected components, each
of which has O(|v|/t) nodes. Then each component is shrunk
into a ‘‘super node’’. Now the height of the tree reduces to
t . By setting t = |v|/h, the desired space bound becomes
O(1

ε

√
|v|h).

In 2018, Haeupler et al. [39], gave a drastically faster
gossip algorithm, referred as Haeupler18, to compute approx-
imate quantiles. Gossip algorithms [48] are algorithms that
allow nodes in a distributed network to contact with each
other randomly in each round and gradually converge to get
final results. The algorithm contains two phases. In the first
phase, each node adjusts its value so that the quantiles around
φ-quantile become the median quantiles approximately. And
in the second phase, nodes compute their approximatemedian
quantiles to get the global result. Haeupler et al. proved
that the algorithm requires O(log logN + log 1

ε
) rounds

to solve the ε-approximate φ-quantile problem with high
probability.

34592 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

IV. IMPROVEMENT
So far, in the discussion about approximate quantile algo-
rithms, they are generally used with constant approximation
error and indiscriminate performance on data regardless of
data distribution. However, in some cases, we may have
known that the data is skewed [49]–[53]. In other cases, quan-
tile queries over high-speed data streams need to be updated
and answered highly efficiently [54], [55]. In addition, there
are also techniques for optimizing quantile computation with
the help of GPUs [56], [57]. This section presents several
techniques for improving the performance and efficiency of
approximate quantile algorithms in various scenarios.

A. SKEWNESS
The first algorithm is known as t-digest, proposed byDunning
and Ertl [53]. T-digest is for computing extreme quantiles
such as the 99th, 99.9th and 99.99th percentiles. Totally
different from q-digest, its basic idea is to cluster real-valued
samples like histograms. But they differ in three aspects. First,
the range covered by clusters may overlap. Second, instead of
lower and upper bounds, a cluster is represented by a centroid
value and an accumulated size on behalf of the number of
elements. Third, clusters whose range is close to extreme
values contain only a few elements so that the approximation
error is not absolutely bounded, but relatively bounded, which
is φ(1−φ). T-digest can be applied to both streaming models
and distributed models because the proposed cluster is a
mergeable structure. Themerge is restricted by the size bound
of clusters. Dunning et al. proposed several scale functions
to define the bound. The standard is that the size of each
cluster should be small enough to get accurate quantiles, but
large enough to avoid winding up too many clusters. A scale
function is

f (φ) =
δ

2π
sin−1(2φ − 1) (8)

where δ is the compression parameters and the size bound is
defined as

Wbound = f (
Wleft +W

N
)− f (

Wleft

N
) ≤ 1 (9)

where Wleft and W are respectively the weight of clusters
whose centroid values are smaller than that of the current
cluster and of current cluster. As Figure 8 shows, (8) is
non-decreasing and is steeperwhenφ is closer to 0 or 1, which
means clusters covering extreme values have smaller size,
making the algorithm more accurate for computing extreme
quantiles and more robust for skewed data.

The second algorithm, proposed by Lin et al. [51] and
elaborated by Liu et al. [52], is aimed at streaming models,
using nonlinear interpolation. The algorithm maintains two
buffers, the quantile buffer Q = {q1, q2, . . . , qm}, where
qi is the approximate φi-quantile, and the data buffer B of
size n, holding the most recent n elements. Q is estimated
from observed data and incrementally updated when B is full-
filled. In order to estimate the extreme quantiles accurately,
the nonlinear interpolation F(x), which is an approximate

FIGURE 8. Function of (8) with δ = 10.

distribution function estimated from a training set stream,
is leveraged together with B and Q to update Q.

The third algorithm was proposed by Cormode et al. [49]
for skewed data. Again, the algorithm is an improved ver-
sion of GK01 for two problems. The first problem is the
biased quantiles problem. Low-biased quantiles are the set
of elements whose rank bφiNc for i = 1, 2, . . . , log1/φ N ,
and high-biased quantiles are symmetry by reversing the
ordering relation. The definition is easy to be generalized to
approximate quantiles. The problem is computing the first k
elements in high-biased approximate quantiles. Similar with
GK01 that gi and 1i are restricted by gi +1i ≤ b2εNc, the
algorithm generalizes the restriction as gi + 1i ≤ f (ri,N),
where f (ri,N) is an appropriate function. ri is the rank of vi
equaling

∑i−1
j=1 gj. For the biased quantiles problem, f (ri,N)

is set to 2εri. The restriction is tighter than that in GK01 so
the correctness is guaranteed. Cormode et al. proved that the
space lower bound is �(1

ε
min(k log 1

φ
, log(εN))). The other

problem is targeted quantiles problem that quantiles meeting
a set of pairs T = {(φi, εi)} are required to be maintained.
In such case, f (ri,N) is set to 2εiri

φi
if φiN ≤ ri ≤ N and

2εi(N − ri)/(1− φi) if 0 ≤ ri ≤ φiN .
For problems resolved by q-digest [16] that all elements are

selected from a fixed-universe collection, Cormode et al. [50]
combined the binary tree structure in q-digest and standard
dictionary data structures [58], proposing a new deterministic
algorithm to compute biased quantiles with space complex-
ity of O(1

ε
log σ log(εN)), where σ denotes the size of the

fixed-universe collection.

B. HIGH-SPEED DATA STREAMS
In order to compute quantiles over high-speed data streams,
both computational cost and per-element update cost need to
be low. Zhang and Wang [55] proposed an algorithm for both
fixed- and arbitrary- size high-speed data streams. Let N and
n denote the number of elements in the entire data stream and
elements seen so far. For the fixed-size data streams, whereN
is given, a multi-level summary structure S = {s0, s1, . . . , sL}
is maintained, where si is the summary at level i, as shown in
Figure 9. Each element in s is stored with its upper and lower
bound of rank, rmin(e) and rmax(e). The data stream is divided
into blocks of size b = b 1

ε
log εNc and si covers a disjoint

bag Bi. Among bags, B0 contains the most recent blocks even
though it may be incomplete. The structure is maintained as
follows:

VOLUME 8, 2020 34593

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

FIGURE 9. A multi-level summary structure with L = 3.

1) Insert the new element to s0.
2) If |s0| < b, the procedure is done. Otherwise, compress

s0 to generate a sketch sc of size b b2c and send it to
level 1. COMPRESS would raise the approximation
error from ε0 to ε0 + 1

b .
3) If s1 is empty, set s1 to sc and the procedure is done.

Otherwise, merge s1 with sc and empty s0. Finally,
compress the merged s and send it to level 2.

4) Repeat the steps above until an empty si is found.

To answer quantiles, the algorithm first sorts s0 and merges
s at all levels. Then it searches the merged s and return the
element satisfying that rmin(e) ≥ r − bεNc and rmax(e) ≤
r + bεNc. As for the arbitrary-size data streams, the basic
idea is to partition the data stream into disjoint sub-streams
di with the size 2i

ε
in their arrival order, and use the algo-

rithm for the fixed-size data streams on each sub-stream
because their length is known now. The computational cost
and the per-element update cost of both algorithms are
O(N log(1

ε
log εN)) and O(log logN). Compared to GK01,

the experimental results over high-speed data streams are
reported to achieve about 200 ∼ 300x speedup.
Besides, in order to lighten the burden of massive con-

tinuous quantile queries with different φ and ε, Lin et al.
[54] proposed 2 techniques for processing queries. The first
technique is to cluster multiple queries as a single query
virtually while guaranteeing accuracy. Its basic idea is to
cluster the queries that share some common results. The
second technique is to minimize both the total number of
times for reprocessing and the number of clusters. It adopts a
trigger-based lazy update paradigm.

C. GPU
Govindaraju et al. [56] studied optimizing quantile com-
putation using graphics processors, or GPU for short.
GPUs are well designed for rendering and allow many
rendering applications to raise memory performance [59].
In order to utilize the high computational power of GPUs,
Govindaraju et al. proposed an algorithm based on sorting
networks. Sorting networks are a set of sorting algorithms
mapped well to mesh-based architectures [60]. Operations
in the algorithm, including comparisons and comparator
mapping, are realized by color blending and texture map-
ping in GPUs. The theoretical algorithm they used is GK04
[32] and by taking advantage of high computational power
and memory bandwidth of GPUs, the algorithm offers
great performance for quantile computation over streaming
models.

V. APPROXIMATE QUANTILE COMPUTATION TOOLS
Over the past decades, many off-the-shelf, open-source pack-
ages or tools for quantile computation have been devel-
oped and available to users. Some of them are based on
exact quantile computation while others implement approx-
imate quantile computation. In this section, we review such
tools, focusing on their algorithmic theories and application
scenarios.

MATLAB is a famous numerical computing environment
and programming language. It provides comprehensive pack-
ages for computing various statistics or functions. Quantiles
are included as its in-tool function.1 The function quantile
receives a few parameters, including a numerical array, the
cumulative probability and the computation kind. It computes
quantiles in either exact or approximate way. It computes
exact quantiles by the classic algorithm that uses sort. And
it implements t-digest [53] for approximate quantiles. So,
this function is suitable to compute quantiles over distributed
models, which benefit from parallel computation.

The distributed cluster-computing framework, Spark, pro-
vides approximate quantile computation since version 2.0.2

It implements GK01 and can be called in many programming
languages such as Python, Scala, R and Java. Computing on
a Spark dataframe, the function contains 3 parameters as a
dataframe, the name of a numerical column, a list of quantile
probabilities and the approximation error. Since version 2.2,
the function has been upgraded to support computation over
multiple dataframe columns.

In Java, Google publishes an open-source set of core
libraries, named as Guava.3 It includes new collection types,
graph libraries, support for concurrency, etc. Also, quantile
computation is included in its functions as median() and
percentiles(). The quantiles are exact results so the average
time complexity of its implementation isO(n) while the worst
case time complexity isO(N 2). It optimizes multiple quantile
computation on the same dataset with indexes, improving the
performance in some degree. Another package that supports
quantile computation is Apache Beam.4 It is a unified pro-
gramming model for batch and streaming data processing on
execution engines. Unlike Guava, it implements approximate
quantile computation.

The programming language, Rust,5 implements approxi-
mate quantile computation over data streams with a moderate
amount of memory. It implements the algorithms, GK01
[28] and CKMS [49], so that no boatload of information
is stored in memory. Besides, it implements a variant of
quantile computation, an ε-approximate frequency count for
a stream, outputting the k most frequent elements, with the
algorithm Misra-Gries [61], which helps with an estimation

1https://www.mathworks.com/help/stats/quantile.html
2https://spark.apache.org/docs/2.0.0
3https://github.com/google/guava
4https://beam.apache.org/
5https://www.rust-lang.org/

34594 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

of quantiles as well. As for C++, a peer-reviewed set of core
libraries, Boost, provides exact quantile computation as its
in-tool function.6

VI. FUTURE DIRECTIONS AND CONCLUSIONS
In this survey, we have presented a comprehensive survey
of approximate quantile computation. Readers who want to
know more about the performance of basic quantile algo-
rithms can read a paper by Luo et al. [23], which implements
a part of the quantile algorithms above and compares them by
experiments.

Even though approximate quantiles have been studied for
more than three decades, there is still plenty of room for
improvement. The explosion of data also brings new chal-
lenges to this field. There are many studies to resolve quantile
computation in large-scale data, but not enough. Besides, with
the development of industries, new scenarios keep appearing
so that quantile computation should be optimized specifi-
cally as well. And the evolvement of techniques brings new
direction and new potential to quantile computation. Here we
present a few future directions for quantile computation.

First, almost all quantile algorithms require at least
one-pass scan over the entire dataset, no matter it is applied
on streamingmodels or distributed models. However, at some
time, the cost of scanning the entire data is intolerable if
quantile queries are demanded to be answered in time. In such
case, only a portion of the entire dataset is permitted into
the process of the whole algorithm. This condition is more
restricted than that in existing randomized quantile algo-
rithms. Even if randomized algorithms sample a part of data
to save the space of computation, the process of sampling
requires the participation of the entire dataset, which means
that they need to scan all data once. To resolve the problem,
we need to determine the sampling methods first. Unlike
fine-grained sampling in existing randomized algorithms,
we may use coarse-grained sampling, such as sampling in
the unit of block. The method should also take the way of
storage into account. For example, if the dataset is stored
distributedly in HDFS [62], we may sample part of blocks,
avoiding scanning the entire data. The samplingmethodsmay
be exclusive, varying based on applications. After determin-
ing sampling methods, we need to consider how much data is
sampled to balance the accuracy and the occupation of time
and space. One direction is to simulate the idea in machine
learning [63] that data are trained (or sampled in our situation)
continuously until the quantile result converges.

Second, many new computation engines are being devel-
oped. They can be classified into two categories in gen-
eral. One is streaming computation engines and the other
is distributed computation engines. Streaming computation
engines, represented by Spark Streaming, Storm and Flink
[64], are aimed at real-time streaming needs with minor dif-
ference in some ways. For example, Storm and Flink behave
like true streaming processing systems with lower latencies

6https://www.boost.org/

while Spark Streaming can handle higher throughput at the
cost of higher latencies. Distributed computation engines,
represented by Spark and GraphLab [65], are designed to
analyze distributed data such as datasets with graph proper-
ties.They have their pros and cons in heterogeneous scenarios
as well. The characteristics of these enginesmay be utilized in
the implementation of algorithms. As reviewed in Section V,
only a small fraction of approximate quantile algorithms is
implemented in them such as GK01 in Spark. But many other
algorithms are still needed to be implemented and optimized
purposefully. For example, Spark [66] is a framework for
computation in distributed clusters, supporting parallel com-
putation naturally and having potential of benefitting many
quantile algorithms such as MRL98. Its streaming version,
Spark Structured Streaming [67], supports stream processing,
as well as window operations. It may help quantile algorithms
over streaming models, such as Lin SW and Lin n-of-N [29],
to be implemented in a more efficient way, even though the
theoretical complexity remains the same.Many quantile algo-
rithms are implemented with basic languages while others
are even without implementation. Transplanting them to new
computation engines is not an easy work and there is great
room for optimization.

Third, with the appearance of new specific application sce-
narios, the requirements of approximate quantile algorithms
evolve as well. For example, nowadays, more and more atten-
tion is being paid to the correlation of data, and data graph
is one way to present the correlation. In a data graph, each
edge is usually associated with a weight, representing fre-
quencies of the appearance of the correlation. One may need
to determine a threshold for pruning edges by their weights
for better performance in analysis [68], [69]. And we can use
quantiles to determine the threshold. However, unlike random
sampling in a dataset, the edges in a graph are correlated (the
frequencies of two edges connecting to the same vertex are
correlated). Maybe it is a challenge, as well as an opportunity,
to efficiently compute approximate quantiles in a correlated
data graph. Furthermore, if the graph is constrained by some
patterns [70], [71], the algorithms may be improved and
optimized correspondingly. Other cases include computing
quantiles in the Blockchain network [72]. Unlike traditional
distributed models, which have a master node and multiple
slave nodes, the Blockchain network is decentralized, making
merging quantile algorithms infeasible. Further research is
needed for computing approximate quantiles in such network.
Haeupler et al. [39], which uses gossip algorithms, provides
a good direction, but there is much more to be done.

REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann, ‘‘Profiling relational data:

A survey,’’ VLDB J., vol. 24, no. 4, pp. 557–581, Jun. 2015.
[2] Z. He, Z. Cai, S. Cheng, andX.Wang, ‘‘Approximate aggregation for track-

ing quantiles and range countings in wireless sensor networks,’’ Theor.
Comput. Sci., vol. 607, pp. 381–390, Nov. 2015.

[3] Y. Wang, S. Song, L. Chen, J. X. Yu, and H. Cheng, ‘‘Discovering condi-
tional matching rules,’’ ACM Trans. Knowl. Discovery Data, vol. 11, no. 4,
pp. 1–38, Jun. 2017.

VOLUME 8, 2020 34595

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

[4] A. Zhang, S. Song, J. Wang, and P. S. Yu, ‘‘Time series data cleaning:
From anomaly detection to anomaly repairing,’’ Proc. VLDB Endowment,
vol. 10, no. 10, pp. 1046–1057, Jun. 2017.

[5] S. Song, L. Chen, and H. Cheng, ‘‘Efficient determination of distance
thresholds for differential dependencies,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 9, pp. 2179–2192, Sep. 2014.

[6] S. Song, A. Zhang, J. Wang, and P. S. Yu, ‘‘SCREEN: Stream data cleaning
under speed constraints,’’ inProc. ACMSIGMOD Int. Conf.Manage. Data,
Victoria, Australia, 2015, pp. 827–841.

[7] S. Song, C. Li, and X. Zhang, ‘‘Turn waste into wealth: On simultaneous
clustering and cleaning over dirty data,’’ in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), Sydney, NSW, Australia,
Aug. 2015, pp. 1115–1124.

[8] S. Guha and A. McGregor, ‘‘Stream order and order statistics: Quantile
estimation in random-order streams,’’ SIAM J. Comput., vol. 38, no. 5,
pp. 2044–2059, Jan. 2009.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, ‘‘Mod-
els and issues in data stream systems,’’ in Proc. 25st ACM SIGMOD-
SIGACT-SIGART Symp. Princ. Database Syst. (PODS), Madison, WI,
USA, Jun. 2002, pp. 1–16.

[10] S. Muthukrishnan, ‘‘Data streams: Algorithms and applications,’’ Found.
Trends Theor. Comput. Sci., vol. 1, no. 2, pp. 117–236, 2005.

[11] A. Segall, ‘‘Distributed network protocols,’’ IEEE Trans. Inf. Theory,
vol. IT-29, no. 1, pp. 23–34, Jan. 1983.

[12] Y. Sun, S. Song, C. Wang, and J. Wang, ‘‘Swapping repair for misplaced
attribute values,’’ in Proc. 36st Int. Conf. Data Eng. (ICDE), Dallas, TX,
USA, Apr. 2020.

[13] F. Gao, S.-X. Song, L. Chen, and J.-M. Wang, ‘‘Efficient set-correlation
operator inside databases,’’ J. Comput. Sci. Technol., vol. 31, no. 4,
pp. 683–701, Jul. 2016.

[14] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, ‘‘Interpreting the data:
Parallel analysis with sawzall,’’ Sci. Program., vol. 13, no. 4, pp. 277–298,
2005.

[15] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and
D. Srivastava, ‘‘Holistic UDAFs at streaming speeds,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Paris, France, Jun. 2004, pp. 35–46.

[16] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, ‘‘Medians and
beyond: New aggregation techniques for sensor networks,’’ in Proc. 2nd
Int. Conf. Embedded Netw. Sensor Syst., Baltimore, MD, USA, Nov. 2004,
pp. 239–249.

[17] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, ‘‘Detecting out-
liers: Do not use standard deviation around the mean, use absolute devi-
ation around the median,’’ J. Experim. Social Psychol., vol. 49, no. 4,
pp. 764–766, Jul. 2013.

[18] S. Song, Y. Cao, and J. Wang, ‘‘Cleaning timestamps with temporal con-
straints,’’ Proc. VLDB Endowment, vol. 9, no. 10, pp. 708–719, Jun. 2016.

[19] P. Indyk, ‘‘Algorithms for dynamic geometric problems over data streams,’’
in Proc. 36th Annu. ACM Symp. Theory Comput. (STOC), Chicago, IL,
USA, Jun. 2004, pp. 373–380.

[20] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, ‘‘Time
bounds for selection,’’ J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448–461,
Aug. 1973.

[21] J. I. Munro and M. S. Paterson, ‘‘Selection and sorting with limited
storage,’’ Theor. Comput. Sci., vol. 12, no. 3, pp. 315–323, Nov. 1980.

[22] S. Mittal, ‘‘A survey of techniques for approximate computing,’’ ACM
Comput. Surv., vol. 48, no. 4, pp. 1–33, Mar. 2016.

[23] G. Luo, L. Wang, K. Yi, and G. Cormode, ‘‘Quantiles over data streams:
Experimental comparisons, new analyses, and further improvements,’’ The
VLDB J., vol. 25, no. 4, pp. 449–472, Feb. 2016.

[24] S. Ganguly and A. Majumder, ‘‘Cr-precis: A deterministic summary struc-
ture for update data streams,’’ in Proc. Combinatorics, Algorithms, Proba-
bilistic Experim. Methodologies, (ESCAPE), Hangzhou, China, Apr. 2007,
pp. 48–59.

[25] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong,
‘‘Model-driven data acquisition in sensor networks,’’ in Proc. 13th
Int. Conf. Very Large Data Bases, (VLDB), Toronto, ON, Canada,
Aug./Sep. 2004, pp. 588–599.

[26] R. Motwani and P. Raghavan, ‘‘Randomized algorithms,’’ ACM Comput.
Surv., vol. 28, no. 1, pp. 33–37, 1996.

[27] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, ‘‘Approximate medians
and other quantiles in one pass and with limited memory,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Seattle, WA, USA, Jun. 1998,
pp. 426–435.

[28] M. Greenwald and S. Khanna, ‘‘Space-efficient online computation of
Quantile summaries,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Santa Barbara, CA, USA, May 2001, pp. 58–66.

[29] X. Lin, H. Lu, J. Xu, and J. X. Yu, ‘‘Continuously maintaining quantile
summaries of the most recent N elements over a data stream,’’ in Proc.
20th Int. Conf. Data Eng. (ICDE), Boston, MA, USA: Mar./Apr. 2004,
pp. 362–373.

[30] A. Arasu andG. S.Manku, ‘‘Approximate counts and quantiles over sliding
windows,’’ in Proc. 23rd ACM SIGMOD-SIGACT-SIGART Symp. Princ.
Database Syst. (PODS), Paris, France, 2004, pp. 286–296.

[31] C. Liang, M. Li, and B. Liu, ‘‘Online computing quantile summaries over
uncertain data streams,’’ IEEE Access, vol. 7, pp. 10916–10926, 2019.

[32] M. B. Greenwald and S. Khanna, ‘‘Power-conserving computation of
order-statistics over sensor networks,’’ in Proc. 23rd ACM SIGMOD-
SIGACT-SIGART Symp. Princ. Database Syst. (PODS), Paris, France,
Jun. 2004, pp. 275–285.

[33] G. Cormode, M. N. Garofalakis, S. Muthukrishnan, and R. Rastogi,
‘‘Holistic aggregates in a networked world: Distributed tracking of approx-
imate Quantiles,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Bal-
timore, MD, USA, Jun. 2005, pp. 25–36, 2005.

[34] K. Yi and Q. Zhang, ‘‘Optimal tracking of distributed heavy hitters and
Quantiles,’’ Algorithmica, vol. 65, no. 1, pp. 206–223, Oct. 2011.

[35] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, ‘‘Random sampling
techniques for space efficient online computation of order statistics of large
datasets,’’ in Proc. SIGMOD ACM SIGMOD Int. Conf. Manage. Data,
Philadelphia, PA, USA, Jun. 1999, pp. 251–262.

[36] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi,
‘‘Mergeable summaries,’’ ACM Trans. Database Syst., vol. 38, no. 4,
pp. 1–28, Nov. 2013.

[37] D. Felber and R. Ostrovsky, ‘‘A randomized online quantile summary
in o(1/epsilon * log(1/epsilon)) words,’’ in Proc. Approximation, Ran-
domization, Combinat. Optim. Algorithms Techn. (APPROX/RANDOM),
Princeton, NJ, USA, Aug. 2015, pp. 775–785.

[38] Z. Huang, L. Wang, K. Yi, and Y. Liu, ‘‘Sampling based algorithms for
quantile computation in sensor networks,’’ in Proc. Int. Conf. Manage.
Data SIGMOD, Athens, Greece, Jun. 2011, pp. 745–756.

[39] B. Haeupler, J. Mohapatra, and H.-H. Su, ‘‘Optimal gossip algorithms for
exact and approximate quantile computations,’’ in Proc. ACM Symp. Princ.
Distrib. Comput. (PODC), Egham, U.K., Jul. 2018, pp. 179–188.

[40] K. Alsabti, S. Ranka, and V. Singh, ‘‘A one-pass algorithm for accurately
estimating quantiles for disk-resident data,’’ in Proc. 23rd Int. Conf. Very
Large Data Bases, Athens, Greece, Aug. 1997, pp. 346–355.

[41] F. Chen, D. Lambert, and J. C. Pinheiro, ‘‘Incremental quantile estimation
for massive tracking,’’ in Proc. 6th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Boston, MA, USA, Aug. 2000, pp. 516–522.

[42] R. Y. S. Hung and H. Ting, ‘‘An�(1
ε
log 1

ε
) Space Lower Bound for Finding

ε-Approximate Quantiles in a Data Stream,’’ inProc. 4th Int. Workshop
Frontiers in Algorithmics (FAW), Wuhan, China, Aug. 2010, pp. 89–100.

[43] R. Jain and I. Chlamtac, ‘‘The p2 algorithm for dynamic calculation of
quantiles and histograms without storing observations,’’ Commun. ACM,
vol. 28, no. 10, pp. 1076–1085, Oct. 1985.

[44] R. Agrawal and A. N. Swami, ‘‘A one-pass space-efficient algorithm for
finding quantiles,’’ in Proc. 7th Int. Conf. Manage. Data (COMAD), Pune,
India, Dec. 1995, pp. 28–43.

[45] M. Datar, A. Gionis, P. Indyk, and R. Motwani, ‘‘Maintaining stream
statistics over sliding windows,’’ SIAM J. Comput., vol. 31, no. 6,
pp. 1794–1813, Jan. 2002.

[46] C. Liang, Y. Zhang, P. Shi, and Z. Hu, ‘‘Learning accurate very fast
decision trees from uncertain data streams,’’ Int. J. Syst. Sci., vol. 46, no. 16,
pp. 3032–3050, Mar. 2014.

[47] V. N. Vapnik and A. Y. Chervonenkis, ‘‘On the uniform convergence
of relative frequencies of events to their probabilities,’’ in Measures of
Complexity. Cham, Switzerland: Springer, 2015, pp. 11–30.

[48] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, ‘‘Gossip algorithms:
Design, analysis and applications,’’ in Proc. 24th Annu. Joint Conf. IEEE
Comput. Commun. Societies, Miami, FL, USA,Mar. 2005, pp. 1653–1664.

[49] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, ‘‘Effective
computation of biased quantiles over data streams,’’ in Proc. 21st Int. Conf.
Data Eng. (ICDE), Tokyo, Japan, Apr. 2005, pp. 20–31.

[50] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, ‘‘Space-
and time-efficient deterministic algorithms for biased quantiles over data
streams,’’ in Proc. the 25th ACM SIGMOD-SIGACT-SIGART Symp. Princ.
Database Syst. (PODS), Chicago, IL, USA, 2006, pp. 263–272.

34596 VOLUME 8, 2020

Z. Chen, A. Zhang: Survey of Approximate Quantile Computation on Large-Scale Data

[51] Z. Lin, J. Liu, and N. Lin, ‘‘Accurate quantile estimation for skewed data
streams,’’ in Proc. IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio
Commun. (PIMRC), Montreal, QC, Canada, Oct. 2017, pp. 1–7.

[52] J. Liu, W. Zheng, Z. Lin, and N. Lin, ‘‘Accurate quantile estimation for
skewed data streams using nonlinear interpolation,’’ IEEE Access, vol. 6,
pp. 28438–28446, 2018.

[53] T. Dunning and O. Ertl, ‘‘Computing extremely accurate quantiles using
t-digests,’’ 2019, arXiv:1902.04023. [Online]. Available: https://arxiv.org/
abs/1902.04023

[54] X. Lin, J. Xu, Q. Zhang, H. Lu, J. Xu Yu, X. Zhou, and Y. Yuan, ‘‘Approx-
imate processing of massive continuous quantile queries over high-speed
data streams,’’ IEEE Trans. Knowl. Data Eng., vol. 18, no. 5, pp. 683–698,
May 2006.

[55] Q. Zhang and W. Wang, ‘‘A fast algorithm for approximate quantiles in
high speed data streams,’’ in Proc. 19th Int. Conf. Sci. Stat. Database
Manage. (SSDBM), Banff, Canada, Jul. 2007, p. 29.

[56] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, ‘‘Fast and approx-
imate stream mining of quantiles and frequencies using graphics proces-
sors,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Baltimore, MD,
USA, Jun. 2005, pp. 611–622.

[57] Y. Zhou, H. Wang, and C.-T. Cheng, ‘‘Parallel computing method of data
stream quantiles with GPU,’’ J. Comput. Appl., vol. 30, no. 2, pp. 543–546,
Mar. 2010.

[58] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA, USA: MIT Press, 1989.

[59] O. Rubinstein, D. Reed, and J. Alben, ‘‘Gpu rendering to systemmemory,’’
U.S. Patent Appl. 10 833 694, Oct. 27, 2005.

[60] K. E. Batcher, ‘‘Sorting networks and their applications,’’ in Proc. AFIPS,
Atlantic City, NJ, USA, Apr./May 1968, pp. 307–314, 1968.

[61] J. Misra and D. Gries, ‘‘Finding repeated elements,’’ Sci. Comput. Pro-
gram., vol. 2, no. 2, pp. 143–152, 1982.

[62] D. Borthakur, ‘‘HDFS architecture guide,’’ Hadoop Apache Project,
vol. 53, nos. 1–13, p. 2, 2008.

[63] C. M. Bishop and N. M. Nasrabadi, ‘‘Pattern recognition and machine
learning,’’ J. Electron. Imag., vol. 16, no. 4, 2007, Art. no. 049901.

[64] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky, ‘‘Benchmarking
streaming computation engines: Storm, flink and spark streaming,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
Chicago, IL, USA, May 2016, pp. 1789–1792.

[65] J. Wei, K. Chen, Y. Zhou, Q. Zhou, and J. He, ‘‘Benchmarking of dis-
tributed computing engines spark and GraphLab for big data analytics,’’
in Proc. IEEE Second Int. Conf. Big Data Comput. Service Appl. (Big-
DataService), Oxford, U.K., Mar. 2016, pp. 10–13.

[66] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computing with working sets,’’ in Proc. 2nd USENIX
Workshop Hot Topics Cloud Comput., Boston, MA, USA, Jun. 2010, p. 95.

[67] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, ‘‘Structured streaming: A declarative API for
real-time applications in apache spark,’’ in Proc. Int. Conf. Manage. Data
SIGMOD, Houston, TX, USA, Jun. 2018, pp. 601–613.

[68] X. Zhu, S. Song, X. Lian, J. Wang, and L. Zou, ‘‘Matching heterogeneous
event data,’’ in Proc. Int. Conf. Manage. Data IGMOD, Snowbird, UT,
USA, Jun. 2014, pp. 1211–1222.

[69] Y. Gao, S. Song, X. Zhu, J. Wang, X. Lian, and L. Zou, ‘‘Matching
heterogeneous event data,’’ IEEE Trans. Knowl. Data Eng., vol. 30, no. 11,
pp. 2157–2170, 2018.

[70] X. Zhu, S. Song, J. Wang, P. S. Yu, and J. Sun, ‘‘Matching heterogeneous
events with patterns,’’ in Proc. IEEE 30th Int. Conf. Data Eng. (ICDE),
Chicago, IL, USA, Mar./Apr. 2014, pp. 376–387.

[71] S. Song, Y. Gao, C. Wang, X. Zhu, J. Wang, and P. S. Yu, ‘‘Matching
heterogeneous events with patterns,’’ IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 8, pp. 1695–1708, Aug. 2017.

[72] G. Zyskind, O. Nathan, and A. Pentland, ‘‘Decentralizing privacy: Using
blockchain to protect personal data,’’ in Proc. IEEE Secur. Privacy Work-
shops, San Jose, CA, USA, May 2015, pp. 180–184.

ZHIWEI CHEN received the B.E. degree from the
School of Software, Nanjing University, China,
in 2018. He is currently pursuing the M.E. degree
with the School of Software, Tsinghua University,
China. His research interest includes data quality
analytics.

AOQIAN ZHANG received the B.E. degree in
computer software and the Ph.D. degree in soft-
ware engineering from the School of Software,
Tsinghua University, in 2013 and 2018, respec-
tively. He is currently a Postdoctoral Fellow with
the Data System Group, Cheriton School of Com-
puter Science, University of Waterloo.

VOLUME 8, 2020 34597

	INTRODUCTION
	DETERMINISTIC ALGORITHMS
	STREAMING MODEL
	DISTRIBUTED MODEL

	RANDOMIZED ALGORITHMS
	STREAMING MODEL
	DISTRIBUTED MODEL

	IMPROVEMENT
	SKEWNESS
	HIGH-SPEED DATA STREAMS
	GPU

	APPROXIMATE QUANTILE COMPUTATION TOOLS
	FUTURE DIRECTIONS AND CONCLUSIONS
	REFERENCES
	Biographies
	ZHIWEI CHEN
	AOQIAN ZHANG

