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ABSTRACT This manuscript considers the finite time adaptive neural tracking control problem for a class
of the nonstrict-feedback stochastic nonlinear systems with Bouc-Wen hysteresis input. During the design
process, a Bouc-Wen model is first adopted to obtain the input hysteresis phenomenon. By fusion with the
backstepping technique and the neural network approximation capability, the unknown nonlinearities are
coped with, a constructive finite time adaptive neural network control strategy is proposed. Furthermore, the
finite-time mean square stability of stochastic nonlinear systems is proved, and at last the effectiveness of
the proposed control strategy is validated by the simulations.

INDEX TERMS Bouc-Wen hysteresis, stochastic system, adaptive neural control, finite-time mean square
stability.

I. INTRODUCTION
In the wide range of practical control application, the hys-
teresis are always founded. Hysteresis characteristics are gen-
erally nondifferentiable nonlinearities and usually unknown.
Due to its nonlinear characteristics, the hysteresis in the
system always give rise to undesirable inaccuracies, reduce
the tracking control performance of the system and even
cause the instability of the system [1]. In order to han-
dle the control problems of stochastic nonlinear systems,
a series of adaptive control schemes are proposed in the lit-
erature [3]–[12] by constructing a quadratic Lyapunov func-
tion, combined with the backstepping technique presented
in [2]. Many results have been obtained in [13]–[23] for the
nonlinear systems with hysteresis. The authors in previous
references [13], [24]–[29] have studied the adaptive control
of single-input and single-output (SISO) nonlinear systems
with unknown backlash-like hysteresis. In [13], [15]–[23],
considering the backlash-like hysteresis phenomenon as a
bounded interference, the backlash-like hysteresis model was
dealt with, and some adaptive robust control techniques were
developed.In [23], the novel hysteresis inverse was acquired
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and efficiently eliminated the hysteresis effects. The sys-
tem performance was improved by taking the hysteresis into
consideration in controller design. The literatures mentioned
above have proposed some control schemes for the stochastic
nonlinear systems with hysteresis input. As a note, the results
obtained in the above schemes can only ensure system per-
formances when the time converges to be infinite.

However, in a large of practical controlled systems,
the infinite-time stability is usually not feasible. We hope
that the systems can obtain the stable performance in finite-
time, which can rapidly achieve system transient perfor-
mance. Thus, the investigation on control design for nonlinear
systems is a valuable problem. The literatures [30], [31]
have established the finite-time Lyapunov stability theorem,
based on the Lyapunov theorem, finite-time control strategies
for nonlinear systems were proposed in [34]–[48]. However,
the control results obtained in [30]–[46] are only suitable
for deterministic system. In practical system applications,
the existence of random disturbance usually leads the sys-
tems instable, which cause the above control schemes to
be unavailable. Therefore, it needs to take a further con-
sideration for the finite time stability problem of stochastic
systems. The limited time control can offer more advan-
tages, for instance, the better disturbance resistance ability
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and strong robustness [47], [48]. A rigorous restricted time
stability analysis for stochastic systems was first made by
Yin et al. for the first time and the random finite time stability
theorem was established in [49], the theory was gradually
applied to construct the finite-time control strategy for nonlin-
ear systems in [50]. The point is that the nonlinearities terms
in [49], [50]must satisfy some growth condition assumptions.
If random disturbances are unknown, the proposed finite-time
stability standard is ineffective. Therefore, in [51], which has
proposed an novel finite time stability theorem for nonlinear
systems, it removes the linear growth condition. Neverthe-
less, the hysteresis problem is not considered in the control
schemes mentioned above.

Inspired by the above related studies, this article will
develop a finite-time stabilization issue of a class of stochastic
systems with hysteresis input. We assume that the nonlin-
earities and the stochastic interference terms are unknown
in this article. By employing the approximation ability of
RBF neural network systems, a new finite-time neural control
scheme is proposed. Combining with the new finite-time
stability criterion proposed in [51], the effectiveness of the
proposed control strategy is proved. To sum up, the main
innovation points of this article can be concluded as follows.

(1) Different from the existing studies of finite-time adap-
tive control strategies, the randomness and hysteresis nonlin-
earity are taken into account in this article. The state of the
systems is unknown, and all the unknown functions contain
the whole state variables, i.e., a non-strict form.

(2) Compared with the studies of stochastic systems with
hysteresis, these control schemes are only able to guaran-
tee the infinite time stability of random nonlinear system
in theory. The control problem based on Lyapunov finite-
time stability theory is considered in this paper, which can
guarantee the stability of the system in a limited time.
Therefore, the proposed control strategy is more meaningful
in the realistic controlled system.

II. PRELIMINARY KNOWLEDGE AND
PROBLEM DESCRIPTION
A. PRELIMINARIES
In order to facilitate the later stability analysis, the necessary
basic lemmas and definitions are given in this part. Now
consider the following stochastic nonlinear system:

dx = f (x, t)dt + gT (x, t)dw, (1)

where x ∈ Rn represents the state variable, f : Rn+m → Rn,
and g : Rn+m → Rn×r are Borel measurable and continuous
in x which satisfied f (0, t) = g(0, t) = 0 for any t ≥
0; w stands for an r-dimension Brownian motion defined
on a complete probability space (2,F, {Ft }t≥0,P) with 2
denoting a sample space, F is a σ−field, {Ft }t≥0 denoting
a filtration, P representing a probability measure.
Definition 1: Corresponded with system(1), and arbitrary

functionsV (x, t) ∈ C2, we give a definition of the differential

operator of V as bellow:

LV =
∂V
∂t
+
∂V
∂x

f +
1
2
Tr{gT

∂2V
∂x2

g}, (2)

where Tr is a matrix trace.
Definition 2: If for ∀x(t0) = x0, existing the constant ε >

0, the retention time 3(ε, x0) < ∞ is to let E(|x(t)|2) < ε,
for ∀t > t0+3. The stochastic nonlinear system (1) is called
to be practical finite-time stable in mean square.
Lemma 1 (see [51]): Consider the system ζ = f (ζ, τ ), for

smooth positive definite function V (ζ ) ∈ C1, suppose the
scalars k > 0, 0 < α < 1, c > 0, the following relation can
be obtained:

LV (ζ ) ≤ −kV α(ζ )+ c, t ≥ 0. (3)

We define LV (ζ ) = f (ζ, τ ) is SGPFS.
Lemma 2 (see [52]): For xk ∈ R, k = 1, . . . , p, τ ∈ (0, 1),

we can get the following relation:( p∑
k=1

|xk |
)τ
≤

p∑
k=1

|xk |τ ≤ p1−τ
( p∑
k=1

|xk |
)τ
. (4)

Lemma 3 (see [53]): For the dynamic system:

˙̂η(t) = −κη̂(t)+ γρ(t) (5)

where κ > 0, ρ(t) ≥ 0, and γ > 0. If the η̂(t) is satisfied the
condition η̂(t0) ≥ 0, ∀t ≥ t0, we can obtain η̂(t) ≥ 0.
Lemma 4 (see [54]): For ∀p ∈ R, q ∈ R and positive scalars

γ, η, κ , the following relation holds:

|p|γ |q|κ ≤
γ

γ + κ
η|p|γ+κ +

κ

γ + κ
η
−γ
κ |q|γ+κ . (6)

Lemma 5 (see [14]): For κ ∈ [0, t] and the smooth function
h(t), if h(t) satisfies the relation as follows:∫ t

κ

h(ϑ)dϑ ≤ 0, (7)

then we can obtain h(t) ≤ 0, ∀ t ∈ [0,+∞).
Lemma 6 (see [14]): For the system χ̇ = f (χ, u) and s ∈

[0, t], if the function $ (χ (t)) ∈ C2, three constants a, b ∈
(0,+∞), and β ∈ (0, 1),κ∞− functions η1 and η2, which
satisfied the following inequalityη1(‖χ‖)≤ζ (χ (t)) ≤ η2(‖χ‖)$ (χ (t))−$ (χ (s)) ≤ −a

∫ t

s
$ β (χ (ϑ))dϑ+b(t − s),

(8)

Then, there are two constants τ > 0 and3 > 0 which satisfy
‖χ (t)‖ < τ , ∀t ≥ 3.

B. PROBLEM FORMULATION
Consider the following stochastic nonlinear system:

dxi = (xi+1 + fi(x))dt + ϕTi (x)dw, 1 ≤ i ≤ n− 1
dxn = (u+ fn(x))dt + ϕTn (x)dw,
y = x1.

(9)

where x = [x1, x2, . . . , xn]T ∈ Rn represent the state vector;
y ∈ R is a system output; fi(.) : Rn → R and ϕi(.) :
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Rn → Rr (i = 1, 2, . . . , n) represent unknown smooth
nonlinear function; u ∈ R denotes the control signal with
known direction hysteresis nonlinearity. uwill be constructed
specified in the later.

C. HYSTERESIS CHARACTERISTIC
The Bouc-Wen hysteresis model is adapted to capture the
output hysteresis phenomenon in this manscript which can
be formulated as follows

H (v) = µ1v+ µ2ς (10)

where µ1 and µ2 are known hysteresis parameters with the
same sign and µ1 satisfy the equalities:

0 < δmin ≤ µ1. (11)

where µ1 governs the direction of hysteresis model. When
µ1 > 0, the direction of the hysteresis is positive, if µ1 < 0,
the direction of hysteresis is negative. The known hysteresis
direction implies the sign of µ1 is known in this paper. v(t) ∈
R is the input of the hysteresis, ς is the auxiliary variable
which satisfied the following differential equalition:

dς
dt
=
dv
dt
− β|

dv
dt
||ς |n−1ς − χ

dv
dt
|ς |n ≡ v̇f (ς, v̇) (12)

where ς satisfies the equalities:

|ς | ≤ n
√
1/(β + χ ) (13)

D. RBF NEURAL NETWORKS
In this section, the unknown continuous function like fi(·) :
Rn → R need to be approximated by radial basis function
neural networks as the following form:

f (Z ) = W T S(Z ), (14)

where ∀Z ∈ 2Z ⊂ Rq, and denotes an input vector, W =
[w1, · · · ,wN ]T ∈ RN with N > 1 represent the weight
vector, S(Z ) = [S1(Z ), S2(Z ), . . . , SN (Z )]T denotes a basis
function vector with Si(Z ) being the Gaussian function as
follows:

Si(Z ) = exp[−
(Z − φi)T (Z−φi)

η2
], i=1, 2, . . . ,N , (15)

where φi = [φi1, φi2, . . . , φiq]T is the center of the receptive
field and η is the width of the basis function. For given
accuracy ε > 0 with sufficiently large node number N ,
the RBF NN can approximate any continuous function f (Z )
over a compact set 2z ⊂ Rq such that

f (Z ) = W ∗T S(Z )+ δ(Z ), (16)

where ∀Z ∈ 2Z ⊂ Rq, W ∗ denotes an ideal weight vector
which defined as:

W ∗ = arg min
W∈RN

{ sup
Z∈�Z
|f (Z )−W T S(Z )|},

and δ(Z ) is an approximation error satisfying | δ(Z ) |≤ ε.
Lemma 7: We denote ẑp = [z1, z2, . . . , zp]T , and S(ẑp) =

[S1(ẑp), S2(ẑp), . . . , Sq(ẑp)] are the basis function vector of a

RBF NN. Then for any positive integer k ≤ p, we can obtain
that:

||S(ẑp)||2 ≤ ||S(ẑk )||2 (17)

Remark 1: This lemma illustrates one of the characteristic
of RBF NN. We can apply it to system (9) to complete the
adaptive neural backstepping design.

This manuscript contributes to design an adaptive neural
network controller, for system(9) to make all signals in the
closed loop system are practical finite-time stable in mean
square, the output of controller will follow the designed
reference signal yd in limited time.

III. MAIN RESULT
This part aims to construct a controller for system(9) by back-
stepping. The neural network Wi(Zi) are utilized to approx-
imate unknown functions f̄ . Firstly, let θi = ‖Wi‖

2, i =
1, 2, · · · , n, θ̂i is the estimate of θi and θ̃ = θi − θ̂i as the
estimation error, then make the following transformation:{

z1 = x1 − yd ,
zi = xi − αi−1. 2 ≤ i ≤ n.

(18)

where αi−1 being an designed virtual control function con-
structed in the step i.
Step 1. For stochastic system, we can get the following

equation.

dz1 = (f1(x)+ x2 − ẏd )dt + ξT1 (x)dw. (19)

Think about the following candidate Lyapunov function:

V1 =
1
4
z41 +

1
2q1

θ̃21 , (20)

where q1 > 0 denotes a design parameter, and θ̃1 = θ1 − θ̂1.
From (2), (18), (19), differentiating V1 yields

LV1=z31(z2+α1+f1(x)−ẏd )+
3
2
z21ξ

T
1 ξ1−

1
q1
θ̃1
˙̂
θ1. (21)

Applying Young’s inequality, it is easily yielded that

3
2
z21ξ

T
1 ξ1 ≤

3

4l21
z41‖ξ1‖

4
+

3
4
l21 , (22)

z31z2 ≤
3z41
4
+
z42
4
, (23)

where l1 > 0 represents the design parameter.
Combining (22)–(23), (21) can be rewritten as

LV1 ≤ z31f1 + z
3
1α1 − z

3
1ẏd +

3z41
4
+
z42
4

+
3

4l21
z41‖ξ1‖

4
+

3
4
l21 −

1
q1
θ̃1
˙̂
θ1. (24)

where let f̄1 = f1 +
3z1
4 +

3
4l21
z1‖ξ1‖4 − ẏd , then (24) can be

rewritten as

LV1 ≤ z31 f̄1 + z
3
1α1 +

z42
4
+

3
4
l21 −

1
q1
θ̃1
˙̂
θ1. (25)
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Hence, the unknown functions f1, ξ1 are contained in f̄1,
according to (17), which illuminates the approximation abil-
ity of neural network W ∗T1 S1, so the neural network W ∗T1 S1
will be used to model it. For any given constant εi > 0, one
has

f̄1 = W ∗T1 S1(Z1)+ δ1(Z1), |δ1(Z1)| ≤ ε1, (26)

where the definitions ofW ∗T1 and S1(Z1) can be found in (16),
Z1 = [xT , yTd , ẏ

T
d ], combining the Young’s inequality, one

has:

z31 f̄1 ≤
1

2a21
z61θ1S

T
1 S1 +

1
2
a21 +

3z41
4
+

1
4
ε41. (27)

where θ1 = ||W ∗1 ||
2, it follows immediately from substituting

(27) into (25) that

LV1 ≤
3z41
4
+

1

2a21
z61θ1S

T
1 S1 + z

3
1α1 +

z42
4

+
3
4
l21 +

1
4
ε41 +

1
2
a21 −

1
q1
θ̃1
˙̂
θ1. (28)

Choose the virtual control signal and adaptive law as follows:

α1 = −k1z
4ν−3
1 −

3z1
4
−
z13

2a21
θ̂1ST1 S1, (29)

˙̂
θ1 =

q1
2a21

z61S
T
1 S1 − σ1θ̂1. (30)

where k1, r1 and σ1 are positive design parameters and
θ̂1(0) ≥ 0.
Remark 2: It is not difficult to see from the adaptive law

(30) that it satisfies the conditions of Lemma 3. Consequently,
suppose that the initial condition θ̂1(t0) ≥ 0, the θ̂1(t) ≥ 0
∀t ≥ t0. Actually, in practical situations, it is invariably ratio-
nal to select θ̂1(t0) ≥ 0, due to the θ̂1 is an estimation of θ1.
This nature will be used in subsequent design procedure.
Taking (29) and (30) into (28), we have

LV1 ≤ −k1z4ν1 +
z42
4
+

3
4
l21+

1
4
ε41 +

1
2
a21 +

σ1

q1
θ̃1θ̂1. (31)

For the term σ1
q1
θ̃1θ̂1, applys Young’s inequality, the following

holds.
σ1

q1
θ̃1θ̂1 ≤ −

σ1

2q1
θ̃21 +

σ1

2q1
θ̂21 (32)

So, (31) can be rewritten as follows:

LV1 ≤ −k1z4ν1 +
z42
4
+

3
4
l21 +

1
4
ε41 +

1
2
a21

−
σ1

2q1
θ̃21 +

σ1

2q1
θ̂21 . (33)

Let ι = 3
4 l

2
1 +

1
4ε

4
1 +

1
2a

2
1 +

σ1
2q1
θ̂21 , then

LV1 ≤ −k1z4ν1 +
z42
4
−
σ1

2q1
θ̃21 + ι. (34)

step i:

dzi= (fi(x)+xi+1−Lαi−1)dt+(ξi−
i−1∑
j=1

∂αi−1

∂xj
ξj)T dw (35)

where

Lαi−1 =
i−1∑
j=1

∂αi−1

∂xj
[fj + xj+1]+

1
2

i−1∑
p,q=1

∂2αi−1

∂xpxq
ξTp ξq

+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj +

i−1∑
j=0

∂αi−1

∂yjd
yj+1d . (36)

for ∂α0
∂xk
= 0, ∂α0

∂θk
= 0.

Now select the following Lyapunov function candidate as:

Vi = Vi−1 +
z4i
4
+
θ̃2i

2qi
(37)

where qi represents the design parameter, θ̃i = θi − θ̂i
represents the parameter error. Similarly, follow the step 1,
yields:

LVi = LVi−1 + z3i (zi+1 + αi + fi(x)− Lαi−1)−
1
qi
θ̃i
˙̂
θi

+
3
2
z2i (ξi −

i−1∑
j=1

∂αi−1

∂xj
ξj)T (ξi −

i−1∑
j=1

∂αi−1

∂xj
ξj). (38)

For the purpose of simplifying the writing of the latter
part, it can be rewritten as: 3

2 z
2
i (ξi −

∑i−1
j=1

∂αi−1
∂xj

ξj)T (ξi −∑i−1
j=1

∂αi−1
∂xj

ξj) = 3
2 z

2
i

∣∣∣∣∣∣∣∣ξi − ∑i−1
j=1

∂αi−1
∂xj

ξj

∣∣∣∣∣∣∣∣2, by adapting

the Young’s inequality, the following inequalities obtained
easily:

z3i zi+1 ≤
3z4i
4
+
z4i+1
4
, (39)

3
2
z2i

∣∣∣∣∣∣∣∣ξi − i−1∑
j=1

∂αi−1

∂xj
ξj

∣∣∣∣∣∣∣∣2 ≤ 3

4l2i
z4i

∣∣∣∣∣∣∣∣ξi − i−1∑
j=1

∂αi−1

∂xj
ξj

∣∣∣∣∣∣∣∣4
+

3
4
l2i . (40)

Taking (39) and (40) into (38), we can get the following result:

LVi ≤ −
i−1∑
j=1

(kjz4νj +
σi

2qj
θ̃j
2
)+

i−1∑
j=1

ιj +
1
4
z4i+1

+ z3i αi + z
3
i f̄i −

1
qi
θ̃i
˙̂
θi. (41)

where

f̄i = fi − Lαi−1 +
3

4l2i
zi

∥∥∥∥ξi − i−1∑
j=1

∂αi−1

∂xj
ξj

∥∥∥∥4+3
4
zi

with ki being the positive design parameters. Apparently, fi is
an unknown function of zi, and the neural networkW ∗Ti Si(Zi)
is utilized to approximate it. Since f̄i can expressed as follows
with Zi = [xT , ¯̂θi, ȳdT ]T , ȳd = [yd , y′d , . . . , y

(i)
d ]T and ¯̂θi =

[θ̃1, . . . , θ̃i]T .

f̄i = W ∗Ti Si(Zi)+ δi(Zi), |δi(Zi)| ≤ εi, (42)
123642 VOLUME 8, 2020
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with δi being the approximation error which satisfied |δi| ≤
εi, εi ≥ 0. Using the same procedure as (27), we
have

z3i f̄i ≤
1
2a2i

z6i θiS
T
i Si +

1
2a

2
i +

3z4i
4 +

1
4ε

4
i , (43)

where ai > 0, then, similar to (29) and (30), yields:

αi = −kiz
4ν−3
i −

3
4
zi −

1

2a2i
θ̂iz3i S

T
i Si (44)

˙̂
θi =

qi
2a2i

z6i S
T
i Si − σiθ̂i, (45)

where qi ≥ 0 and θ̂i(0) ≥ 0. Similar to (32), we can easily
get that

σi

qi
θ̃iθ̂i ≤ −

σi

2qi
θ̃2i +

σi

2qi
θ̂21 (46)

so substituting (43)-(46) into (41), we can obtain that

LVi ≤ −
i−1∑
j=1

(kjz4νj +
σj

2qj
θ̃j
2
)+

i−1∑
j=1

ιj +
z4i+1
4
, (47)

where ιj = 3
4 l

2
j +

1
4ε

4
j +

1
2a

2
j +

σj
2qj
θ̂2j , j = 1, 2 . . . , i.

Step n: In this procedure, the real control signal u is con-
structed. From zi = xi − αi−1, (i = 2, . . . , n), we have the
following equation.

dzn = (fn(x)+H (v)−Lαn−1)dt+
(
ξn −

n−1∑
j=1

∂αn−1

∂xj
ξj

)T
dw

(48)

with

Lαn−1 =
n−1∑
j=1

∂αn−1

∂xj
[fj + xj+1]+

1
2

n−1∑
p,q=1

∂2αn−1

∂xp∂xq
ξTp ξq

+

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj +

n−1∑
j=0

∂αn−1

∂y(j)d
y(j+1)d . (49)

So we define Lyapunov function candidate as

Vn = Vn−1 +
z4n
4
+
θ̃2n

2qn
(50)

then we can get the result easily:

LVn = LVn−1 + z3n(H (v)+ fn(x)− Lαn−1)−
1
qn
θ̃n
˙̂
θn

+
3
2
z2n(ξn −

n−1∑
j=1

∂αn−1

∂xj
ξj)T (ξn −

n−1∑
j=1

∂αn−1

∂xj
ξj), (51)

and similar to (40), we have:

3
2
z2n

∣∣∣∣∣∣∣∣ξn − n−1∑
j=1

∂αn−1

∂xj
ξj

∣∣∣∣∣∣∣∣2≤ 3
4l2n

z4n

∣∣∣∣∣∣∣∣ξn − n−1∑
j=1

∂αn−1

∂xj
ξj

∣∣∣∣∣∣∣∣4
+

3
4
l2n . (52)

Hence, the LVn can be rewritten as:

LVn = LVn−1 + z3n(µ1v+ µ2ς + fn(x)− Lαn−1)

+
3
4l2n

z4n

∣∣∣∣∣∣∣∣ξn − n−1∑
j=1

∂αn−1

∂xj
ξj

∣∣∣∣∣∣∣∣4+3
4
l2n . (53)

Then, the following equality yields:

z3nµ2ς ≤
3
4
z4n +

1
4
(µ2ς )4, (54)

From the inequalities (52), (53) and (54), the following form
yields:

LVn ≤ −
n−1∑
j=1

(kjz4νj +
σj

2qj
θ̃2j )+

i−1∑
j=1

ιj + z3n f̄n

−
3
4
z4n + z

3
nµ1v+

3
4
l2n +

1
4
(µ2ς )4 −

θ̃n
˙̂
θn

qn
. (55)

where f̄n denotes as follows:

f̄n = fn − Lαn−1 +
7
4
zn+

3z4n
4l2n

∣∣∣∣∣∣∣∣ξn−n−1∑
j=1

∂αn−1

∂xj
ξj

∣∣∣∣∣∣∣∣4. (56)

For the constant εn, the neural networks is used again to
approximate f̄n. So that

f̄n = W ∗Tn Sn(Zn)+ δn(Zn), |δn(Zn)| ≤ εn. (57)

Furthermore, applying the Young’s inequality, we have

z3n f̄n ≤
1
2a2n

z6i θnS
T
n Sn +

1
2
a2n +

3z4n
4
+

1
4
ε4n. (58)

Now, we choose the ideal control signal v and adaptation
laws as

v = −knz4ν−3n −
z3nθ̂nS

T
n Sn

2a2nδmin
, (59)

˙̂
θn =

qn
2a2n

z6nS
T
n Sn − σnθ̂n, θ̂n(0) ≥ 0 (60)

with kn > 0, an > 0 and qn > 0 represent design parameters.
Applying to Lemma 3, the following inequality holds.

z3nµ1v ≤ −δminknz4νn −
z6nθ̂nS

T
n Sn

2a2n
. (61)

So combined the (58)-(61), we can obtain that

LVn ≤ −
n∑
j=1

(kjz4νj +
σj

2qj
θ̃j
2
)+

n−1∑
j=1

ιj − δminknz4νn

+
3l2n
4
+
a2n
2
+
ε4n

4
+

(µ2ς )4

4
+
σn

qn
θ̃nθ̂n. (62)

Based on the following inequality
σn

qn
θ̃nθ̂n ≤ −

σn

2qn
θ̃2n +

σn

2qn
θ̂21 , (63)

the following result yields:

LVn ≤ −
n∑
j=1

(mjz4νj +
σj

2qj
θ̃j
2
)+

n∑
j=1

ιj +
1
4
(µ2ς )4 (64)
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where mj = kj(1 ≤ j ≤ n − 1),mn = δminkn, and ιj =
σj
2qj
θ2j +

a2j
2 +

3l2j
4 +

ε4j
4 (1 ≤ 1 ≤ n). Until now, we can conclude

the main result below.
Theorem 1: For nonlinear stochastic system (9), through

the above recursive procedure, by applying backstepping
technique and the packaged unknown function f̄n which is
approximated by neural network approximation, the con-
troller (59) together with the adaptive law (60) what we have
designed can guarantee all the signal of closed-system are
practical finite-time stable in mean square.

Proof: Consider a Lyapunov function as V = Vn. Let
m = min{mj, qj, j = 1, 2, . . . , n}, then (64) can be expressed
as follows

LVn ≤ −m
n∑
j=1

(z4νj +
θ̃2j

2qj
)+

n∑
j=1

ιj +
1
4
(µ2ς )4 (65)

If z =
∑n

j=1

˜θ2j
2qj
, χ = 1, and κ = σ, η = 1 − σ,µ = 1

σ
are

applied to Lemma 4, we get

(
n∑
j=1

θ̃2j

2qj
)σ ≤ (1− σ )σ

σ
1−σ +

n∑
j=1

θ̃j
2

2qj
(66)

Combining Lemma 2, (65) and (66), we then have

LV (Zn(t)) ≤ −4σm(
n∑
j=1

z4j
4
)σ − m(

n∑
j=1

θ̃2j

2λj
)σ + c. (67)

where c = m(1 − σ )σ
σ

1−σ +
∑n

j=1 cj +
1
4 (µ2ς )4. Then,

by applying Lemma 1, one has

LV (Zn(t)) ≤ −mV σ (Zn(t))+ c. (68)

According to Itô formula, we have

EV (Zn(t)) = EV (Zn(s))+ E
∫ t

s
LV (Zn(ϑ))dϑ

= EV (Zn(s))+
∫ t

s
E[LV (Zn(ϑ))]dϑ. (69)

where s ∈ [0, t], by using the Jessen’s inquality and (68), one
obtains

E[LV (Zn(s))] ≤ −mE[V σ (Zn(s)]+ c

≤ −m[EV (Zn(s))]σ + c. (70)

Substituting (70) into (69), yields

EV (Zn(t)) ≤ EV (Zn(s))+
∫ t

s
{−m[EV (Zn(ϑ))]σ + c}dϑ.

(71)

Therefore

EV (Zn(t))−EV (Zn(s))≤−m
∫ t

s
[EV (Zn(ϑ))]σdϑ+c(t−s).

(72)

Applying ω(t) = EV (Zn(t)), from Lemma 6, it is con-
cluded that the setting time 9 = 1

(1−σ )βm

[
(EV (Zn(0)))1−σ −

(
c

(1−β)m

)(1−σ )/σ ]
, which makes EV (Zn(t)) ≤ ρ for ∀t ≥ 9,

where ρ = 4( c
(1−β)m )

1/4σ . Using the expression of V (Zn(t)),
one has

E
( n∑
j=1

z4j
)
≤ 4E[V (Zn(t))] ≤ 4ρ, t ≥ 9. (73)

From the property of mathematical expectation, we have[
E(z2j )

]2
≤ E

(
z4j
)
≤ E

( n∑
j=1

z4j
)
≤ 4ρ, t ≥ 9. (74)

Thus

E(z2j ) ≤ 2
√
ρ, t ≥ 9. (75)

Therefore, E(|y− yd |2) ≤ 2
√
ρ, t ≥ 9. So, we can obtain

E(θ2j ) ≤ 2λmaxρ, t ≥ 9, (76)

where λmax = max{λj, 1 ≤ j ≤ n}. (75), (76) mean that the
system is practical finite-time stable in mean square.
Remark 3:Consider the stochastic nonliear system (9) with

Bouc-Wen hysteresis. From the aforementioned proof, under
the stability condition, a settling time 9 has been found and
the finite time stability has been proved. The actual controller
(59) with the adaptive laws (30), (45) and (60) can guarantee
that all the signal in the closed-loop system remain bounded
in probability, and the tracking error converges to a small
neighborhood of zero. Therefore, we will give some specific
examples to verify the effectiveness of the scheme.

IV. SIMULATION STUDY
In this section, a simulations example is given to validate the
feasibility of the proposed control programme. There is a non-
strict feedback nonlinear system model with finite-time and
hysteresis in example 1.
Example 1: The stochastic non-strict feedback nonlinear

system with hysteresis mechanism is given as:
dx1 = (0.5x1sinx2 + x2)dt + (0.5x21sinx1)dw,
dx2 = (x21cosx2 + u)dt + (x1x2)dw,
y = x1,

where x1, x2 represent the state variables, the y(t) is system
output. The u denotes the system input and hysteresis output
which can be shown as following Bouc-Wen hysteresis:

u = H (v) = µ1v+ µ2ς

dς
dt
=

dv
dt
− β|

dv
dt
||ς |n−1ς − χ

dv
dt
|ς |n (77)

where ς (t0) = 0, and the hysteresis parameters are µ1 = 3,
µ2 = 5, β = 1.5, n = 2 and χ = 0.5. The adap-
tive neural controller we designed should keep all signals
remain bounded in probability, the system output y follows
the reference trajectory chosen as yd = 1.5 sin(0.5t). Now,
to guarantee all signals are stable in a mean square for a
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TABLE 1. Design parameters.

FIGURE 1. System output y and ideal signal yd .

FIGURE 2. System state variable x2.

limited time, we consider establishing the following actual
control signal, virtual controller and the adaption laws:

α1 = −k1z
4ν−3
1 −

3z1
4
−
z13

2a21
θ̂1ξ

T
1 ξ1,

v = −k2z
4ν−3
2 −

3z2
4
−

z32
2a22δmin

θ̂2ξ
T
2 ξ2,

˙̂
θi =

qi
2a2i

z6i ξ
T
i ξi − σiθ̂i, i = 1, 2.

where z1 = x1 − yd , z2 = x2 − α1. In simulation, the initial
conditions are chosen in Table 1.

FIGURE 3. Adaptive parameters θ̂1 and θ̂2.

FIGURE 4. The actual controller u.

FIGURE 5. The tracing error yd and state x2 under three disturbance.

The following pictures 1-4 show the main results, respec-
tively. Fig.1 provides the tracking performance of the sys-
tems. Fig.2 demonstrates the system state x2. Fig.3 illustrates
the adaptive laws θ1 and θ2, and Fig.4 shows the actual
controller u.

Through the above simulation analysis, the results demon-
strate that the control signals are stable for a limited time.

In order to show the effectiveness of the proposed scheme
under different uncertain stochastic disturbance conditions,
for random variable with normal distribution dw ∼ N (0, dt),
we make simulation under three random disturbance
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FIGURE 6. The adaptive parameters θ̂1 and θ̂2 under three disturbance.

FIGURE 7. The actual controller u under three disturbance.

TABLE 2. Design parameters.

situations, where w indicates an independent standard Brow-
nian motion. In the simulation, the same design parameters
and the same initial conditions as the ones in Example1 are
used. The simulation results are displayed by Figs.5-7. From
Figs.5-7, it can be seen that the desired control performance
can be guaranteed even if the system is affected by random
disturbances.
Example 2: Consider a third-order stochastic nonlinear

system with hysteresis:
dx1 = (0.5x1sinx2 + x2)dt + (x21sinx1)dw,
dx2 = (x22cosx2 + x3)dt + (cos(x1)x2)dw,
dx3 = (x23 + u)dt + (0.5x1)dw,
y = x1,

FIGURE 8. y and yd .

FIGURE 9. The State variables x2 and x3.

FIGURE 10. The adaptive parameters θ̂1, θ̂2, θ̂3.

where x1, x2, x3 represent the state variables, the y(t) is system
output. u and the hysteresis parameters are the same as the one
in example 1. The reference signal is yd = 1.5(sin(0.5t) +
cos(t)) and the initial conditions are chosen in Table 2.

The simulation results are as Figs. 8-11. According to
the four figures show, the system output locates in a small
neighborhood of the reference signal in finite time and the
other signals are also bounded under the hysteresis input by
the proposed control scheme.
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FIGURE 11. The actual controller u.

V. CONCLUSION
In this paper, on the basis of the approximation capacity of
neural network systems and the important lemma of stochas-
tic systems finite-time stability, an novel adaptive control
scheme is proposed for a class of stochastic systems with
Bouc-wen hysteresis input. Furthermore, the finite-time sta-
bility of the adaptive system can be guaranteed by stability
analysis, and the simulation examples further proves that the
nonlinear performance will be achieved in finite time. This
control scheme will be extended to a larger class of suitable
systems with hysteresis.
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