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ABSTRACT To improve the detection of dim and small targets in infrared (IR) images containing high-
intensity cloud clutter, a novel adaptive background suppression method is proposed. By using three-
dimensional cooperative filtering and differential calculation, the different and complex background clutter
is suppressed. To obtain the optimal parameters for the background suppression algorithm, an adaptive
parameter optimization method is proposed. The adaptive parameter optimization problem is transformed
into a multiobjective optimization problem in which the signal-to-clutter ratio gain and background sup-
pression factor, which effectively reflect the background suppression performance, are chosen as the opti-
mization objectives, and the parameters of the proposed background suppression algorithm are considered
as the variables. To effectively solve the established multiobjective optimization problem, a particle swarm
parameter optimization-based method is utilized. Experimental results indicate that the proposed adaptive
background suppression method using these optimal parameters has good performance for IR images in real
complex scenes, as well as performance superior to that of other baseline methods.

INDEX TERMS Background suppression, infrared (IR) images, three-dimensional cooperative filtering,
multiobjective optimization algorithm.

I. INTRODUCTION
Detecting small targets from IR images with complex back-
grounds is a challenging task [1], [2]. Since the targets are
far from the IR detection systems, their shapes and con-
struction features are not available. In addition, the intensity
of the background clutter, such as cloud clutter, is much
higher than the noise caused by the sensor, even higher than
the intensity of the dim and small targets that need to be
detected [3], [4]. To improve the detection performance for
dim and small targets in complicated backgrounds with high-
intensity cloud clutter, an effective IR clutter background
suppression method is critical.

In general, IR image background suppression meth-
ods are classified into three types [5]: methods based on
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a spatial filter [6]–[11], methods based on a temporal fil-
ter [12]–[16] and methods based on the frequency domain
[8], [17]–[19]. The methods based on a spatial filter usu-
ally operate on pixels in a sliding window. In these meth-
ods, the background pixels are assumed to be spatially
correlated and the target pixels are different from them,
such as in the Max-Mean/Max-Median filter method [6],
the two-dimensional least mean square (TDLMS) filter
method [7], the nonparametric regression-based method [8],
the bilateral filter [9] and other human visual system-based
methods [10], [11]. The predicted IR image background
can be acquired by different spatial filters. The background-
suppressed image is obtained by subtracting the predicted
IR image background of the original image. However, when
a background with complicated clutter is constantly chang-
ing, these methods generally have a high false-positive
rate.
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Unlike the spatial filter-based methods operating on pixels
in a sliding window, methods based on a temporal filter typ-
ically utilize background trajectory features to suppress the
complicated background in the temporal domain [12], [13].
In this sort of method, the background pixels are assumed
to be stationary in the temporal domain, while the pixels
of the dim and small target are assumed to be nonstation-
ary; examples of these methods include temporal difference
projection [14], infinite impulse response [15] and the triple
temporal filter [16]. These methods can achieve good back-
ground suppression performance under some circumstances.
However, the background suppression performance for IR
images obtained for real scenes is significantly reduced
because the background of successive frame images is typ-
ically not stationary.

Furthermore, many researchers have proposed a number
of methods based on the frequency domain that have good
background suppression performance [17], [18]. Transform
domain methods first use Fourier [8], wavelet [19] or other
transforms to convert the IR image into the frequency domain
and then suppresses the background by removing the low-
frequency subband while preserving the target shape and
energy. Finally, background suppression of the IR image
is achieved by inverse transformation. Although frequency
domain-based methods have access to global resources, these
methods do not effectively suppress a complicated back-
ground when the edges of the background clutter are decom-
posed into a high-frequency subband.

In addition to the above three categories, some methods
treat background suppression as a unique denoising process
because they assume that a small target in an IR image can
be assimilated into a rare impulse noise [20], [22], [25]; an
example of such a background suppression detection method
is called detection by nonlocal means (D-NLM) [20]. The
nonlocal means (NLM) filter is a denoising algorithm based
on the principles of local regularity and self-similarity [21].
D-NLM depends on the same principles as the NLM filter to
search for similar local blocks, and an improved measure is
applied to robustly estimate backgrounds despite the presence
of small targets. On the basis of [20], a novel method based on
the block matching and 3D filtering technique (BM3D) and a
Gaussian mixture matched filter (GMMF) was proposed [4].
This method (DBM3D+GMMF) estimates the background
mean based on the output of a BM3D filter, which is one of
the most efficient denoising algorithms [23], [24]. Although
these methods have excellent background suppression per-
formance, since the temporal information is not utilized,
the small targets may be suppressed along with the compli-
cated background clutter. In contrast to the DBM3D+GMMF
method, Hu et al. [25] first used a modified NLM algorithm
and designed a new weight calculation model based on a cir-
cular mask to estimate the image background. Then, the tem-
poral information between adjacent frames was utilized to
achieve background suppression. Although these methods
that treat background suppression as a unique denoising pro-
cess have good background suppression performance, they

only utilize similar block information in a single frame image
or time information between adjacent images. In addition,
some of the parameters in these algorithms are set empirically
and cannot be adaptively set based on image information.
Therefore, when background clutter is complex and con-
stantly changing, it is difficult for these methods to accurately
estimate the background.

To make full use of the spatiotemporal information in
the image sequence and adaptively select the parameters
of the background suppression algorithm, a new adaptive
background suppression method is proposed. In our method,
we treat the small target to be detected as a rare impulse noise
and use the spatiotemporal information in the image sequence
to suppress complex background clutter. This method takes
advantage of three-dimensional cooperative filtering and
differential calculation to achieve background suppression.
Considering the subjectivity of the artificial adjustment of
background suppression algorithm parameters, we transform
the parameter selection problem into a multiobjective opti-
mization problem to get the adaptive algorithm parameters.
In a multiobjective optimization problem, we take the param-
eters of the proposed background suppression method as
the variables and the signal-to-clutter ratio gain (GSCR) and
the background suppression factor (BSF) of the background
suppression method as the optimization objectives. Then,
a method based on particle swarm parameter optimization
is used to obtain the optimal parameters of the background
suppression algorithm.

The contributions of this research are summarized as
follows:

1) An adaptive background suppression algorithm is pro-
posed. The optimization algorithm is utilized to obtain
the optimal parameters of the background suppression
algorithm.

2) For the optimization algorithm can not be effectively
applied to the practical problem, a local optimization
strategy is given in the adaptive background suppres-
sion algorithm.

Section II of this paper gives the IR image model.
In Section III, the detailed background suppression method
is explained. The formulation of a problem of optimizing
adaptive parameters is given in Section IV. Section V shows
the method of selecting adaptive parameters. Section VI
presents the experiments and analysis. Conclusions are drawn
in section VII.

II. IR IMAGE MODEL
In general, an IR image acquired in a cloudy area can be
assumed to consist of three components. These are the back-
ground component, the noise component, and the target com-
ponent. The IR image can be modeled as:

I (x, y) = T (x, y)+ B (x, y)+ N (x, y) (1)

where T (x, y) represents the target component, B (x, y)
denotes the background component, and N (x, y) is the noise
component.
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FIGURE 1. Representative IR image of small target and complex
background.

A dim and small target component T (x, y) usually occu-
pies only a few pixels in an IR image [47]. A representative
small target and complex background are given in Fig. 1.
Fig. 1 (a) shows a small target on a complicated background,
Fig. 1 (b) shows a magnified view of the target, and Fig. 1 (c)
illustrates the 3D intensity distribution of the small target and
the complicated background.

Considering that the shapes of the small targets in IR
images radiate from a center and have features similar to those
of two-dimensional (2D) Gaussian functions, many scholars
take advantage of the point spread function model to model
dim and small targets [42]. These targets can be modeled as
follows:

fT (x, y) = A · exp

{
−
1
2

[
(x − xc)2 + (y− yc)2

s2

]}
(2)

where fT (x, y) denotes the small target, A represents the peak
intensity, (xc, yc) is the position of the target center, and s
denotes the σ in the Gaussian function [10].
The N (x, y) in the image is considered to be indepen-

dent and subject to the Gaussian random distribution of
N
(
0, σ 2

)
[42], [46].

The B (x, y) in the IR image can be divided into two
states [14]:

(a) Sky: This is area A in Fig. 2. Although the change in this
area is relatively flat, the clutter source in this area is mainly
noise.

(b) Cloud: In general, cloud clutter can be separated into
two parts, the interior of the cloud and the edge of the
cloud, which are represented as area B and area C in Fig. 2.

FIGURE 2. An IR image with complicated cloud clutter. The red squares
represent the background of the different states and the yellow square is
a small target.

As the external environment changes, for example, due to
changes in meteorological conditions, the intensity of the
cloud constantly changes. In addition, the cloud clutter also
includes regions of abnormally high intensity, as shown by
area D in Fig. 2. Due to the specific solar incident angle
and the anomalous distribution of ice particles in the cloud,
the intensity of this region is significantly higher than those of
other regions, with a shape similar to that of the small target.

III. PROPOSED IR IMAGE BACKGROUND SUPPRESSION
METHOD
In this section, first, the inspiration for the proposed method
is described. Then, a cloud clutter suppression method using
spatiotemporal information in an image sequence is intro-
duced. Finally, a noise suppression method is given.

A. THE INSPIRATION FOR THE PROPOSED METHOD
Since IR images in the same sequence are acquired by the
same IR detector and the sampling interval of the image
sequence is very short, the image backgrounds of successive
frames are similar. A set of continuous IR images with a
complex background is given in Fig. 3.

FIGURE 3. An IR image sequence for a real scene.

In our method, as in methods in the related literature
[20], [22], [25], the small target is regarded as a rare impulse
noise, and the background suppression method is also consid-
ered to be a unique denoising process. In the related literature,
the information from similar blocks in a single frame image
and the temporal information between adjacent images are
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FIGURE 4. The inspiration for the three-dimensional cooperative filter in our method.

utilized for background suppression. Inspired by these meth-
ods, first, successive multiframe images are treated as similar
blocks in our method. Then, these similar blocks are filtered
by three-dimensional cooperative filtering.

Three-dimensional cooperative filtering is a step in the
BM3D algorithm [23]. The BM3D algorithm performs well
compared with other algorithms in the field of image denois-
ing. In a BM3D filter, many of the most similar patches in
an image are first searched and then sorted into different
groups. The noise in the different groups is then suppressed
by cooperative filtering. Finally, all similar denoised blocks
are weighted, and the denoised image is obtained.

The inspiration process of the three-dimensional cooper-
ative filter in our method is given in Fig. 4. It can be seen
that the BM3D filter first searches for similar patches in an
image and then filters those patches with three-dimensional
cooperative filtering [23], [24]. The image of the person with
a camera is a noisy image from [23]. Inspired by the related
works [20], [22], [25] and the BM3D filter, in our method,
successive multiframe images in an image sequence are first
treated as similar blocks, and then these similar blocks are
filtered by three-dimensional cooperative filtering.

After filtering these consecutive multiframe images,
the images that only contain B (x, y) andN (x, y) are obtained
via the original image and the corresponding filtered differ-
ence calculation. The complicated cloud background of the
images is suppressed through this process.

B. THE CLOUD CLUTTER SUPPRESSION METHOD
Unlike the method of constructing the 3D matrix of similar
blocks in the BM3D filter, the 3D image matrix used in our
method is integrated by continuous frame images, because
these continuous images have a similar background.

The 3D image matrixM
r×c×Nf
o is composed of continuous

original images, where r×c denotes the size of these images,
and Nf denotes the frame of the images. After M

r×c×Nf
o

is integrated, the 2D image blocks in M
r×c×Nf
o are trans-

formed to the frequency domain using a 2D Fast Fourier
Transform (FFT). Then, the third dimension of M

r×c×Nf
o is

digitally transformed using a 1D FFT. After the two FFTs,
the transformed M

r×c×Nf
o is hard thresholded. Specifically,

the coefficients in the transformed M
r×c×Nf
o that are smaller

than the cooperative hard threshold ϒ (·) will be defined to
zero. Finally, the 3D image matrix M r×c×Nf processed by
three-dimensional cooperative filtering is acquired after the
1D Fast Fourier inverse transform and the 2D Fast Fourier
inverse transform of the 3D matrix. The expression for the
filtering process is given in Eq. (3):

M r×c×Nf = F−1
(
ϒ
(
F
(
M

r×c×Nf
o

)))
(3)

where F−1 (·) denotes the 1D inverse FFT and the 2D
inverse FFT. F (·) stands for the 1D FFT and the 2D FFT.
ϒ (·) denotes a collaborative hard-thresholding for xx; it can
be expressed as:

ϒ(xx) =

{
xx, otherwise
0, if |xx| ≤ T

(4)

where T is the filter threshold.
After M

r×c×Nf
o is processed by three-dimensional cooper-

ative filtering, the cloud clutter-suppressed image is obtained
by using a differential calculation between the filtered image
and its corresponding original image. This process can be
described as:

Ics (i) = I (i)− If (i) (5)

where If (i) is the ith frame image after the three-dimensional
cooperative filtering on M r×c×Nf , I (i) ∈ M

r×c×Nf
0 denotes

the corresponding original image of If (i), and Ics (i) repre-
sents the cloud clutter-suppressed image.

These images, which contain only the noise component,
are obtained by filtering the continuous multiframe images
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and by the differential calculation. The small target, assumed
to be a rare impulse noise, is included in the noise component
of the image. The complicated cloud clutter can be suppressed
through this process.

C. NOISE SUPPRESSION FOR THE CLOUD
CLUTTER-SUPPRESSED IMAGE
After cloud clutter suppression, only noise and a small part of
the single frame image are left. Since the noise in the images
is subject to the distribution of N

(
0, σ 2

)
, after stacking Nf

frame sequence images and performing mean filtering on
them, the standard deviation σ of the noise will become√
σ 2
/
Nf . The process of stacking and averaging filtering on

multiframe images can suppress image noise.
The process of stacking Nf continuous frames Ics can be

expressed as:

Iac =
Nf−1∑
nt=0

Ics (nt) (6)

where Iac denotes the stacked image and Ics (nt) represents
the nt th cloud clutter-suppressed image.
Then, mean filtering is applied to the stacked image Iac.

This process can be expressed as:

Iam = Iac
/
Nf (7)

where Iam both denotes the cloud clutter-suppressed image
after image noise suppression and represents the final image
with background suppression.

After stacking and mean filtering on the successive mul-
tiframe cloud clutter-suppressed images, the noise of Iam is
reduced to 1

/√
Nf of the noise of I . This process achieves

image noise suppression, which can be expressed as:

I : NI (x, y) ∼ N
(
µ, σ 2

)
(8)

Iam : NIam (x, y) ∼ N
(
µ, σ 2/Nf

)
(9)

where µ and σ represent the gray mean and standard devia-
tion of the neighboring area, respectively.

The background suppression method is considered to be
a unique denoising process in the proposed method, and
small targets are taken as a rare impulse noise in each image.
The complex cloud background clutter of the IR image is
first suppressed by three-dimensional cooperative filtering
and differential calculation. Then, stacking and mean fil-
tering are applied to the images with cloud clutter back-
ground suppression. Finally, the background suppression of
the IR image is realized. The proposed method is described
in Algorithm 1, where F2D (·) denotes the 2D FFT and F1D (·)

represents the 1D FFT. Similarly, F−12D (·) denotes the 2D
inverse FFT, and F−11D (·) is the 1D inverse FFT. F (Imid )
denotes the result of performing F2D (·) and F1D (·) on Imid ,
and Imid ∈ M

r×c×Nf
0

Algorithm 1 Method for Suppressing Complex Background
Clutter
Input: Nf continuous frames of IR images.
Output: Background-suppressed images.
1: Apply F2D (·) and F1D (·) to M

r×c×Nf
0 .

2: Perform ϒ (·) on F (Imid ).
if (|F (Imid )| ≤ T )

set F (Imid ) to 0;
else set F (Imid ) = F (Imid )
end if
4: Obtain If (i) ∈ M r×c×Nf via F−12D (·) and F

−1
1D (·).

5: Use differential calculation on If (i), and obtain the
cloud clutter-suppressed images Ics.

Ics (i) = I (i)− If (i)

6: Stack the Nf frame cloud clutter-suppressed images.

Iac =
Nf−1∑
nt=0

Ics (x, y, nt)

7: Perform mean filtering on the stacked image Iac.

Iam = Iac/Nf

8: Obtain the background-suppressed image Iam.

IV. FORMULATION OF THE PROBLEM OF OPTIMIZING
ADAPTIVE PARAMETERS
In the proposed IR image background suppression method,
there are two parameters, the number of frames Nf and
the filter threshold T , which are mutually constrained. It is
assumed that the background suppression algorithm param-
eters obtained by manual adjustment are not optimal and
are subjective. Therefore, to acquire the optimal parameters,
we use an adaptive method to select parameters and transform
the adaptive parameter selection method into a multiobjective
optimization problem.

A. VARIABLES
In this multiobjective optimization problem, there are two
variables: the number of frames Nf and the filter threshold
T of the proposed background suppression algorithm.

The number of frames Nf is a crucial parameter. Its
size has an impact on the computational complexity and
background suppression performance of the background
suppression method. As Nf increases, more interframe spa-
tiotemporal information is used, which means the back-
ground suppression performance is improved, however the
computational complexity of the algorithm increases. As Nf
decreases, the computational complexity of the proposed
method decreases; however, the background suppression per-
formance of the algorithm also decreases.

The filter threshold T in our method determines the perfor-
mance of cloud clutter background suppression. When T is
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FIGURE 5. The background suppression results of two real image sequences. The dim target is represented by the red rectangle, and a
representative example of residual noise is represented by the green oval.

smaller, B (x, y) and N (x, y) will not be filtered out. When
choosing an appropriate T , the images of cloud clutter back-
ground suppression will only contain N (x, y) and part of
B (x, y). When T is larger, there will be a large amount
of residual background clutter in the filtered images. The
experimental results based on two sets of IR image sequences
are shown in Fig. 5. The representative images in each IR
image sequence are presented in the first column of Fig. 5.
Each frame includes complex backgrounds and a small tar-
get, and the size of each frame is 256 × 318 pixels. The
background suppression results obtained by filtering the two
image sequences using different thresholds are shown in the
three columns on the right side of Fig. 5. In Fig. 5, (A) and (B)
are representative frames from two real image sequences and
(A1) and (B1) denote the resulting images when the threshold
is T = 80. (A2) and (B2) are the resulting images when
T = 110. (A3) and (B3) denote the resulting images when
T = 140.

The optimal algorithm parameters are based on the premise
that our method has optimal background suppression per-
formance. However, the size of Nf and the size of T in
our method influence each other, so we use an optimization
algorithm to get the most appropriate algorithm parameters.
In the optimization algorithm, the two parameters Nf and
T are considered as variables and are optimized to obtain
optimal background suppression performance. Each variable
in the background suppression algorithm has its own bounds,
which can be expressed as:{

Nmin ≤ Nf ≤ Nmax, Nf ∈ N ∗

Tmin ≤ T ≤ Tmax
(10)

where [Nmin,Nmax] and [Tmin, Tmax] denote the bounds on the
size of Nf and the size of T in the background suppression
method, respectively. N ∗ is the set of positive integers.

B. OPTIMIZATION OBJECTIVES
To objectively evaluate the background suppression perfor-
mance, we use two metrics,GSCR and BSF. They are the most
commonly used indicators [50]. And they are also important
indictors to final detection performance [51]. These metrics
not only objectively reflect the performance of different back-
ground suppression methods but also indicate their target
enhancement abilities. The larger the values ofGSCR andBSF,
the more easily small targets are detected [50], [51].

The definition of GSCR is as follows:

GSCR =
SCRout
SCRin

(11)

where SCRin is the signal to clutter ratio of the images before
background suppression, and SCRout is the signal to clutter
ratio of the images after background suppression. The SCR is
defined as follows:

SCR =
|µt − µb|

σb
(12)

where µt and µb denote the average pixel value in the target
area and the neighboring area, respectively. In addition, σb
is the standard deviation of the neighboring area. As shown
in Fig. 6, a is the width of the small target, and b is the length
of the small target. We set d = 15 [46].
BSF is another evaluation metric, and it can be defined as:

BSF =
Cin
Cout

(13)

where Cin represents the standard deviation of the images
before background suppression, and Cout represents the stan-
dard deviation of the images after background suppression.

Because these two metrics can effectively reflect the per-
formance of the background suppression algorithm, they are
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FIGURE 6. A small target and its neighboring area.

used as the optimization objectives for the optimization algo-
rithm. After optimizing the variables, the maximum BSF and
maximum GSCR values of the IR images are obtained.
The parameter selection problem can be transformed into

a multiobjective optimization problem, and the optimization
objectives can be established as:max objGSCR = max

(
|µoutt −µ

out
b |

σ outb
·

σ inb∣∣µint −µinb ∣∣
)

max objBSF = max
(
Cin
Cout

) (14)

where objGSCR and objBSF denote GSCR and BSF , respec-
tively.

C. THE LOCAL OPTIMIZATION STRATEGY
In the adaptive background suppression algorithm, the values
of BSF and GSCR are selected as the objectives of opti-
mization. In contrast to the BSF value obtained from the
gray value change of the whole image, the value of GSCR is
obtained by numerical calculation on a certain point and its
neighboring area in the IR image. An ideal point for obtaining
the maximum GSCR value is a small target point. However,
the position of the small target in the IR image is uncertain
when calculating the value of the GSCR in the optimization
algorithm. Therefore, we present a novel local optimization
strategy to select the appropriate point for the largest GSCR
value.

Since the characteristics of the small target accord with the
point spread function model, our local optimization strategy
is to find a point in the whole image that fits the point spread
function model and optimize the filter algorithm parameter
corresponding to the point. This process is actually equivalent
to optimizing a small target, because the optimized point
and the small target have characteristics that satisfy the point
spread function model. The Laplacian of Gaussian (LOG)
filter can be used to detect signals that conform to the point
spread function model. In reference [10], the LOG filter is
used to detect small targets. The LOG filter is defined:

LOG (x, y, s) =
1
πs4

[
1−

x2 + y2

2s2

]
e−

x2+y2

2s2 (15)

Therefore, we applied the LOG filter to the original IR
images. The process of using the LOG filter can increase the
signal intensity of the target and the points having the same
features as the target. After the filtering process, the maxi-
mum point spread function value in the image is found, and
the coordinates corresponding to this value are utilized to
obtain the maximum GSCR value.
Using this strategy in the optimization algorithm, even if

we do not know where the real target is, we can obtain the
point that is consistent with the small target features and
use that point to get the maximum GSCR value, which is
equivalent to the optimization of the real target. The proposed
local optimization strategy is described in Algorithm 2

Algorithm 2 Method for Selecting the Point for the Largest
GSCR Value
Input: The original IR images.
Output: The coordinates of the appropriate point for cal-
culating the maximum GSCR value.
1: Apply the LOG filter on the original IR imagesMori.

MLOG = LOG (Mori)

2: Obtain the LOG filtered imageMLOG.
3: Find the maximum value max (MLOG) in MLOG.
4: Get the coordinates of the max (MLOG) point in the
image.
5: Use the coordinates to calculate the maximum GSCR
value.

V. ADAPTIVE PARAMETER SELECTION METHOD
In the filtering algorithm, the setting of the algorithm parame-
ters is often crucial [26]. Since the algorithm parameters can-
not be adaptively changed according to the processing object,
the performance of the algorithm will be degraded [27].
For example, in threshold parameter settings, hard and soft
thresholds are commonly used, but they may easily cause
image distortion [27], [28]. Therefore, attention has been
drawn to exploring adaptive filtering methods. With the
development of evolutionary algorithms, more and more
denoising algorithms use evolutionary algorithms to obtain
adaptive filtering methods [29]. In particular, the particle
swarm optimization (PSO) algorithm is commonly utilized,
because it has the characteristics of fast convergence and
easy implementation [33]. Therefore, many adaptive filtering
algorithms were proposed based on PSO [37]–[42]. These
methods are widely used in different fields to denoise satellite
cloud images [38], speech signals [39], electromagnetic radi-
ation field signals [40], electroencephalogram signals [41],
and so on; they have excellent denoising performance.

In our method, to achieve adaptive selection of filter
parameters, a PSO algorithm is used. In this section, we first
give a brief introduction to the PSO algorithm, then describe
the concept of Pareto optimality and the procedure of the knee
point selection method. Finally, the algorithm for the adaptive
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parameter selection method based on MO_Ring_PSO_SCD
is given.

A. A BRIEF INTRODUCTION TO THE PSO ALGORITHM
To better present the basic idea of the adaptive filtering algo-
rithm based on the intelligent algorithm in parameter selec-
tion, we first briefly describe the PSO algorithm. The PSO
algorithm is based on a population, and it can be modeled by
the social behavior of birds within a flock [34], [35]. It is able
to solve multiobjective optimization problems and is espe-
cially effective. First, a particle is initialized with a position
vector and a random velocity. In this method, the historically
best position of the particle is represented as pbest , and the
historically best position of its neighborhood is denoted by
nbest . At each iteration, in accordance with pbest and nbest ,
the particle’s position is updated from the starting position
to a better area. The update for each particle in the swarm is
based on the following equations:

Exi(t) = Exi(t − 1)+ Evi(t) (16)

and

Evi(t) = ωEvi(t − 1)+ C1r1(Expbesti − Exi(t))

+C2r2(Exnbesti − Exi(t)) (17)

where Evi(t) is the velocity of the tth generation’s particle pi,
Exi(t) represents the position of particle pi in the tth generation,
r1 and r2 denote uniformly generated random values, C1
and C2 are constants utilized to stabilize exploration and
exploitation processes, and ω is the inertia weight.
In our previous work, a new multiobjective particle swarm

optimization algorithm with ring topology and a special
crowding distance was proposed, which was abbreviated as
MO_Ring_PSO_SCD. In this method, first, the personal best
archive (PBA) and the neighborhood best archive (NBA)
are built, and then pbest and nbest are selected from PBA
and NBA. Multiple niches are induced by the designed ring
topology. The results of testing on eleven multimodal and
multiobjective test functions demonstrate that the algorithm
outperforms other algorithms in decision space distribution.
For more details about the MO_Ring_PSO_SCD method,
please refer to [36].

In this paper, considering that the proposed background
suppressionmethod is a practical problem, there is no specific
mathematical model for this problem, and it is difficult to
define the problem as a single-mode problem. Therefore,
in order to guarantee the diversity of the obtained background
suppression method parameters, the MO_Ring_PSO_SCD
method—which can effectively solve multimodal, multiob-
jective problems—is applied to select the optimal param-
eters for the background suppression filtering algorithm.
The application of the MO_Ring_PSO_SCD method in the
selection of background suppression algorithm parameters is
described in Algorithm 3.

Algorithm 3 The MO_Ring_PSO_SCD-Based Adaptive
Parameter Selection Method

1: Select the parameters Nf and T of the background
suppression algorithm and provide a constraint range for
these parameters, as described in Section IV.
2: Initialize the population and the number of particlesM ;
then, determine the acceleration coefficients (C1 and C2)
and inertia weightW .
3: Select BSF and GSCR as the fitness function, and assess
the fitness values of each particle.
4: Update the position and velocity of each particle accord-
ing to Eq. (16) and Eq. (17).
5: Update PBA and NBA.
6: Determine whether the number of evaluations has
reached the maximum
if (the number of evaluations has reached the maximum)

Terminate the iteration process;
else
Return to Step 3.
end if

7: Get the final PS.
8: Select the final result by using the knee point selection
method.
9: Obtain the optimal background suppression parameters
Nf and T corresponding to the final result.

B. THE CONCEPT OF PARETO OPTIMALITY
In contrast to a single-objective optimization problem, the
solution set of a multiobjective optimization problem con-
tains several different global solutions. Before choosing the
appropriate global solution, some crucial definitions often
utilized in multiobjective optimization problems need to be
introduced [44].

Generally, a multiobjective optimization problem that
includes m objectives can be expressed as:

M inF (x) = ( f1 (x) , f2 (x) , . . . , fm (x)) (18)

Definition 1 (Pareto Dominance): When the solution x
satisfies the condition of Eq. (19), it is said to dominate
another solution z. This condition can be written as x � z.

∀k ∈ {1, 2, . . . ,m} , fk (x) ≤ fk (z) , ∧ ∃k, fk (x) < fk (z)

(19)

Definition 2 (Pareto-Optimal Set): If no other solution z
satisfies z � x, then the solution x is called a Pareto-optimal
solution. A Pareto-optimal set (PS) is composed of all the
Pareto-optimal solutions.
Definition 3 (Pareto Front): The Pareto-optimal front PF

denotes the mapping of the PS in the objective space. The PF
can be expressed as:

PF = {F (x) |x ∈ PS } (20)
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C. THE PROCEDURE FOR THE KNEE POINT SELECTION
METHOD
Considering that the parameter selection method based on
the MO_Ring_PSO_SCD method is a multiobjective opti-
mization algorithm, its solution set includes several different
Pareto-optimal solutions. However, for IR image background
suppression algorithms, one solution should be chosen from
the PS. In addition, the background suppression method
needs to perform better at enhancing the target signal and
suppressing the background; that is, it needs GSCR and BSF
to have larger values at the same time. Better performance
better enables the proposed background suppression method
for small target detection systems.

In general, the knee point in PF is considered to be
the best choice for the solution. The knee point selection
method used in this paper is the distance to the extreme
line method [45]. Because the point with the largest corner
is to slightly improve the point where one target will cause
deterioration of another target, this special critical point is
chosen as the knee point.

FIGURE 7. The distance to the extreme line method. The red star (point
4) is the knee point.

The process for the distance to the extreme line method
is shown in Fig. 7. First, two extreme points are selected,
namely, point 1 and point 8 in Fig. 7, since point 1 and point 8
have the maximum values in the objective functions f1 and f2,
respectively.

Then, the extreme line is determined from the coordinates
of the two extreme points. The limit line can be defined as:

Ap+ Bq+ C = 0 (21)

where A, B, C , p and q are the parameters of the extreme line.
Finally, as given in Eq. (22), the distance from each point

on the PF to the limit line is obtained, and the point with the
largest distance is selected as a knee point.

di =
|Api + Bqi + C|
√
A2 + B2

(22)

where di denotes the distance.

D. THE MO_RING_PSO_SCD-BASED ADAPTIVE
PARAMETER SELECTION METHOD
After briefly introducing the multiobjective optimization
problem constructed in this paper, the MO_Ring_PSO_SCD
algorithm and the knee point selection method, we summa-
rize the application of the MO_Ring_PSO_SCD algorithm in
adaptive parameter selection for the background suppression
algorithm, as follows:

In summary, this paper uses an intelligent optimiza-
tion algorithm to optimize the parameters of the back-
ground suppression algorithm and thereby obtain the optimal
parameters in different sequences and the best background
clutter suppression performance. The framework of the
proposed adaptive background suppression method is shown
in Fig. 8.

VI. EXPERIMENTS AND ANALYSIS
In this section, we first present the experimental images
and baseline methods. Then, the settings of parameters are
discussed. Finally, the effectiveness and practicability of our
method are proved by using experimental images.

A. EXPERIMENTAL IMAGES AND BASELINE METHODS
The real IR image sequences used in our paper are obtained
by an IR detector. The relevant information about the IR
detector is listed in Table 1. There are eight sets of IR
image sequences that are utilized as experimental images.
These images contain a complicated cloudy background and
a dim target. The details of the eight sequences are displayed
in Table 2. The size of these images is 256 × 318 pixels.
The representative images for these eight image sequences
are illustrated in Fig. 10.

TABLE 1. Related information on the IR detector.

To prove the robustness of our proposed method, we uti-
lize some baseline methods, including the Max-Mean
and Max-Median methods [6], the TDLMS method [7],
Kim’s method [10], the 3DCF method [46], and the
DBM3D+GMMF method [22]. The principal parameter set-
tings of the different baseline methods are shown in Table 3.

B. THE SETTINGS OF PARAMETERS
1) THE PARAMETER SETTINGS FOR THE OPTIMIZATION
METHOD
In the multiobjective optimization method, the range of the
uniformly generated random values r1 and r2 is [0, 1]. The
constants C1 and C2 are used to ensure a balance between
the exploration and the exploitation processes. We set C1 =

C2 = 2.05 in our paper. The inertia weight ω is set to
0.7298. The settings for these parameters in the multiobjec-
tive optimization method are the same as those in references
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FIGURE 8. The flowchart for the adaptive background suppression method. The orange rectangle indicates the
target.

TABLE 2. The details of the eight IR image sequences.

[35], [36], [43], [48], [49]. Based on our previous work [46]
and the complexity of the optimization algorithm, Nf is con-
strained to [2, 9], and T is constrained to [60, 140].

Through the proposed local optimization strategy, we can
acquire some points as targets and use them to obtain the
value ofGSCR in the optimization algorithm. The positions of
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FIGURE 9. The PF of eight experimental image sequences processed by the multiobjective optimization algorithm. A- H in the figure denote the PF
corresponding to image sequence 1 through image sequence 8, respectively. The red stars denote the selected points.

TABLE 3. The principal parameter settings of the different baseline
methods.

these points in eight experimental image sequences are shown
in Table 4. (mm, nn) denote the coordinates of the points.

2) THE PARAMETER SETTINGS FOR THE BACKGROUND
SUPPRESSION ALGORITHM
In this section, to prove the effectiveness of the designed
multiobjective optimization model, Nf and T are obtained
for different image sequences according to the multiobjective
optimization model. Here, eight sets of image sequences
with different complex backgrounds are considered, and each
sequence is tested by an evolution process with 100 initial
particles and 50 iterations. The more suitable solution is
selected from the PF obtained by the evolution process of
the multiobjective optimization algorithm. The PFs of the
optimal solutions for the eight experimental image sequences
are shown in Fig. 9.

On the basis of the method of the distance to the extreme
line, and the principle that the selected knee point corre-
sponds to a smaller Nf , these knee points are selected; the
background suppression algorithm parameters corresponding
to the selected points are also given in Table 5. The value
of GSCR in the table is the value calculated from the point
obtained by LOG filter.

It can be seen from the Nf and T corresponding to
the selected points that some of the eight different image
sequences have relatively large Nf values, indicating that the
image background of these sequences is more complicated.
These image sequences also have smaller values of GSCR
and BSF obtained by the optimization algorithm than image
sequences with smaller Nf values.

C. CONTRAST EXPERIMENTS
After selecting Nf and T for the different image sequences,
the background suppression performance of the proposed
method is compared with these different baseline methods.
According to Table 2, the eight experimental image sequences
in the contrast experiment have different background fea-
tures, including the image noise level and the intensity of
the background clutter, so the difficulty of background sup-
pression varies for different image sequences. Fig. 10 shows
the background suppression results for different background
suppression methods; these background-suppressed images
come from eight different IR image sequences. From these
figures, we can see that our method has better background
suppression performance than the comparison algorithms
in different complex backgrounds. In addition, there is
more background clutter residual in the results of the Max-
Mean method, the Max-Median method, Kim’s method and
Shao’s method. Moreover, the DBM3D+GMMF method,
the 3DCF method and the TDLMS method achieve bet-
ter clutter suppression performance, especially in image
sequence 4.
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TABLE 4. The Position of the points in eight experimental image sequences.

TABLE 5. The selected points in the PF for the eight experimental image sequences.

FIGURE 10. Background suppression results of different methods for eight IR image sequences. The first column shows the representative frame of each
of the eight sequences. The dim target is represented by the red rectangle, and the representative example of noise is indicated by a yellow circle.

To further compare the background suppression perfor-
mance of the different algorithms, the 3D intensity distribu-
tion of the background suppression results for the different
algorithms in Fig. 10 are illustrated in Fig. 11. We can see

from Fig. 11 that image sequence 4 and image sequence
5 have stronger target intensity and lower background com-
plexity. Different background suppression methods have the
least residual noise and the best background suppression per-
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FIGURE 11. The 3D intensity distribution of the background suppression results of different methods for eight IR image sequences. A1-A8 denote the 3D
intensity distribution of the representative frames of the eight experimental image sequences, respectively. B1-B8 represent the 3D intensity distribution
of the results of our method in the eight image sequences, respectively. C1-AC represent the 3D intensity distribution of the results of the Max-Mean
method in the eight image sequences, respectively. D1-D8 represent the 3D intensity distribution of the results of Max-Median method in the eight image
sequences, respectively. E1-E8 represent the 3D intensity distribution of the results of the TDLMS method in the eight image sequences, respectively.
F1-F8 represent the 3D intensity distribution of the results of Kim’s method in the eight image sequences, respectively. G1-G8 represent the 3D intensity
distribution of the results of the 3DCF method in the eight image sequences, respectively. H1-H8 represent the 3D intensity distribution of the results of
the DBM3D+GMMF method in the eight image sequences, respectively. The small targets are indicated by red ovals.

formance for these images. At the same time, the target inten-
sity of image sequence 1 and image sequence 2 is moderate,
and their background complexity is also moderate. Therefore,
different background suppression methods have less residual
noise and better target enhancement performance in these
image sequences. Furthermore, image sequence 3, image

sequence 6, image sequence 7, and image sequence 8 have
lower target intensity and higher background complexity.
Therefore, in these four image sequences, the baseline meth-
ods have more residual noise and worse background sup-
pression performance. Although the background complexity
varies for different image sequences, our proposed method
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FIGURE 11. (Continued.) The 3D intensity distribution of the background suppression results of different methods for eight IR image
sequences. A1-A8 denote the 3D intensity distribution of the representative frames of the eight experimental image sequences,
respectively. B1-B8 represent the 3D intensity distribution of the results of our method in the eight image sequences, respectively.
C1-AC represent the 3D intensity distribution of the results of the Max-Mean method in the eight image sequences, respectively. D1-D8
represent the 3D intensity distribution of the results of Max-Median method in the eight image sequences, respectively. E1-E8
represent the 3D intensity distribution of the results of the TDLMS method in the eight image sequences, respectively. F1-F8 represent
the 3D intensity distribution of the results of Kim’s method in the eight image sequences, respectively. G1-G8 represent the 3D intensity
distribution of the results of the 3DCF method in the eight image sequences, respectively. H1-H8 represent the 3D intensity distribution
of the results of the DBM3D+GMMF method in the eight image sequences, respectively. The small targets are indicated by red ovals.
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FIGURE 11. (Continued.) The 3D intensity distribution of the background suppression results of different methods for eight IR image sequences.
A1-A8 denote the 3D intensity distribution of the representative frames of the eight experimental image sequences, respectively. B1-B8 represent the 3D
intensity distribution of the results of our method in the eight image sequences, respectively. C1-AC represent the 3D intensity distribution of the results
of the Max-Mean method in the eight image sequences, respectively. D1-D8 represent the 3D intensity distribution of the results of Max-Median method
in the eight image sequences, respectively. E1-E8 represent the 3D intensity distribution of the results of the TDLMS method in the eight image
sequences, respectively. F1-F8 represent the 3D intensity distribution of the results of Kim’s method in the eight image sequences, respectively.
G1-G8 represent the 3D intensity distribution of the results of the 3DCF method in the eight image sequences, respectively. H1-H8 represent the 3D
intensity distribution of the results of the DBM3D+GMMF method in the eight image sequences, respectively. The small targets are indicated by red ovals.

TABLE 6. The comparison results for average GSCR in different sequences.

TABLE 7. The comparison results for average BSF in different sequences.

has the least clutter residual and the best clutter suppression
performance in these eight image sequences.

To further objectively evaluate the target signal enhance-
ment performance and the background suppression perfor-
mance of the seven methods on image sequences in different
scenarios, Table 6 and Table 7 show the averageGSCR (GSCR)
and average BSF (BSF) of the different methods in the eight
IR image sequences. The value of the GSCR in Table 6 is the
value obtained by using the position of the real target. Our
method can be seen to have the highest BSF in all image
sequences, which also indicates that our method has the best

clutter suppression performance. At the same time, we can
see that our method has the highest GSCR in sequences 1,
2, 4, 5, and 7, which means that our method has the best
target signal enhancement performance in these sequences.
In addition, for sequences 3, 6, and 8, the TDLMS method
has the best target signal enhancement performance and
clutter suppression performance. For sequence 1 and 2, the
DBM3D+GMMF method has better performance. As seen
in Table 6, although we used target-like points in the process
of obtaining the optimal algorithm parameters, the signals of
the real targets after using the optimal algorithm parameters

36944 VOLUME 8, 2020



X. Ren et al.: Adaptive Background Suppression Method Based on Intelligent Optimization

TABLE 8. The average running time (seconds) of the different methods.

in the eight sequences are also improved. These results prove
the effectiveness of our proposed method.

According to the results of the above comparative exper-
iments, we are able to see that our method can effectively
suppress the complicated background in different scenarios
while enhancing the small target signal.

To compare the computational complexity of different
methods, the average running time is employed to reflect the
computational performance. These comparative experiments
are performed on a computer with a 2.30-GHz Intel Xeon
CPU E5-2650 processor and 16-GB RAM, and the code for
all algorithms are run in MATLAB R2014b. Table 8 shows
the average runtime for different methods on eight IR image
sequences with different backgrounds. From the table, we can
see that Kim’s method has the shortest average running
time, and the DBM3D+GMMF method has the longest
average running time of the baseline methods. Although
the average running time of our method is longer than
some baseline methods, it is acceptable to sacrifice a little
time to maintain the high performance of the algorithm.
In addition, with the development of field programmable
gate array (FPGA) pipelines and the wide application of this
technology, we believe that this structural design will come
to offset some of the time complexity.

VII. CONCLUSION
In this paper, to improve the detection performance of dim
and small targets in IR images containing high-intensity cloud
clutter, a novel adaptive background suppression method is
proposed. The experiments using IR images of real complex
scenes have verified its advantages:

1) The proposed adaptive background suppression
method can effectively suppress a background with
high-intensity cloud clutter and has better background
suppression performance.

2) The proposed local optimization strategy is feasible,
which ensures that the proposed adaptive background
suppression algorithm has the optimal parameters.

In summation, the proposed adaptive background suppres-
sion method uses the optimization algorithm to acquire the
optimal algorithm parameters, which effectively improves its
performance in suppressing high-intensity cloud clutter in IR
images. In the future, we will try to utilize additional similar
features of successive images to improve the performance of
the filtering algorithm, and we will try to implement the algo-
rithm on hardware that reduces its computational complexity.
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