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ABSTRACT A dual-function radar communication (DFRC) system enables the implementation of a primary
radar operation and a secondary communication function concurrently. A bank of transmit beamforming
weight vectors are guaranteed to have the same transmitted radiation pattern to satisfy in the target detection
requirements, while the phase symbol is selected from a preset dictionary so that communication information
can be embedded. However, as the radar channel is time-variant due to the fluctuation in the radar cross-
section (RCS) of the target and the Doppler shift that results from the relative motion of the target, it is nec-
essary for a successive waveform design and selection scheme to continually obtain target information. Our
work aims at enhancing the target detection performance by maximizing the relative entropy (RE) between
two hypotheses (in the first hypothesis we assume the target is not present in the echoes while in the second
hypothesis we assume the target exists in the echoes) and by minimizing the mutual information (MI)
between successive target echoes. The proposed scheme overcomes the coexisting communication and radar
detection problems in intelligent transportation systems (ITSs), where it is necessary to extract the features
of target information that is obtained from a vehicle-mounted sensor. Our simulation results demonstrate an
improvement in the target detection performance by the proposed two-stage approach. In addition, the system
can transmit data of several Mbps with low symbol error rates.

INDEX TERMS Dual-function radar communication (DFRC), waveform optimization, mutual
information (MI), relative entropy (RE), target detection, cognitive learning.

I. INTRODUCTION
Radar andwireless communication systems have always been
researched independently. Radar systems attempt to realize
high target detection performance in the presence of noise
interference, whereas the objective of wireless communi-
cation techniques is to maximize the information capac-
ity over a noisy channel. Integrating radar and wireless
communication systems can reduce the bandwidth compe-
tition [1]–[3]. Research on integrating radar and communi-
cation under a common platform has attracted substantial
attention in recent years [4]–[10]. There are many appli-
cations that could benefit from radar and communication
integration [1], [11]–[13]. Nevertheless, if operating at the
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same frequency bandwidth or sharing spectrum resources,
mutual interferences issues between the system functions are
likely to be encountered [14]. Fortunately, due to the effi-
cient waveform designs, multisensory transmit/receive con-
figurations and proper application of spatiotemporal degrees
of freedom (DoFs) have rendered the dual functions of
radar-communication feasible [15]. Spectrum sharing and the
employment of a joint platform between radar and communi-
cations require the operator to define the primary and sec-
ondary system functions. The transmission power allocations
and design beam directivity should be considered [16]–[18].

The embedding of information into the radar waveform
for target detection and wireless communication was studied
in [4]. Reference [4] selected the radar waveform on a
pulse-by-pulse basis from a set of predesigned waveforms,
each of which corresponded to a communication data item.

33276 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7282-491X
https://orcid.org/0000-0003-4096-4501
https://orcid.org/0000-0001-8477-3163
https://orcid.org/0000-0001-9622-5041


Y. Yao et al.: Cognitive Waveform Optimization for Phase-Modulation-Based Joint Radar-Communications System

The communication receiver detects the embedded infor-
mation by estimating which waveform was transmitted.
However, the target detection performance is degraded due
to the waveform variation from pulse to pulse. Commu-
nication data embedding schemes were also proposed for
dual functionality with multiple transmit/receive frameworks
[9], [19]–[21]. A dual-function radar-communication (DFRC)
system that employs sidelobe control and waveform diversity
has been presented in [22]. The mechanism of the DFRC
system is to transmit multiple orthogonal waveforms, where
each waveform is used to embed binary data.

Most recently proposed DFRC systems are based
on phased arrays and the multiple-input multiple-output
(MIMO) technique [23]–[29]. Time-modulated arrays are
used to realize dual functionality to enable target detection
in the main lobe while performing wireless communication
in the sidelobe in [19]. The main strategy of the approach is
to use sparse time-modulated array or phase-only synthesis
time-modulated array approaches to control the instantaneous
pattern. Both methods enable the excitation of variations in
the sidelobe levels (SLLs) toward a specified direction [19].
However, since the number of transmission antennas is con-
stant, the former affords only a few degrees of freedom.
Therefore, the method cannot realize many distinct SLLs
toward a specified direction. The latter offers superior perfor-
mance in realizing more SLLs; however, its calculational bur-
den is too heavy due to nonlinear optimization. An amplitude
modulation (AM)-based method for embedding information
into the radar waveform was considered. The main strategy
of the method is to embed data into the radar waveform via
controlling the SLLs. The scheme can not only regulate the
instantaneous pattern sidelobe but also acquire prominent
SLLs toward a specified direction. However, the main lobe
must be kept constant throughout the coherent processing
interval (CPI) to realize high performance in target detection.
Therefore, this technique enables embedded data transmis-
sion to a receiver that is positioned within the sidelobe region
but cannot perform wireless communication within the main
beam of the radar.

Inspired by the MIMO radar system, Hassanien and Amin
developed a novel DFRC system with multisensor transmit/
receive configurations and bilevel sidelobe control [20]. The
multiwaveform DFRC system enables the embedding of
binary data via each orthogonal waveform and the emission of
multiple independent waveforms simultaneously. The num-
ber of bits that can be embedded is equal to the number of
transmitting orthogonal waveforms. At least one bit is trans-
mitted for each radar pulse. Convex optimizationmethods can
be used to embed communication data and to realize bilevel
sidelobe control. The information-embedding scheme that
was developed in [20] employs a sidelobe binary amplitude
shift keying (ASK)-based technique. Convex optimization
approaches have also been used for the design of transmit-
ted beamforming vectors that satisfy the constraints that are
imposed by the radar functions while optimizing the trans-
mit radiation pattern. Similar to the AM-based technique,

the ASK-basedmethod only transmits embedded information
within the sidelobe region. This drawback of the techniques
is due to the main beam remaining the same throughout
the entire CPI. A phase-modulation (PM)-based scheme for
embedding data into the illumination of a radar system was
considered in [21]. The scheme maps the binary bits into
a phase symbol that corresponds to a phase dictionary of
a suitable size. It differs substantially from the AM- and
ASK-based techniques. The scheme can embed the binary
data toward communication receivers, regardless of whether
the communication receivers are positioned within the main
lobe or the sidelobe. The PM-based method can be both
coherent and noncoherent. Therefore, it can be used for both
directional communications and broadcasting.

The MIMO radar system uses a set of orthogonal wave-
forms via each element to generate waveform diversity.
Cheng and Liao discuss the problem of the spectrally com-
patible waveform design for MIMO radar in the presence of
multiple targets [25]. The waveform is designed by minimiz-
ing the waveform energy of the overlayed space-frequency
bands under constraints of waveform similarity and individ-
ual SINR requirements. The work of [27] discusses the prob-
lem of waveform optimization for MIMO radar with good
transmit beampattern under certain practical constraints in
coexistence with communication systems. The waveform is
designed by minimizing a weighted summation of the beam-
pattern integrated sidelobe-to-mainlobe ratio and waveform
energy over the space-frequency bands. To further increase
the data transmission rate, [29] proposed a frequency hopping
(FH) coding method for designing a set of orthogonal wave-
form. During each radar pulse, the number of embedded sym-
bols is equal to the number of orthogonal waveforms times the
length of the FH code. These strategies are inherently secure
against interference and interception in directions other than
a specified direction [30].

However, the radar reflection characteristics of radar tar-
gets and the environment can be regarded as time-variant.
In both phased array and MIMO techniques, it is not easy
to recognize and detect a radar target in a dynamic envi-
ronment, especially if the radar target and the interference
have the same angle but different ranges. This shortcoming
can be overcome by using cognitive techniques [30]–[32].
Cognitive radar (CR) continually uses information acquisi-
tion mechanisms to facilitate adaptive emission in dynamic
radar scenarios. CR forms an adaptive closed feedback loop
from the receiver to the transmitter, which has tremendous
potential for enhancing the performance in target recognition
and detection, as demonstrated in [33]. The updated infor-
mation regarding the radar target and interference is used to
design a transmitted waveform that is based on the mutual
information (MI) maximization criterion [34], [35]. This con-
tinuous learning scheme develops waveform optimization
methods and offers high performance in target recognition
and detection, according to [36].

In this paper, we introduce a PM-based approach for
embedding information into the illumination of MIMO radar.
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It enables binary information delivery to communication
receivers that are located not only within the sidelobe region
but also within the main beam. Since the radar channel is
time-variant due to the fluctuation in the radar cross-section
(RCS) of the target and the Doppler shift that results from the
relative motion of the targets, it is necessary for a successive
waveform design and selection scheme to continually obtain
target information from the radar environment. Therefore,
we analyze the performance of a cognitive DFRC system.
We combine the relative entropy (RE) algorithm that is pre-
sented in [36] and the MI strategy [34] to realize an opti-
mized waveform, which facilitates enhanced target detection
in a dynamic environment. We propose a cognitive wave-
form design scheme for the DFRC system. The proposed
waveform design algorithm can be divided into two steps,
as follows:

Step one: The step is to design an ensemble of opti-
mized waveforms for illumination. RE can be employed as
a measure for evaluating the detection performance of radar
systems. The larger the value of RE, the higher the target
detection performance can be realized [37]. The main objec-
tive is to maximize the RE between two hypotheses (in the
first hypothesis we assume the target is not present in the
echoes while in the second hypothesis we assume the target
exists in the echoes) under the transmission power constraint
and to obtain an ensemble of optimized waveforms.

Step two: The objective of this step is to minimize the MI
between the current backscattering echo and the predicted
value in the next moment. The selection strategy ensures that
we acquire independent target echoes from the same radar
scenario to obtain more target features from pulse to pulse.
Therefore, we always choose the most suitable waveforms
for illumination that would generate more uncorrelated and
independent target echoes.

These two steps correspond to the design of the ensemble
of waveforms and the selection of a reasonable waveform
out of the ensemble, respectively. The waveform optimiza-
tion scheme is based upon adaptive learning from the radar
scenario, which is realized through a feedback loop from
the receiver to the transmitter. This feedback includes vital
information about the target features that is derived from the
target echoes. Via this approach, the transmitter adjusts its
waveforms to suit the dynamically changing environment.
The novel contributions of this work are summarized as
follows:

1) We present the architecture of an adaptive PM-based
DFRC system, which benefits from the principle of cognition
radar. The system utilizes a constant learning approach by
updating the estimates on target scene parameters through
multiple interactions with the environment.

2) We develop a novel algorithm for waveform optimiza-
tion and selection in the PM-based DFRC framework, which
is based on the RE maximization criterion and the MI mini-
mization criterion.

3) We provide performance analysis of the PM-based
DFRC system network in terms of the receiver operating

characteristic (ROC), detection probabilities and communica-
tion symbol error rates (SERs) between the proposed nodes.

The remainder of this paper is organized as follows:
In Section 2, a DFRC signal model that employs a
PM-based method and sidelobe control is described.
In Section 3, a noncoherent PM-based communication
approach is discussed. In Section 4, we propose a two-stage
cognitive waveform optimization strategy. The transmitted
waveforms are designed based on the REmaximization crite-
rion and selected based on theMIminimization criterion. The
simulation results for the proposed schemes are presented in
Section 5 and the conclusions of this study are presented in
Section 6.

A. NOTATIONS
Throughout this paper, the following notations will be used:
We use boldface lowercase letters and boldface uppercase let-
ters to denote vectors and matrices, respectively; (.)∗ denotes
the complex conjugation operation; (.)T denotes the trans-
pose operation; (.)H denotes the Hermitian transpose oper-
ation; vec (.) denotes the vectorization of the columns of a
matrix; and IR denotes the R× R identity matrix.

II. SIGNAL MODEL
We present a DFRC signal model that uses a PM-based
scheme. A case of the advanced model, which is considered
in [26], is discussed in this section. We consider a DFRC
system architecture that is configured with one joint radar-
communication transmission antenna array, one radar receiv-
ing antenna array, and additional communication receiving
antenna arrays. The joint radar-communication transmission
array consist of T transmission antennas, which are arranged
in a uniform linear shape. The radar receiving array consists
of R receiving antennas, which are arranged in an arbitrary
linear shape.

To simplify the discussion, we assume that both the radar
transmission and receiving antennas are narrowly spaced rel-
ative to each other. Therefore, targets that are positioned in the
far field are at the same spatial angle relative to both antenna
arrays. The objective of the joint radar-communication trans-
mission array is to delivermessages to the intended communi-
cation receivers as a secondary operation without impacting
the primary target detection. The system architecture of the
joint radar-communications is illustrated in Figure 1.

We denote the bandwidth of the DFRC signal and the total
budget of transmission power as B and Pt . Two orthogonal
transmitted waveforms are denoted as φu (t) and φv (t). Both
waveforms occupy the same bandwidth, namely, the spec-
tra of φu (t) and φv (t) overlap in the frequency domain.
We assumed that both orthogonal signals have been normal-
ized to unit transmission power, namely,

∫
TP
|φu (t)|2dt =∫

TP
|φv (t)|2dt = 1, where t describes the fast time index and

TP denotes the radar pulse width. Both waveforms are fur-
ther assumed to satisfy the orthogonality condition, namely,∫
TP
φu (t) φ∗v (t) dt = 0. The T × 1 vector of the baseband
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FIGURE 1. Dual-function radar communications.

signals at the input of the joint radar-communication trans-
mission array is expressed as

s (t) =
√
Puu∗φu (t)+

√
Pvv∗φv (t) (1)

where Pu and Pv denote the transmission powers. u and v
denote the T × 1 transmission designed weight vectors asso-
ciated with φu (t) and φv (t), respectively. We denote the
total transmission power as Pt = Pu + Pv. The vector of
the baseband signals s (t) need not satisfy the orthogonality
condition.

It is assumed that a target is located in a specified range-
bin within themain beam of the radar operation in the additive
white Gaussian noise (AWGN) environment. TheR×1 vector
of baseband signals that are caused by backscattering from
the target at the output of the radar receiving antennas is
expressed as

x (t; i) = β (i)
(
aT (θ) s (t; i)

)
b (θ)+ n (t; i) (2)

where i denotes the slow-time index (radar pulse number);
β (i) denotes the target scattering coefficient during the i-th
radar pulse; a (θ) is the T × 1 steering vector of the trans-
mission array and b (θ) is the R × 1 steering vector of the
receiving array; and n (t) denotes the vector of AWGN with
zero mean and covariance δ2IR. It is worth noting that the
target scattering coefficient β (i) and the target’s direction
of arrival in steering vectors θ are assumed to be known
in our work. They remain constant during the entire radar
scan duration, but vary independently from scan to scan.
In Swerling III, the RCS samples measured by the radar
are correlated throughout an entire scan but are uncorrelated
from scan to scan (slow fluctuation), and the target scene is
dominated by a single powerful scattering center with many
weak reflectors in its vicinity. This model will be considered
in this paper.

For the wireless communication task of the DFRC system,
we assume that the communication receiver has complete
knowledge of the waveform ensemble that is employed at
the transmitter. The baseband signals at the output of the

communication receiver can be expressed as

ycom (t; i) = αcom (i) aT (θc) s (t; i)+ n (t; i) (3)

where αcom (i) denotes the attenuation coefficient, which
summarizes the propagation channel between the transmis-
sion antenna array of the DFRC system and the commu-
nication receiver during the i-th radar pulse, and n (t; i) is
the AWGN with zero mean and variance δ2c . Substituting (1)
into (3) and matched-filtering the pulse echo ycom (t; i) to
the orthogonal waveform φu (t) yields the communication
data yu (i) as follows:

yu (i) = αcom (i)
√
Pu
(
uHa (θ)

)
+ n (i)

= αcom (i)
√
PuAuejφu + nu (i) (4)

where Au is the magnitude of the transmitting gain toward
the predefined communication receiver, φu is the phase of the
transmitting gain that is related to φu (t), and nu (i) denotes
AWGN at the output of the matched filter with zero mean
and variance δ2c . In the same way, matched-filtering the pulse
echo ycom (t; i) to the orthogonal waveform φv (t) yields the
communication data yv (i) as follows:

yv (i) = αcom (i)
√
Pv
(
vHa (θ)

)
+ n (i)

= αcom (i)
√
PvAvejφv + nv (i) (5)

where Av is the magnitude of the transmitting gain toward
the predefined communication receiver, φv is the phase of the
transmitting gain that is related to φu (t), and nv (i) denotes
AWGN with zero mean and variance δ2c . Figure 2 illustrates
the architecture of a cognitive PM-based DFRC system.

Next, two PM-based information-embedding approaches
are introduced, which are employed to realize coherent
communications and non-coherent communications. For
a coherent wireless communication process, a PM-based
information-embedding scheme can be realized by choosing
phase φu (t) or φv (t) from a predetermined phase dictio-
nary during each radar pulse. The communication receiver
can recover the embedded binary sequence by estimating
the embedded phases. The wireless communication process
requires phase synchronization between the DFRC transmit-
ter and the communication receiver [38].

If two transmission weight vectors u and v are designed
for satisfying the condition, namely,

√
Pu
∣∣uHa (θ)∣∣ =

√
Pv
∣∣vHa (θ)∣∣, yu (i) and yv (i) can be ensured to have the

rotational invariance property, according to which yu (i) is
equal to yv (i) up to a phase rotationφ, which can be expressed
as

φ = angle
(
uHa (θ)
vHa (θ)

)
= φu − φv (6)

The binary sequence can be embedded into the emission
of each orthogonal waveform by controlling the value of
the phase rotation at the transmission antenna array, namely,
by choosing the phase rotation from a predetermined phase
dictionary.
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FIGURE 2. The architecture of a cognitive PM-based DFRC system.

Notice that two orthogonal waveforms are emitted simul-
taneously and propagate over the same channel. As a result,
any phase synchronization error that takes place due to, such
as propagation distortion, yields the same phase error in both
yu (i) and yv (i). This results in a common phase term in the
numerator and denominator of (6) which has no influence on
the phase rotation. The phase symbol is embedded as a phase
rotation between two orthogonal waveforms. Since measur-
ing the phase associated with the first waveform relative to
the phase associated with the second waveform cancels out
any common phase term, the common initial phase at the
transmit array and/or the common phase error terms have
no influence on the estimation of the phase rotation at the
receiver. The phase rotation can be well-kept. By estimating
the phase rotations at the communication receiver, the phase
symbol can be gained. Therefore, employing a phase decoder
at the communication receiver doesn’t necessarily require
phase synchronization.

III. NON-COHERENT PM COMMUNICATIONS
Phase synchronization errors between the DFRC transmit-
ter and the communication receiver and imprecise channel
coefficient estimation will lead to degradation of the com-
munication system’s performance and failure to satisfy the
design requirements. To overcome this problem, we introduce
a noncoherent PM-based scheme for embedding commu-
nication data into the illumination of a radar system [10].
The communication data are hidden in the phase difference
between two radar transmitted waveforms.

An N -bit communication data item that is embedded into
a radar pulse is represented as the binary sequence bn,
n = 1, . . . ,N , which can be mapped into a dictionary of
K = 2N phase-rotation symbols ϕ = {ϕ1, . . . , ϕK }, where
ϕk describes the k-th phase-rotation symbol. Hence, with the

objective of delivering N -bit communication data in the illu-
mination of DFRC system, the corresponding phase-rotation
symbol should be embedded in the radar pulse.

A T × 1 weight vector z is employed to produce a
population of 2T−1 weight vectors of the same dimension-
ality, which is described as Z =

{
z1, . . . , z2T−1

}
. A dic-

tionary is formed by employing K pairs of weight vectors
(u1, v1) , . . . , (uK , vK ) that correspond to a population Z.
The phase difference that is related to the k-th pair of weight
vectors (uk , vk) can be expressed as

φk = angle

(
uHk a (θc)

vHk a (θc)

)
= φu,k − φv,k (7)

The k-th pair of vectors (uk , vk) yields the phase difference
φk relative to the corresponding phase symbol ϕk . We assume
that the transmission power is divided equally between the
radar signals that are associated with the two waveforms. The
T × 1 vector of the baseband signals can be reformulated as

s (t) =
√
Pt/2

(
u∗φu (t)+ v∗φv (t)

)
(8)

It is assumed that the k-th symbol is embedded into one
radar pulse, and matched-filtering the received signal to two
orthogonal waveforms φu (t) and φv (t) yields

yu (i) = αcom (i)
√
Pt/2

(
uHk a (θc)

)
+ n (i) (9)

and

yv (i) = αcom (i)
√
Pt/2

(
vHk a (θc)

)
+ n (i) (10)

Therefore, the phase difference at the communication
receiver can be estimated as

φ̄ (i) = angle
(
yu (i)
yv (i)

)
(11)
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The embedded data in the received signal are determined by
comparing phase φ̄ (i) in (11) to the predetermined dictionary
that is obtained from (7) and by comparing the mapping
phase-rotation symbol to the original communication data.
The noncoherent PM-based communication scheme is angle-
dependent. The performance in recovering the embedded data
at the communication receivers from directions other than
the planned direction is limited, particularly for a large-scale
dictionary.

IV. (TWO-STEP) WAVEFORM OPTIMIZATION
In this section, we develop a novel waveform optimization
strategy for a cognitive DFRC system to further improve the
performance of target detection in a dynamic environment.
The waveform ensemble design and optimization selection
procedures are described as a two-step algorithm.

A. RE MAXIMIZATION
Step 1: waveform optimization. This step includes the design
of transmitted signals for the PM-based DFRC transmission
antennas array. We aim at maximizing the RE between the
distributions with no target and with a target at time i. The
larger the RE, the higher performance of target detection
that can be realized. The method ensures optimal waveform
matching with the target and noise. The strategy of RE
maximization for cognitive waveform design is derived from
Stein’s lemma [40], which is stated as follows:
Theorem 1: Consider a binary hypothesis testing problem

between alternatives H0 and H1. Two distributions, namely,
p0 and p1, are underH0 andH1, respectively. The RE between
distributions p0 and p1 can be expressed as

D (p0‖ p1) =
∫
p0 log p0| p1 (12)

Let An and Acn be acceptance areas for H0 and H1, respec-
tively. We assume that the error probabilities of the two types
are αn = pn0

(
Acn
)
and βn = pn1

(
An
)
, respectively. Then we

define βεn = min
αn<ε

βn, 0 < ε < 1
2 . The results can be obtained

as follows:

lim
ε→∞

lim
n→∞

1
n
logβεn = −D (p0‖ p1) (13)

Target detection in radar signal processing can be expressed
as a binary hypothesis testing problem:{

H0 : xi = ni no target
H1 : xi = βi

(
aT (θi) si

)
b (θi)+ ni target exists

(14)

where a (θi) and b (θi) denote a (θ) and b (θ) during the
i-th radar pulse. The RE is represented asD (p0 (xi)‖ p1 (xi)),
where p0 (xi) and p1 (xi) are the probability density functions
(PDFs) of xi under alternatives H0 and H1, respectively. It is
worth noting that the received backscatter signals without
pulse compression are used to optimize the transmitted wave-
form as presented in Fig. 2. According to the binary hypoth-
esis testing model, αn is the false-alarm probability and βn is
the missed detection probability. According to Stein’s lemma,

if αn is fixed, βn is exponentially small, with an exponential
rate that is equal to D (p0 (xi)‖ p1 (xi)). Therefore, to fur-
ther improve the performance in target detection, we should
maximize D (p0 (xi)‖ p1 (xi)). Under a transmission power
constraint, the PM-based waveform design problem that is
based on RE maximization is modeled as:

max
si

D (p0 (xi)‖ p1 (xi))

s.t. tr
[
sisTi

]
≤ P0 (15)

Then, the main function of this waveform design problem can
be expressed as

D (p0 (xi)‖ p1 (xi))

=

∫
p0 (xi) log

p0 (xi)
p1 (xi)

dxi

= N log
[
det

(
IR + β2i Rs (θi)R−1N

)−1]
+Ntr

[
det

(
IR + β2i Rs (θi)R−1N

)−1
− IR

]
(16)

where Rs (θi) =
(
aT (θi) si

)
b (θi)bT (θi)

(
sTi a (θi)

)
.

Substituting (16) into (15), the PM-based waveform design
problem can be reexpressed as:

max
si

log
[
det

(
IK + β2i Rs (θi)R−1N

)−1]
+ tr

[
det

(
IK + β2i Rs (θi)R−1N

)−1
− IK

]
s.t. tr

[
sisTi

]
≤ P0 (17)

Matrices Rs (θi) and RN are both positive semidefi-
nite Hermitian matrices [36], and rank Rs (θi) = 1.
Then, denote the eigen-decomposition of β2i Rs (θi) and
RN as Ui

∑
siU

H
i and VN

∑
NV

H
N , respectively, where∑

si = β2i diag
([
δsi,1, δsi,2, . . . , δsi,K

])
and

∑
N =

diag
([
δN ,1, δN ,2, . . . , δN ,K

])
. It is easy to obtain the expres-

sion β2i ÛiRs (θi) ÛH
i =

∑̂
si . Ûi = UiP and

∑̂
si = PH

∑
siP,

where P is the permutation matrix.

P =


0 0 . . . 1
0 . . . 1 0
...

...
...

...

1 0 . . . 0

 (18)

Let Ŝi = ÛH
i

(
aT (θi) si

)
b (θi). The PM-based waveform

design algorithm (17) can be reexpressed as:

max
si

log
[
det

(
IK + β2i R

−1/2
N ÛiŜiŜ

H
i Û

H
i R
−1/2
N

)−1]
+ tr

[(
IK + β2i R

−1/2
N ÛiŜiŜ

H
i Û

H
i R
−1/2
N

)−1]
s.t. tr

[
sisTi

]
≤ P0

ŜiŜ
H
i =

∑̂
si

(19)
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According to [36], log
[
det (I+ R)−1

]
+ tr

[
(I+ R)−1

]
is

a monotonic increasing function of positive semidefinite
matrix R. Based on maximizing MI, the Pareto-optimal solu-
tion sopti of the above waveform design algorithm (19) can be
expressed as:

sopti = Ûi

[
0(K−M)×M

∑̂1/2
si

]T
VH
N (20)

We can then construct an optimal waveform ensem-
ble Csi based upon the Walsh-Hadamard codes. Each wave-
form corresponds to a particular column vector of the
Walsh-Hadamard matrix. In other words, we start our
waveform design with the orthogonal sequences from the
Hadamard matrix, and modulate the power of the wave-
form on an individual pulse level using the maximization
criterion presented in (20). After the optimized waveform
ensemble Csi has been gained, the most suitable waveforms
for illumination are selected from the ensemble in Step 2.

B. TARGET IMPULSE RESPONSE AND PARAMETER
ESTIMATION
The radar receiver has complete knowledge of the transmit-
ted waveform at all instants of time. Hence, we can use
this information to extract parameters like target impulse
response, target channel covariance matrix RH (θ), and noise
variance Rn, whereRH (θ) = β

2aT (θ)b (θ)bT (θ) a (θ). Let
xi and xi−1 be the received signal vectors at two successive
time instants. Using (2), we have E

[
xTi xi

]
= sTi RH (θ) si +

Rn = R2i and E
[
xTi−1xi−1

]
= sTi−1RH (θ) si−1 + Rn = R2i−1,

where R2i and R2i−1 represent the variances of the received
signals at the respective time instants. Solving simultaneously
the two above equations, we can estimate the values for
RH (θ) and Rn. These values will be used to generate the
estimate of xi+1 for all values of si+1 ∈ C using (2), where
C is the ensemble of the transmitted waveforms. We will
choose si+1 ∈ C based on the proposed MI minimization
approach.

The estimation of the target channel covariance matrix and
the noise variance will be performed at every instance of
reception of xi, and their values will be updated and used to
generate new estimates for xi+1.

C. MI MINIMIZATION
Step 2: Waveform selection. The main objective of this step
is to minimize the MI between the current pulse echo xi
and the next pulse echo xi+1. The successive pulse echoes
are independent of each other in time, with the objective of
obtaining additional information about the radar scenario at
each radar pulse.

The MI between xi and xi+1 can be denoted as I (xi, xi+1).
If xi and xi+1 are dependent on each other, I (xi, xi+1)will be
tremendously high. Consequently, a dramatic gain in infor-
mation about the dynamic target scenario cannot be realized.
Therefore, we proceed to the procedure of the waveform
selection, in which we desire to realize independent pulse
echo samples that are scattered by the dynamic target scenario

to obtain additional target information about the target from
pulse to pulse. We choose the waveforms for illumination
that generate more independent successive pulse echoes from
the same environment, namely, our objective is to choose the
most suitable signal xi from the waveform ensemble that was
designed in step 1 for minimizing I (xi, xi+1).

We denote the number of samples of the radar pulse echo as
M , where M > T and M > R. The vector of the radar pulse
echo at time i is denoted as xi = [xi (1) , xi (2) , . . . , xi (M)]T .
MI between xi and xi+1 can be defined as

I (xi, xi+1) = H (xi| si)+ H (xi+1| si+1)

−H (xi, xi+1| si, si+1) (21)

where H (xi| si) denotes the entropy of xi given si. The term
H (xi+1| si+1) is defined similarly. H (xi, xi+1| si, si+1) in
equation (21) is the entropy of the pair (xi, xi+1) given the pair
(si, si+1). The m-th sample data of the vector of the current
pulse echo xi and the next pulse echo xi+1 can be described
as x = {xi (m) , xi+1 (m)}. Then, we express the PDF of x as
follows:

fx (x) =
1(√

2π
)2∣∣∑∣∣ 12 exp

[
(x− µ)H

∣∣∑∣∣−1 (x− µ)
2

]
(22)

According to [34], H (x| s) can be expressed as follows

H (x| s) = 1+
1
2
In
[
(2πe)2

∣∣∣∑∣∣∣] (23)

Hence, H (xi, xi+1| si, si+1) can be derived as follows

H (xi, xi+1| si, si+1) = 1+
1
2
In
[
(2πe)2

∣∣∣∑∣∣∣] (24)

where
∑

is the covariance matrix, which is expressed as
follows ∑

=

∣∣∣∣ R2i, ρi,i+1Ri,Ri+1,
ρi,i+1Ri,Ri+1, R2i+1,

∣∣∣∣ (25)

where R2i = E
(
xTi xi

)
and R2i+1 = E

(
xTi+1xi+1

)
describe

the variances of the radar pulse echo at the current radar
pulse echo xi and the next radar pulse echo xi+1. Since∣∣∑∣∣ = R2i R

2
i+1

(
1− ρ2i,i+1

)
, where ρi,i+1 =

E
[
xHi xi+1

]√
R2i R

2
i+1

is the

correlation coefficient, we can define the term H (xi| si) as
follows

H (xi| si) = −
∫
9 (x) In [9 (x)]dx

= −

∫
9 (x) In

[
−
(x − µi)2

2R2i
−In

(√
2πR2i

)]
dx

=
1
2
+

1
2
In
(
2πR2i

)
(26)

where 9 (x) = 1√
2πR2i

exp
[
−
(x−µi)2

2R2i

]
is the PDF of xi.

Similarly, we can deduce the term H (xi+1| si+1) as follows:

H (xi+1| si+1) =
1
2
+

1
2
In
(
2πR2i+1

)
(27)
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Then, by substituting (24), (26), and (27) into (21), MI
between xi and xi+1 can be represented as

I (xi, xi+1) = −
1
2
In
(
1− ρ2i,i+1

)
(28)

Finally, the waveform selection process that is based on MI
minimization can be formulated as follows

Imin = min
si+1∈Csi

{
−
1
2
In
(
1− ρ2i,i+1

)}
s.t. tr

[
sHi+1si+1

]
≤ P0 (29)

The current pulse xi and the past pulse echo xi−1 are uti-
lized to calculate the variances of the successive radar pulse
echoes, namely, R2i and R2i−1. We estimate the correspond-
ing correlation coefficient ρi,i−1. Then, the variances are
used to estimate the next pulse echo xi+1 over all possible
transmitted waveforms si+1 ∈ Csi , where C describes the
ensemble of all possible transmitted waveforms. All the val-
ues of the corresponding ρi,i+1 can be estimated. Therefore,
the waveform selection problem that is based on MI min-
imization (29) can be solved by selecting a suitable value
for si+1 ∈ Csi . It is worth noting that RCS scintillation of
the target varies slowly. The pulse waveforms are designed
based on the back-scattering echoes with slow fluctuating
RCS and angles. These codes can be used for transmission
in the next pulse. Therefore, the designed waveforms are the
best possible waveform for transmission. The proposed two-
step cognitive waveform optimization process is summarized
as Algorithm 1.

Algorithm 1 The Proposed Two-Step Cognitive Waveform
Design Algorithm
1: Initialization: Set iteration transmit weight vector
(u1, v1).

2: Generate the radar pulse echo at present x1, and calculate
the variances of the received signals R21.

3: Solve for the optimization waveforms ensemble Cs1 for
illumination based onREminimization criterion as stated
in step 1.

4: Update the variances of the received signals R22 based
on the current value x2. Generate an estimate of all the
values of the corresponding ρ1,2.

5: Solve for optimization waveform s2 ∈ Cs1 on the basis
of the MI minimization criterion as stated in step 2. Gen-
erate an estimate of the transmit weight vector (u2, v2).

6: If i = Imax, the iterative procedure ends; or else, return to
2 and repeat.

Let us observe that, from a practical point of view, the pro-
posed optimization procedure requires a condition to stop the
iterations. There are several ways to impose it; for instance
considering themaximumnumber of tolerable iterations Imax.
The two-step cognitive waveform design algorithm for target
detection can be realized according to the block diagram
in Figure 3.

FIGURE 3. The two-step optimization scheme for target detection.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
As to the computational complexity connected with the
implementation of Algorithm 1, it depends on the num-
ber of iterations Imax as well as on the complexity
involved in each iteration. Precisely, the overall complex-
ity is linear with respect to Imax, while, in each iteration,
it includes the computation of RE maximization criterion
(step 1) and the implementation of MI minimization cri-
terion (step 2). At Step 1, the calculation of Rs requires
O
(
(TR)3 + (TRM)2

)
operations [42]; the calculation of RN

requires O
(
(RM)3

)
operations. Step 2 corresponds to the

update of ρi,i+1 needs O
(
M3
)
, and the complexity required

to solve a Second Order Cone Programming (SOCP), which
is O

(
M3.5 log (1/η)

)
[42], where η is a prescribed accuracy.

V. SIMULATION
In this section, numerical results based on Monte Carlo
simulations have been provided to validate the effectiveness
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of the proposed method. Without loss of generality, each
entry of the channel matrices follows the standard complex
Gaussian distribution. The simulation parameters are based
on radar application with a high PRF, such as in X-band radar.
A data rate in the range of dozens of Mbps can be achieved.
We provide a comparison between the proposed scheme
and the method of [36]. To implement the method in [36],
we consider a dual-function MIMO system operating in the
X-band with carrier frequency fc = 8.2 GHz and bandwidth
B = 500 MHz. The sampling frequency is fs = 109

sample/sec, which is taken as the Nyquist rate. The PRI is
T0 = 10µs. We assume an arbitrary linear transmit array
consisting of M = 16 elements. We further assume that
the minimum transmit/receive antenna spacing is sufficiently
larger than half wavelength (distributed MIMO configura-
tion). Hence, the correlation introduced by finite antenna ele-
ment spacing is low enough that the fades associated with two
different antenna elements can be considered independent.
To implement the radar function, we further assume that the
FH step is1f = 10MHz, the length of the FH code isQ = 20
and the FH interval duration is 1t = 0.1µs. We generate a
set of 16 FH pulse waveforms. The parameter J = 50 is used.
Therefore, the 320 FH code is generated randomly from the
set {1, 2, . . . , J}, where J = 50.

A. TARGET DETECTION PERFORMANCE
The performance enhancement of target detection that is
realized by the two-stage scheme is evaluated in this section.
We employ orthogonal sequences of the PM-based pulse over
the transmit antenna elements. The backscatter signals are
received and the transmitted signals are later modified by the
waveform optimization module as illustrated in Fig. 2. The
optimized transmission sequence at one particular transmit
antenna after the proposed two-stage optimization process
can be obtained. At each iteration of the optimization algo-
rithm, the scattering coefficients for the target and nontar-
get scatterers vary as described by the Swerling III model.
This causes the amplitude returns of the backscatter signals
to vary at each instance. However, the amplitudes of the
echoes from the target are always assumed to be stronger
than those from the clutter sources. For a time-variant radar
scenario, 1000 simulations have been run for each value of the
received SNR. The convex optimization problems are solved
via the CVX toolbox [39]. The simulation parameters are
listed in Table 1.

TABLE 1. Simulation parameters.

Figure 4 presents the detection performance that is realized
using the RE maximization criterion versus the SNR for
various numbers of iterations. The iteration process has been
run twenty times. All optimized waveforms are produced

FIGURE 4. The detection probability for different iterations via RE
maximization strategy.

via the RE maximization strategy. As presented in Figure 4,
the value of the requested SNR increases as the probability
of target detection increases for a fixed number of iterations.
The value of the requested SNR decreases as the number
of iterations increases for a specified probability of detec-
tion. The detection performance that is realized via the RE
maximization strategy converges after fifteen iterations and
yields a probability of 0.9 at SNR=3 dB, compared to SNR=
13 dB at the beginning of the iteration process. The detection
performance of the RE maximization strategy increases as
the number of iterations increases. However, the performance
improvement is not substantial after twenty iterations.

Figure 5 plots the probability of target detection that is real-
ized using theMIminimization criterion versus the SNR. The
variances of successive radar pulse echoes R2i and R

2
i−1 and

estimates of the corresponding correlation coefficient ρi,i−1
can be accurately obtained at high SNRs. Consequently,
a suitable transmission waveform for target detection at the
next time is selected. At a result, the value of MI decreases
as the number of iterations increases. However, the esti-
mate of the correlation coefficient ρi,i−1 is imprecise at low
SNR. The value of MI does not decrease substantially after
twenty iterations. Therefore, the performance improvement

FIGURE 5. The detection probability for different values of SNR via
MI minimization strategy.
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compared to the MI minimization approach is not substan-
tial. This approach has no potential for yielding substantial
performance gains in dynamic radar scenarios.

In Figure 6, we compare the target detection performance
of the optimized waveform that is provided by the two-
stage scheme with the performance of the waveform that
is provided by the RE maximization method and compare
the results with those of the MI minimization method.
The iteration process has been run twenty times. Since the
two-stage scheme employs the RE maximization criterion
and the MI minimization criterion from pulse to pulse,
the DFRC system constantly adapts its transmitted waveform
to the dynamic radar environment. The optimized wave-
form is superior to the waveform that is generated via the
MI minimization strategy.

FIGURE 6. The detection probability for three types of strategies.

In addition, the RE maximization method cannot obtain
independent radar pulses that are scattered by the target to
obtain additional knowledge about the radar scenario at each
instant of reception. As presented in Figure 6, the detection
performances of the RE maximization method and the MI
minimization method are suboptimal. The performance of the
proposed two-stage scheme (joint RE maximization and MI
minimization criterion) is optimal.

Figure 7 plots the ROC for four types of schemes while
the SNR is fixed to 10 dB: (1) a 4 × 4 MIMO radar system
that is based on the maximum a posteriori (MAP) criterion;
(2) a 4 × 4 MIMO DFRC system that is based on the RE
maximization criterion, as defined in [36]; (3) a 4×4 MIMO
DFRC system that is based on the MI minimization criterion,
as presented in [34]; and (4) a 4×4 MIMODFRC system via
the proposed two-stage scheme.

The curves for the RE maximization strategy, the MI min-
imization strategy and the proposed two-stage strategy are
plotted for twenty-five iterations. For Pfa = 0.01, the detec-
tion probability that is realized by the proposed two-stage
method is 0.9, compared with 0.7 by the RE maximization
strategy, 0.65 by the MI minimization strategy and 0.5 by the
MAP method. Since the proposed two-stage method could
afford to use the temporal correlation of target information

FIGURE 7. The ROC for four types of strategies.

during each pulse interval, the DFRC system via the proposed
two-stage scheme continually adapts its transmitted wave-
form to the fluctuating target RCS. Moreover, the sequential
radar pulse echoes can be regarded as independent of each
other. This ensures that information about the radar scenario
is learned at each instant of reception. As a result, the detec-
tion performance that is realized by the two-stage method
(joint RE maximization and MI minimization criterion) is the
best.

We compare the detection capability of the proposed algo-
rithm with that in [36] (referred to as ‘‘RE Approach’’)
and in [41] (referred to as ‘‘Minorization Maximization
Approach’’). Fig. 8 shows the detection probabilities of the
optimized waveforms by the algorithms in [36], [41] and the
proposed algorithm, versus the total transmitted power. The
probability of false alarm is kept constant as Pfa = 10−4.
The total transmitted power varies from 0 dB to 25 dB.
Herein, the detection probability of the orthogonal waveform
is plotted as a benchmark.

FIGURE 8. Detection performance of the optimal waveforms by the
proposed approach, the method of [36], [41] and orthogonal waveform.

Inspection of the figure shows that, our method outper-
forms the algorithms in [36] and [41], with performance gains
up to 2.4 dB and 2 dB. This is probably due to the fact that,
unlike the counterparts, the waveform selection step in the
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proposed method, which ensures that target echoes that are
more statistically independent on each other in time is always
acquired, with an intention of gaining more knowledge about
the target features at each time instant of reception. In this
way the system adjusts its probing signals to suit the dynam-
ically changing environment (the fluctuating target RCS).
The static waveforms on the other hand, in spite of multi-
ple iterations, are unable to match the time-varying target
response. Fig. 9 assesses the performance of the devised
constant-modulus waveforms. The curve highlight that the
performance of the waveforms devised by the proposed
algorithm outperforms the counterparts.

FIGURE 9. Detection performance of the optimal constant-modulus
waveforms by the proposed approach, the method of [36], [41] and
orthogonal waveform.

B. COMMUNICATION PERFORMANCE
A 4 × 4 MIMO DFRC system is considered to operate in
the X-band with carrier frequency 7.5GHz and bandwidth
500MHz. The sample frequency is considered as the Nyquist
rate (5×108 time/second). The PRF is 100 KHz.We consider
the joint radar-communication transmit array including four
antennas, spaced half a wavelength apart. We produce a
random waveform and an optimization waveform provided
by the proposed two-stage scheme as stated in Section 4.

Figure 10 illustrates the throughput result provided by the
proposed optimization waveform versus distance for BPSK,
QPSK, 16-PSK, and 256-PSK constellation. 256-PSK wave-
form provides a data rate of approximately 9 Mbps at a dis-
tance of 15 m, which is better than that generated by BPSK,
QPSK, 16-PSK constellation. 256-PSK waveform acquires
the highest data rate within a distance of 60 m, as the distance
between the system nodes increases the data rate decreases.

In Figure 11, we compare the symbol error rate (SER)
performances for the optimization waveforms offered by
the proposed two-stage scheme with the performances for a
random waveforms provided by the non-coherent PM-based
information embedding scheme using BPSK, QPSK,
16-PSK, and 256-PSK constellations. The data rates of the
above-mentioned four types of signals are 1.2, 2.4, 4.8, and
9.6 Mbps, respectively. To investigate the SER performance,

FIGURE 10. Comparative throughput of BPSK, QPSK, 16-PSK, 256-PSK.

FIGURE 11. Comparative SER performances of BPSK, QPSK, 16-PSK,
256-PSK.

14 × 107 random PM symbols have been generated.
Figure 11 illustrates the SER performance versus SNR for
BPSK, QPSK, 16-PSK, and 256-PSK constellation.

The curves highlight that the communication SER perfor-
mance of BPSK random waveform is enhanced by about
5 dB, 16 dB and 33 dB as compared with QPSK, 16-PSK,
256-PSK random waveform, respectively. Meanwhile, as we
can see from Figure 6, for BPSK, QPSK, and 16-PSK,
the SER performances of the optimization waveforms offered
by the proposed two-stage scheme are as good as that of the
random waveforms. However, for the 256-PSK, the commu-
nication SER performances of the optimization waveforms
are poor relatively. As the size of constellations increases,
the cross correlation levels between the optimization wave-
forms offered by the proposed two-stage scheme get higher.
As a result, to meet the more reasonable requirement men-
tioned above, we select suitable constellation size leads to a
tradeoff between communication SER performance and data
rate.

VI. CONCLUSION
In this paper, we developed a two-step waveform optimiza-
tion approach for a cognitive DFRC system, which combines
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the waveform design and selection processes. The proposed
waveform optimization scheme is based upon continuous
learning of the radar scenario at the receivers and reallocation
of transmission power to match the time-varying radar target
and surroundings. The cognitive process guarantees maxi-
mum information extraction from the radar environment. The
simulation results demonstrated the successful employment
of the proposed waveform optimization scheme in DFRC
systems for target detection performance improvement with-
out impacting the secondary communication function. The
improved DFRC system could form a joint platform, which
is crucial to both environmental perception and the estab-
lishment of data links. Nevertheless, the radar target in this
paper is assumed as a point scatterer amidst several clutter
sources, which is limited for intelligent transportation system
application. Improving the proposed model and algorithm for
an extended target per multiple range cells case is a possible
topic for future research.
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