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ABSTRACT This study proposes a new adaptive traffic signal control scheme to effectively manage
dynamically fluctuating traffic flows through intersections. A spatial-temporal representation of the traffic
state at an intersection has been designed to efficiently identify traffic patterns from complex intersection
environments, and a deep neural network (long short-term memory network, LSTM) is used to determine
look-ahead signal control decisions based on the estimated long-term feedback from a given traffic state. The
actor-critic algorithm, one of the reinforcement learning-based algorithms, is adopted to obtain the essential
parameters of the LSTMdeep neural network throughmultiple interactions between a simulated environment
and the corresponding adaptive traffic signal controller. A realistic model environment comprising a 24-hour
time-varying traffic demand including rush hour and non-rush hour situations served as the basis for traffic
generation in the numerical experiments to confirm the effectiveness of the proposed scheme. The results
of these experiments show that, compared to an optimized fixed time plan (Synchro), the proposed scheme
can reduce waiting times at intersections by an astounding 50% with consequential benefits of reducing fuel
consumptions, emissions, queue lengths, and vehicle delays whilst increasing mean speeds.

INDEX TERMS Adaptive traffic signal control, reinforcement learning, spatial-temporal traffic state
representation, actor-critic, LSTM, 24-hour dynamic traffic fluctuations.

I. INTRODUCTION
It is generally accepted that the efficient management of
traffic flows to reduce travel delay, especially through inter-
sections, is an essential objective in traffic management.
Attempting to achieve this objective is Adaptive Traffic Con-
trol which has an advantage in that it can take real-time
and stochastic traffic demand into consideration and provide
traffic light control decisions based on a wide range of algo-
rithmic designs including dynamic programming, fuzzy logic
and reinforcement learning as reported in various studies
[1]–[5]. However, based on an examination of these previous
studies, it is clear that the design of an adaptive traffic control

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

algorithm is plagued by three crucial problems outlined as
follows:

Firstly, an effective method is needed to represent, as accu-
rately as practically possible, the time-varying traffic flow
situation (usually referred to as the traffic state) at a target
intersection to include additional operating information per-
tinent to the particular intersection [5]. In such a method,
in order to maintain accuracy or rather preserve as much
information as possible, it would seemingly be convenient
to use an approach based on microscopic measures (such as
the position and velocity) of individual vehicles rather than
macroscopic measures (such as traffic flow). However, as an
intersection is a complex system involving the positions and
velocity profiles of multiple vehicles, such an approach can
be adversely impacted by high computation costs (the curse
of dimensionality), which in previous studies were avoided
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through the use of aggregate (macroscopic) measures such as
flow rate, flow speed and vehicle queue length instead of the
individual (microscopic) measures of vehicle positions and
velocities to represent the traffic state [3], [6], [7]. Although
these aggregate measures simplify traffic state representa-
tion, specific vehicular information at a target intersection is
inevitably lost. On the other hand, even if individual vehicle
positions and velocities are considered, delay information is
lacking for each vehicle as well as for the intersection system
resulting in the inability to effectively minimize the total
delay for each traffic light control decision.

Secondly, although in recent years a considerable number
of studies have employed macroscopic traffic flows in their
underlying traffic flow models, there remains a problem in
that these models cannot precisely reflect the actual traffic
flow characteristics of a target intersection which negatively
impacts evaluating the real-time performance of control poli-
cies in adaptive traffic signal control algorithms [8]–[11].
As already mentioned in the statement of the first prob-
lem, there is good reason for using macroscopic traffic flow
models in that their computational costs are relatively low,
so they can easily be implemented in adaptive control algo-
rithms. This computational benefit was a contributary factor
which effectively led to the implementation of some well-
known adaptive traffic control systems, such as SCOOT [12],
SCATS [13] and COP [14]. However, there still remains
the problem that macroscopic traffic flow models cannot
precisely reflect the traffic flow characteristics of a target
intersection.

The third problem relates to the modelling of traffic
demand at an intersection, which normally involves using
vehicle arrival rates as the basis for suchmodelling. However,
previous studiesmainly assume that the arrival rate is constant
throughout the day [3], [7], [15], [16], treating rush hour
and non-rush hour traffic as the same homogeneous condi-
tions. Clearly, this assumption can lead to the poor perfor-
mance of traffic signal control schemes, especially during
rush hours. Furthermore, although the Annual Average Daily
Traffic (AADT), obtained from historical observation data,
is used to provide aggregate information for traffic signal
control, we found that few algorithms can exactly take into
account the 24-hour time-varying traffic demands, arguably
needed to further enhance the design of traffic signal control
schemes.

Addressing these three problems, the research underpin-
ning this study establishes a fundamental decision-making
framework which uses a Reinforcement Learning (RL)
approach supported by a deep neural network to implement
an adaptive traffic control algorithm [17], [18]. The main
reason behind this approach is the recognition that RL has
recently contributed to effective decision-making in several
other areas such as gaming and robotics, as well as in traffic
control [19]–[24]. Furthermore, previous studies have con-
firmed that RL can effectively work with microscopic traffic
flow models for adaptive traffic control and can make look-
ahead control decisions for an intersection system [4], [25].

This study focuses on reducing the total delay of vehicles
through the design of a signal controller that can identify both
the spatial and temporal patterns in real-time traffic based
on microscopic information so as to reduce information loss.
To reflect spatial traffic situations as realistically as possible,
individual vehicle delays are defined as the basic element
of the traffic state, and an intersection is partitioned into
cells that represent individual delays. Moreover, to capture
the temporal traffic dynamics, we employ a series of spatial
observations to enhance the representation of the traffic state,
which is then used as input into a neural network to determine
the control decisions at different time intervals. Note that
the type of neural network used in this study is the LSTM
network because it is especially suited to time sequence
problemmodelling. This type of network, therefore, provides
the essential basis for dealing with complex traffic states as
represented by microscopic vehicular and other operational
information without suffering from the curse of dimensional-
ity [26], [27]. The proposed adaptive signal controller enables
control decisions based on the guidance of the trained neural
network after it has learnt an optimal control policy through
multiple trial-and-error interactions between the controller
and the intersection environment.

Reinforcement learning (RL) is employed to determine
the parameters of the LSTM network under a microscopic
traffic simulation environment given dynamic traffic demand
scenarios [28]. It should be noted that in previous stud-
ies, traffic demand scenarios for training procedures were
usually generated assuming a constant vehicle arrival rate
[7], [15], [16]. In this study, however, vehicle arrivals are
generated following a Poisson distribution for a 24-hour
time-varying traffic demand curve obtained from historical
data. This method allows the training procedure to take into
account daily traffic dynamics and reflects the stochastic
nature of traffic demand.

To ensure the convergence of the RL algorithm,
we employed an actor-critic strategy in the RL model to
optimize the parameters of the LSTM network. Moreover,
we used multistep bootstrapping technique and clipped surro-
gate objective technique to enhance the algorithm efficiency
and robustness. We finally provide a framework for the RL
that is specially designed for adaptive traffic control. The
contribution of this paper can be concluded as follows:

Firstly, in previous RL studies, the consideration of indi-
vidual vehicular delay information for processing by traffic
controllers was usually ignored. Addressing this omission,
we propose a novel traffic state definition to identify both the
spatial and temporal patterns using microscopic traffic delay
information. This method reduces information loss and pro-
vides individual vehicular delay information for each traffic
light control decision.

Secondly, we have designed a RL algorithm framework to
determine the parameters of the LSTM network in a micro-
scopic simulation environment. This framework can guaran-
tee the convergence of the learning process under complex
traffic states.
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Thirdly, the RL algorithm executes the learning process
based on a 24-hour time-varying traffic demand, which incor-
porates both rush hour and non-rush hour situations. This
enables realistic observations of commuting traffic in practice
and can provide substantial practical benefits in the imple-
mentation of adaptive traffic control.

Following on from this introduction, the remainder of this
paper is arranged as follows: Section II presents a litera-
ture review. Section III provides background information for
the traffic signal control scheme, involving delay, cost and
state. In Section IV, we describe the optimization algorithm,
an actor-critic algorithm combined with a multistep boot-
strapping technique and a clipped surrogate objective tech-
nique. In Section V, we describe the setup of the numerical
experiment and present the results to demonstrate the perfor-
mance of the proposed method. In Section VI, we conclude
our work on the proposed method and provide some sugges-
tions for future work.

II. LITERATURE REVIEW
There are currently two basic types of traffic signal control:
fixed-time signal control and adaptive signal control. In the
case of fixed-time control, the controller utilizes historical
traffic data to determine signal timing off-line [29]. Fixed-
time control has been widely used in several well-known
signal timing systems, such as the TRANSYT [30], SYN-
CHRO [31] and MAXBAND [32] systems. Fixed-time con-
trol performs stably if the traffic demand follows a fixed
pattern; however, it cannot respond to stochastic traffic condi-
tions, especially in situations where there is a sudden buildup
of traffic.

Adaptive signal control utilizes real-time data to determine
an optimal signal timing to maximize a defined objective
function and in recent decades it has gradually gained pop-
ularity due to its adaptability and flexibility. The controller
managing adaptive signal control can be classified according
to the type of control it provides, namely: responsive signal
control, online optimization control, or revising frequency
control [33]. Each of these control classifications is discussed
as follows:

A. RESPONSIVE SIGNAL CONTROL
In the case of responsive signal control, each signal in a con-
troller seeks a decision to extend the current green phase or
not, based on the upstream actuated traffic demand. A typical
signal control system is the modernized optimized vehicle
actuation (MOVA) system [34]. However, a disadvantage of
this system is that it fails to optimize globally because the
control decision only considers the traffic demand in the
current green direction whilst ignoring all other directions.

B. ONLINE OPTIMIZATION CONTROL
The online optimization algorithm utilizes model predictive
control [35], traffic flow model control [10], [36] and Petri
nets model control [37] to make control decisions consid-
ering detected and predicted future traffic. Typical existing

systems using online optimization include the SCOOT [12]
and SCATS [13] systems, which have shown significant
improvements in the performance of traffic signal control.
However, almost all of these systems were developed using
macroscopic traffic flow models, which implies the loss of
detailed information about individual vehicle movements at
an intersection and, therefore, results in poor performance
regarding control decisions.

C. REVISING FREQUENCY CONTROL
The revising frequency control approach uses a rolling hori-
zon and starts an optimization every few seconds to maximize
an objective function over the planning period. The main
feature of the revising frequency control approach is that the
traffic signal timing is optimized at a rather fast pace, and the
resolution can be as short as 0.5 seconds [38]. This method
makes it possible to control traffic signals effectively in many
practical applications, such as the PRODYN [39], OPAC [40],
RHODES [41] and COP [14] systems. The techniques used to
solve the rolling horizon problems include dynamic planning
and reinforcement learning (RL), with the latter technique
gaining popularity in recent research because of its computa-
tion feasibility and its adaptability in complex problems [38].
Extensive research, therefore, has been conducted in traf-
fic signal control using RL [5]. In one such research, as a
pilot study, a multiagent traffic signal control scheme with a
model-based RL was developed to minimize the overall wait-
ing time of vehicles. This study confirmed the effectiveness
of its RL-based adaptive signal control algorithm through
comparing the performance of the RL controller and non-
adaptive traffic signal controllers. The author employed Q-
learning to minimize the number of waiting vehicles for an
isolated intersection with aggregate state information such
as the queue length in its four approaches [42]. The advan-
tage of RL in the revising frequency control method was
further confirmed through the comparison of RL with func-
tion approximation and dynamic planning [38]. RL can be
divided into three categories: value-based RL, policy-based
RL and actor-critic RL. The author has shown that actor-critic
RL, a combination of value-based RL and policy-based RL,
outperforms the other two algorithms and has many benefits
in terms of robustness, training speed and the generalization
of new traffic scenarios [7]. Recent studies have also com-
bined deep neural networks with RL to implement traffic
control and have shown that such a combination can signif-
icantly improve the robustness and generalization ability of
RL [7], [43]. In addition, a deep neural network enables RL
to handle higher dimensions of traffic state representations
more efficiently including the complex and stochastic char-
acteristics of real-world traffic systems [25].

III. TRAFFIC SIGNAL CONTROL SCHEME
For a typical intersection (Section III-A), the traffic efficiency
is largely influenced by the traffic signal control scheme and
thus the traffic signal controller plays a critical role in build-
ing a safe, efficient, and environmental driving environment
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FIGURE 1. Schematic representation of traffic signal control.

in city traffic conditions. In this study, we adopt vehicle delay
to evaluate traffic efficiency and construct objective function
by minimizing the total delay J of surrounding vehicles at the
intersection (as introduced in Section III-B).

Fig. 1 shows the proposed control scheme. We divide the
time horizon into several discrete time intervals, and each
time interval is indexed by t with a duration of 1t . For
each time interval t , the signal control is fullfilled by three
stages: perception, decision-making, and execution. In the
perception stage: the controller first detects the positions and
speeds from surrounding vehicles information at time interval
t through several types of smart sensors, such as millimeter-
wave traffic radar and computer vision-based traffic moni-
tors; then the controller estimates the state st using themethod
in Section III-C to extract representative information without
losing too much information. In the decision-making stage,
the controller gives action at between two choices: to extend
the current phase (at = 0) or change into the next phase
(at = 1) based on the observed state st ; the basic logic of
this is that a trained neural network function can predict the
optimal action at using state st as input, where its internal
parameters are obtained using RL through multiple inter-
actions between the controller and simulation environment
(as introduced in Section IV). Finally, in the execution stage,
the traffic light will carry out the planned action at for1t (for
at = 0) or 1tyellow + 1t (for at = 1) seconds, observe the
control feedback cost jt and begin the next iteration of time
interval t + 1.

A. CELL-BASED INTERSECTION LAYOUT
Fig. 2 shows a typical single intersection that has four-
direction legs. Each leg consists ofmultiple approaching links
and departure links. We use� to denote the approaching link
set. Furthermore, we divide each approaching link into multi-
ple cells to collect useful information about the vehicle move-
ments, where the cells are labeled with 0, 1, 2, . . . , i, . . . ,Ni.
Since theminimum space headway of two successive vehicles
is 7.5 m, each cell span 7.5 meters when dividing cells. This
can benefit the precise state representation and reduce infor-
mation loss through a high-resolution space division method.

FIGURE 2. Illustration of a typical network.

B. DELAY AND COST FUNCTION
When approaching an intersection, vehicles might slow down
as a result of catching up to the vehicles in front or they may
have to stop because of a red light.We define the vehicle delay
dt (k) as the amount of extra time for vehicle k ∈ Ut to at time
interval t:

dt (k) = 1t(1−
vt (k)
vfree

) (1)

where 1t is the duration of time interval t , vt (k) is the
average speed of vehicle k during time interval t , vfree is a
constant that indicates the speed of a vehicle passing through
the intersection under the free-flow conditions and Ut is the
set of the vehicles located on the approaching links of the
intersection at the beginning of the time interval t . Note that
for vehicle k , the average speed vt (k) is associated with phase
decision at , and the current state st . If the corresponding
phase is green, the vehicle might travel with a high speed,
however, if the corresponding phase is red, the vehicle should
slow down (low speed) and stop.
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For each time interval t , the controller’s performance can
be evaluated by cost jt :

jt =
∑
k∈Ut

dt (k) (2)

where cost jt considers the total delay for surrounding
vehicles Ut .
Furthermore, based on the cost of each time interval,

the total cost function of the controller can be derived as:

min
at

J =
T∑
t=0

jt (3)

where T is the total number of time intervals in the plan-
ning horizon. Minimizing cost J is consistent with the fact
that our controller aims at improving the traffic efficiency
by manipulation phase extension or not over the planning
horizon [0, 1, 2, . . . ,T ].

C. STATE DEFINITION
The traffic controller makes action decisions based on the
representative state of the target intersection. We propose a
method to collect the multidimensional information to rep-
resent the traffic state to reduce the information loss caused
by partial observability. In previous works, the traffic state
definition is usually simply represented by the aggregate
information, such as the average queue length or waiting
time of the vehicles located in the intersection. However,
such representation ignores individual differences and spatial
information. This study proposes a method that can take
into account the travel time delay for each vehicle in the
intersection and maintain the dimensions of the input as a
constant even if the number of vehicles at an intersection is
time-dependent.

Since the size of Ut is time-dependent, it is not proper to
use dt (k) directly as the representation of the state. We define
delay Dit for cell i as follows:

Dit =


∑

k∈U (i)
t
dt (k)

|U (i)
t |

if |U (i)
t | 6= 0,

0 if |U (i)
t | = 0.

(4)

where U i
t denotes the set of vehicles that are located at the

cell i at time t . If |U i
t | = 0, it means that no vehicle has been

checked in cell i at time t and thereforeDit is equal to 0. In the
case of |U i

t | 6= 0, we use the mean delay value of the vehicles
as the delay value of the cell i at time t . We further use Dt to
denote the delay information for the intersection as follows:

Dt = [D0
t ,D

1
t , . . . ,D

i
t , . . . ,D

Ni
t ] (5)

where Ni is the total number of cells at the approaching links
for the target intersection. Dit can be obtained by observing
the speeds of the vehicles in cell i during time interval t .
Our proposed method does not require the tracking of the
trajectories of each vehicle at an intersection. Therefore,
the proposed state representation method is adaptive and
easily implemented for several types of smart sensors, such

as millimeter-wave traffic radar and computer vision-based
traffic monitors.

Furthermore, in order to restrain the phenomenon that the
phase keeps fast flip, we use ct to denote the cumulative
repetition number of the current phase until the end of the
last time interval t − 1 which can be expressed as:

ct =

{
ct−1 + 1 if at−1 = 0,
0 if at−1 = 1.

(6)

ct is 0 when the signal controller switches into the next phase
(at−1 = 1) and ct = ct−1 + 1 when the signal controller
decides to remain in the current phase (at−1 = 0) at the last
time interval t − 1.
In conclusion, we introduce the spatial observation xt and

state st definitions to capture the spatial and temporal dynam-
ics in a complex traffic environment.

xt = [φt , ct ,Dt ]
st = [xt−ξ+1, xt−ξ+2, . . . , xt ] (7)

where φt ∈ {0, 1, 2, 3} is refered to the traffic signal phase at
time t (see Fig. 3). ξ is the number of observed timesteps.
An example is provided to illustrate the evolution of the

proposed state representation method. As shown in Fig. 3,
the controller executes the signal phase φt , sequentially from
phase 0 to phase 3. The value of ξ is set to 10 for illustration
purposes.We assume that time interval t−1 beginswith phase
φt−1 = 1 and phase repetition number ct−1 = 10. After 1t
seconds, the controller is required tomake a decision based on
state st at the beginning of time interval t . Because of action
at−1 = 0, the controller obtains xt where φt = 1, ct = 11 and
Dt = [3.86, 3.12, . . . , 0.00]. Then, based on the evaluation
of the state st = [xt−9, xt−8, . . . , xt ], the controller selects
an action at = 0, receives feedback jt and begins the next
iteration of time interval t + 1. Subsequently, the controller
selects to change the phase (at+1 = 1) at the beginning of
time interval t + 1 based on st+1 where φt+1 = φt = 1 and
ct+1 = ct + 1 = 12 because of the extending phase decision
of time interval t (at = 0). After1tyellow+1t seconds, state
st+2 for time interval t + 2 is obtained where φt+2 and ct+2
take values of 2 and 0 as a result of the phase change decision
(at+1 = 1). Notice that the yellow phase 1tyellow cannot be
ignored considering safety issues for phase changes decisions
(at = 1).

IV. REINFORCEMENT LEARNING FOR TRAFFIC
SIGNAL CONTROL
The decision-making stage is achieved through a trained neu-
ral network which can determine the best action at for state st .
Two neural networks are constructed to achieve the decision-
making: a critic network V̂ (st ;w) to predict the expected
cumulative cost and an actor network π̂ (at |st ; θ ) to calculate
the optimal action directly (Section IV-A). In terms of the
network structure, we adopt the LSTM network to build the
critic network and actor network (Section IV-B) to capture
the temporal dynamics. Then, as the parameters are stochas-
tically given initially, we adopt an actor-critic framework, one
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FIGURE 3. Example of state evolution.

type of the RL-based algorithms, to calculate the parameters
w and θ in order to reduce the estimated error for the critic
network and reduce the future cost for the actor network
(Section IV-C). The main logic is to obtain a set of opti-
mal parameters w and θ gradually to guide the process of
decision making through training data, which is determined
through multiple interactions between the decision-making
agent and simulated environment. Furthermore, we adopt
two techniques to enhance the algorithm efficiency and
robustness, which areMultistep bootstrapping (Section IV-D)
and Clipped surrogate objective technique (Section IV-E).
Finally, the overall algorithm is given in Section IV-F to
illustrate the training details.

A. BASIC COMPONTENTS
RL, a type of machine learning technique, enables the con-
troller to obtain optimal parameters for decision-making
agent through trail and error interactions between the con-
troller and simulated environment [18]. Two core concepts
in RL are the actor and critic: the actor can guide the choice
of action at based on state st at each time interval t for the
controller, and the critic can predict the cumulative cost of
state st to estimate the long term performance of current state.

The actor can be defined as a conditional probability,
π (s, a) = P(at = a|st = s), which can map system
state s to an action probability distribution over an action set
at ∈ {0, 1}.
The critic can estimate the average expected cumu-

lative cost since state st over the planning horizon
[t, t + 1, . . . , τ, . . . ,T ]:

V (st ) = E[
T∑
τ=t

jτ |st ] (8)

Furthermore, based on the Bellman equation, we can
obtain V (st) iteratively by using the cost jt and the next state
value V (st+1).

V (st ) = E[jt + V (st+1)|st ] (9)

Note that the true values of V (st ) and π (s, a) are difficult to
observe in practice. Usually, we adopt function approxima-
tions V̂ (st ;w) and π̂(at |st ; θ ) to estimate V (st ) and π (at |st )
where w and θ are the parameters of the function approxima-
tions V̂ (st ;w) and π̂ (at |st ; θ ) (shown in Fig. 4).

FIGURE 4. Illustrations of critic neural network and actor network.

B. NEURAL NETWORK STRUCTURE USING THE LSTM
To capture the temporal dynamics of the sequences, a long
short-term memory (LSTM) network is employed to con-
struct the function approximation.

This study adopts the many to one structure to map a
sequence vector [x1, x2, . . . , xτ ] to vector yτ [44], as shown
in Fig. 5. The LSTM network can be referred as 2L

:

Rτ ·M → R1·N , where τ is the length of the time sequence,
M is the length of one vector and N is the length of the
output. In addition, fully connected layer can be referred as
2C
: RM

→ RN , where M denotes the length of the input
vector and N denotes the length of the output vector.

The function approximation architecture adopted in this
study is shown in Fig. 5. For each time interval, t , the state
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FIGURE 5. Architecture of the Critic Network using the LSTM Network.

st =
[
xt−ξ+1, xt−ξ+2, . . . , xt

]
is obtained through stacking

a series of spatial observations xt−ξ+1, xt−ξ+2, . . . , xt of dif-
ferent time intervals, where ξ is the length of the time series
and the length of each xt is Ni + 2 (see Section IV-C). Using
state st as the input, the input matrix size is ξ · (Ni + 2). First,
we employ a fully connected layer 2C with 64 neurons and
rectifier nonlinear activation functions to compress observa-
tion xτ τ ∈ [t − ξ + 1, t − ξ + 2, . . . , t]. Then, we pass
the stacked output to the LSTM layer, 2L , where the LSTM
layer is composed of 64 units and unrolled for a ξ step input.
Finally, the fully connected layer 2C is used as the linear
output layer with no activation function for the critic and
softmax activation function for the actor, where the number of
neurons is 1 and 2 respectively, corresponding to the number
of outputs in the critic and actor. During the training process,
the algorithm uses theAdam optimizer as the gradient descent
algorithm with a learning rate of 0.0002 for the critic and
0.0001 for the actor. The critic and actor net use the same
structure except for the output layer. The definitions of the
critic and actor net are given as follows:

V̂ (st ;w)

= 2C2L([2C (xt−ξ+1),2C (xt−ξ+2), . . . ,2C (xt )])

= 2w(st ;w) (10)

π̂ (at |st ; θ )

= 2C2L([2C (xt−ξ+1),2C (xt−ξ+2), . . . ,2C (xt )])

= 2θ (at |st ; θ ) (11)

C. PARAMETER OPTIMIZATION USING
ACTOR-CRITIC ALGORITHM
The actor-critic algorithm, one of the RL-based algorithms,
is adopted in this study to determine the controller’s internal
parameters (w and θ ) in the interactive process between the
traffic signal controller and the simulation environment. The
reasons for adopting the actor-critic algorithm are that the
convergency results in critic-only algorithms tend to be biased
and that the convergency speeds in actor-based algorithms
are usually rather slow. On the other hand, the actor-critic

algorithm effectively provides an appealing trade-off between
optimality and convergency speeds.
Two basic components are the actor π̂(at |st ; θ ) and critic

V̂ (st ;w). During the training process, the actor is employed
to determine an action π̂ (at |st ; θ ) for the current state st ;
then the controller executes the command at , receives the
feedback jt and collects the training sample (st , at , jt , st+1);
based on the collected sample, the critic can estimate the long-
term performance V̂ (st ;w) and get involved in the parameter
optimizing process to help the actor and the critic achieve bet-
ter performance in the future [45]. The actor-critic algorithm
optimizes internal parameters θ and w as follows:
(1) the actor chooses action at ∼ π̂ (at |st ; θ ) at the begin-

ning of time interval t;
(2) the controller receives the feedback jt and st+1 at the

end of time interval t;
(3) the controller collects the training sample

(st , at , jt , st+1);
(4) the critic evaluates the temporal difference (TD) error

according to the sample;
(5) the algorithm optimizes the actor and the critic’s

internal parameters θ and w respectively, according to the
TD error.
In the following, we will show the details for the parameter

optimization process.
For the critic, the parameter w is optimized to decrease the

difference between the approximation V̂ (st ;w) and true value
V (st ) by applying a gradient descent to the mean-square loss
function L(w).

min
w

L(w)=E[(jt+V̂ (st+1;w)−V̂ (st ;w))2]=E[δ2t ] (12)

where jt + V̂ (st+1;w) is an approximate estimate for the
true value V (st ) following Bellman Equation. δt = jt +
V̂ (st+1;w)− V̂ (st ;w) is temporal difference error (TD error)
to express the difference between approximation and true
value. The critic optimizing can be regarded as a regression
problem to build themapping between state st and valueV (st )
using the training sample (st , at , jt , st+1), where the input
label is st and the output label is jt + V̂ (st+1;w). The batch
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stochastic gradient descent technique (BGSD) is employed to
obtain an optimized parameter w: w← w+αwδt∇wV̂ (st ;w),
where αw is the learning rate of the critic.

For the actor, parameter θ is adjusted to minimize the
total cost J by applying gradient ascent to the cross-entropy
loss L(θ ):

min
θ

L(θ) = E[logπ (at |st ; θ )δt ] (13)

Eq. 13 can optimize θ using the BGSD technique following
θ ← θ+αθδt∇θ logπ (at |st ; θ ), where αθ is the learning rate
in the actor. For further theoratical explaination, readers can
refer to the work by Sutton [18].

The whole procedure of the actor-critic algorithm is
summarized in Algorithm 1.

Algorithm 1 Actor Critic Algorithm

Input: a differentiable state value function, V̂ (st ;w)
a differentiable policy function, π̂ (at |st ; θ )

Output: updated parameters w and θ
1: for day = 0, 1, 2, . . . ,M do
2: for t = 0, 1, 2, . . . ,T do
3: // Training sample collecting
4: Sample action at ∼ π̂ (at |st ; θ )
5: Execute the action at , receive the feedback jt , and

obtain the next state, st+1
6: // Parameter optimizing
7: Compute TD error δt according to the training sam-

ple (st , at , jt , st+1)
8: Optimize parameters w and θ using Eqs. 12 and 13
9: end for

10: end for
11: return Parameters w and θ

D. MULTISTEP BOOTSTRAPPING TECHNIQUE
Since the batch size is too small (only one training sample) for
parameter optimizing process, we are inspired by the multi-
step bootstrapping technique to increase batch size when
optimizing parameters. This can further improve the conver-
gency speed and algorithm stability in the above algorithm
(Algorithm 1).

The original method updates parameters w and θ using
only one sample (st , at , jt , st+1) at the end of each time
interval. Inspired by the multistep bootstrapping technique,
this study updates parameters w and θ at the beginning of
the time interval t = qn for q = 0, 1, 2, . . . ,Q, where n
is a prespecified number (step) of time intervals. Consider
the environment is at time interval t = qn, the algorithm
progresses as follows: the controller selects actions at ∼
π (a|st ; θqn) during the intervals t = qn, qn+1, . . . , qn+n−1
and executes parameter optimizing until the end of the time
interval t = qn+n−1. The RL algorithm collects the samples
(st , at , jt , st+1) from t = qn to qn + n − 1 and saves these

samples into training buffer B[qn,(q+1)n]:

B[qn,(q+1)n] =


(sqn, aqn, jqn, sqn+1)

(sqn+1, aqn+1, jqn+1, sqn+2)
. . .

(sqn+n−1, aqn+n−1, jqn+n−1, s(q+1)n)

 .
Therefore, we can obtain a batch of n-step-TD errors at

t = q+ n− 1 based on B[qn,(q+1)n] using the n-step return:

δi = −V̂ (si;w)+
qn+n−1∑
τ=i

jτ + V̂ (s(q+1)n;w)

i ∈ [qn, qn+ 1, . . . , qn+ n− 1] (14)

Using Eq. 14, we can obtain δqn, δqn+1, . . . , δqn+n−1 as:

δqn=−V̂ (sqn;w)+jqn+. . .+jqn+n−1+V̂ (s(q+1)n;w)

δqn+1=−V̂ (sqn+1;w)+jqn+1+. . .+jqn+n−1+V̂ (s(q+1)n;w)

. . .

δqn+n−1=−V̂ (sqn+n−1;w)+ jqn+n−1 + V̂ (s(q+1)n;w)

Then, we obtain the expanded training buffer B̃[qn,(q+1)n]:

B̃[qn,(q+1)n]

=


(sqn, aqn, jqn, δqn, sqn+1)

(sqn+1, aqn+1, jqn+1, δqn+1, sqn+2)
. . .

(sqn+n−1, aqn+n−1, jqn+n−1, δqn+n−1, s(q+1)n)


We then draw random samples uniformly from the

expanded training buffer B̃[qn,(q+1)n] and adopt these samples
to construct a training batch to optimize the parameters w
and θ using the BGSD technique based on Eqs. 12 and 13.
Compared to optimizing using only a single training sample
(see Algorithm 1), batch optimizing calculates a series of
TD errors [δqn, δqn+1, . . . , δqn+n−1] to calculate parameters
w and θ .
The process of the multistep bootstrapping technique is

visualized in Fig. 6.

E. CLIPPED SURROGATE OBJECTIVE TECHNIQUE
Despite the Actor-Critic Algorithm serves as an effective
framework to obtain optimized parameters in the RL agent,
the extreme large loss (Eqs. 12 and 13)may cause the parame-
ters change unstably between two successive parameter opti-
mizing processes. This may have a negative impact on the
stability of algorithm and convergency speed [46]. Therefore,
to alleviate the influence of this problem, this study further
employs a clipped surrogate objective technique to improve
algorithm robustness. The clipped surrogate objective tech-
nique uses clipped probability ratios to enhance the perfor-
mance of parameter updating.
After implementation in the clipped surrogate objective

technique, the actor loss function L(θ ) is modified as follows:

min
θ
L(θ )=E{min[δtεt (θ ), δtclip(εt (θ ), 1−ε, 1+ε)]} (15)

where the clip ratio is defined as εt (θ ) =
π (at |st ;θ )
π (at |st ;θold)

and ε
is the clip rate. θold is the previous value of the policy neural
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FIGURE 6. Illustration of the multistep bootstrapping technique.

network parameter. This indicates a conservative attitude in
parameter optimizing [47]. The clip function is defined as
follows:

clip(x,min,max) =


min if x < min,
x if min < x < max,
max if x > max.

(16)

Therefore, clip(εt (θ ), 1 − ε, 1 + ε) can guarantee that
the effective εt (θ ) is in the interval [1 − ε, 1 + ε], which
enables the algorithm to avoid the trap of excessive parameter
changes. Finally, the minimum value between δtεt (θ ) and
clipped δtεt (θ ) is adopted in calculating the loss function of
parameter θ , which can provide a pessimistic bound for the
loss function L(θ ) and avoid the problem of oscillation caused
by large parameter changes.

F. OVERALL ALGORITHM
In this section, we summarize the above content and pro-
vide an overall algorithm for the training of the controller
internal parameters w and θ . The overall algorithm, shown
in Algorithm 2, is an actor-critic algorithm combined with
a multistep bootstrapping technique and a clipped surrogate
objective technique.

In Algorithm 2, the time interval t is the minimum traffic
signal control unit in the planning period with a duration
of1t . We define the operator ∗ to show the real-time of time
interval t in the environment where the relationship of time
interval t + 1 and t is (t + 1)∗ = t∗ + 1t if at = 0 or
(t + 1)∗ = t∗ + 1tyellow + 1t if at = 1. The controller
consists of two parts: an actor π̂ (at |st ; θ ) and a critic V̂ (st ;w).
Moreover, we adopt a deep neural network to construct the
functions V̂ (st ;w) and π̂ (at |st ; θ ) (see Section IV-B).
The control process is as follows: at the beginning of each

time interval t , the controller observes the state st selects an
action at and sends it to the traffic light; after1t (for at = 0)
or1tyellow+1t (for at = 1) seconds, the controller receives

Algorithm 2 Training Controller Internal Parameters by RL

Input: a differentiable state value function V̂ (st ;w)
a differentiable policy function π̂ (at |st ; θ)

Output: optimized parameters w and θ
1: Initialization θ = θ0, w = w0, q = 0
2: for day = 0, 1, 2, . . . ,M do
3: q = 0
4: for t = 0, 1, 2, . . . ,T do
5: // Training sample collecting
6: Sample action at ∼ π̂ (at |st ; θ)
7: Execute the action at , receive the feedback jt and

obtain the next state st+1
8: Store sample (st , at , jt , st+1) to the training buffer

B[qn,(q+1)n]
9: // Parameter optimizing
10: if t+1 = (q+1)n or the simulation of one day ends

then
11: Compute a batch of n-step TD errors

[δqn, δqn+1, . . . , δqn+n−1] and construct the
expanded training buffer B̃[qn,(q+1)n] based on
(14).

12: Optimize parameters w and θ using the expanded
training buffer B̃[qn,(q+1)n] based on (12) and (15).

13: q = q+ 1
14: end if
15: end for
16: end for
17: return Parameters w and θ

the feedback jt and observes the next state st+1 to begin the
next iteration. The duration of the planning period is referred
to as 0, and the simulation of one day terminates when the
actual time T ∗ ≥ 0. As a common practice in RL, the state
value of the terminal state V (sT ) is equal to 0. The action at
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FIGURE 7. Selected Intersection in the simulation of SUMO.

is a binary variable, where the value 0 denotes remaining in
the current phase and the value 1 denotes switching into the
next phase.

Using a multistep bootstrapping technique, we can divide
the planning period into a training sample collecting period
(interaction process between traffic environment and con-
troller) and a parameter optimizing period (the parameter
optimizing process to optimize parameters θ and w).

(1) Training sample collecting period (time duration
t = [qn, qn+ 1, . . . , qn+ n− 1])

For each time interval t , the controller selects an action
at ∼ π (a|st ; θqn) and sends the command at to the traffic
light to control the movement of the vehicles; the controller
then receives the feedback jt and begins with st+1 after 1t
or 1tyellow + 1t seconds. Then, the controller collects the
sample (st , at , jt , st+1) and stores it in the training buffer
B[qn,(q+1)n]. The controller starts at time interval qn and
repeats the above interaction process n times until time inter-
val qn+ n− 1.

(2) Parameter optimizing period (the end of time interval
qn+ n− 1)

If the next time interval t + 1 = (q+ 1)n or the controller
terminates in the next time interval (when (t + 1)∗ > 0),
the controller computes a batch of advantaged estimators
[δqn, δqn+1, . . . , δqn+n−1] and constructs the expanded the
training buffer B̃[qn,(q+1)n].
Finally, the controller optimizes parameters w and θ using

the BGSD technique.
The traffic signal control algorithm is summarized

in Algorithm 2.

V. EXPERIMENTS AND RESULTS
In this section, we provide a series of numerical examples to
demonstrate the performance of the proposed traffic signal
control method. The microscopic traffic simulator SUMO

(Simulation of Urban Mobility) was used as the simulation
environment in our experiments [48]. The vehicle agent com-
municates with the traffic environment through the TraCI
package of SUMO. We implemented the LSTM networks
using TensorFlow 1.5 to approximate the functions V̂ (st ;w)
and π̂ (at |st ; θ ) [49]. The tests were executed on a desktop
PC with a 4.20 GHz i7-7700 CPU, 32 GB of RAM run-
ning Windows 10. The whole procedure was implemented in
Python 3.5.

A. STUDY AREA
This numerical example is based on the test bed introduced by
Jeffrey Glick [50]. The selected intersection is located at the
intersection of Palm Drive and Arboretum Road, in Stanford
CA 94305, USA. The corresponding SUMO configurations
were exported from OpenStreetMap.org, as shown in Fig. 7.
The given intersection has four direction legs, and each
approaching and departure leg comprises two links. In each
approaching link, the movement m can choose to move left,
through or right in accordance with their route U .

B. TRAFFIC DEMAND AND VEHICLE GENERATION
In this section, we introduce a vehicle arrival generation
method based on the realistic traffic demands (hourly traffic
volume data of different vehicular movements). In practice,
it is common to collect the hourly traffic volume data (vehi-
cles per hour, vph) for 12 movements (4 left-turn move-
ments, 4 through movements and 4 right-turn movements),
as shown in Fig. 7. The 24-hour traffic volume data for the
12 movements is used for the test, as shown by the gray
points in Fig. 8. These traffic flow data were sourced from
the Github project by Jeffrey Glick [50]. To describe the
traffic flow time-dependent characteristics, we adopt 12 poly-
nomial fitted functions [ρ0(t), ρ1(t), . . . , ρm(t), . . . , ρ11(t)]
to approximate the time-dependent traffic demand of the
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FIGURE 8. Traffic flow of the 12 movements.

12 traffic movements. The black curve in Fig. 8 represents
the time-related characteristics of the traffic demand ρm(t).
Therefore, we can insert the vehicles into the network dynam-
ically and stochastically to reflect the morning and evening
peaks, which creates a realistic and varying flow pattern for
the agent to control, as opposed to using a constant hourly
demand.

To simulate a series of stochastic traffic scenarios in
SUMO, we assume that the vehicles arrive upstream of the
approach to the intersection following a Poisson distribution
with a time-dependent arrival rate of λ = ρm(t). For vehi-
cles k ∈ Um, they follow the direction of movement m,
whereUm denotes all the vehicles in movementm. Therefore,
for vehicles k ∈ Um in movement m, the headway 1ζ,
of two adjacent vehicles k + 1 and k follows the negative

exponential distribution:

1ζ ∼ λe−λ1ζ where λ = ρm(ζ (k)) (17)

where1ζ indicates the headway between two adjacent vehi-
cles k+1 and k . ζ (k) indicates the departing time of vehicle k .
The arrival rate λ is estimated using the fitted function ρm(t)
(see the black curve in Fig. 8).

C. PARAMETER SETTINGS
To train the parameters in the LSTM network using RL,
we run the numerical experiment for an arbitrary fig-
ure of 200 simulated days, using the standard 86400 seconds
for the duration of each day. The exploration rate drops
from 1.0 to 0.0 linearly during the first 150 days. After
the 150th day, the agent stops exploring and exploits the
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FIGURE 9. Learning process over 200 days.

TABLE 1. Hyper-parameters setting.

environment completely. The learning rates are 0.0002 and
0.0001 for critics and actors, respectively. The hyper-
parameter settings are shown in Table 1.

D. BENCHMARK GENERATED BY SYNCHRO
We evaluate the effectiveness of the algorithm relative to
the fixed-time controller generated by Synchro [31]. Synchro
has been widely recognized as a practical software tool for
developing a fixed time schedule for traffic signal control.
Based on historical demand, the software calculated the best
cycle length to be 60 seconds. To reflect fluctuations in the
traffic demand, we divide the 24 hours demand into 7 subsets,
and each configuration is shown in Table 2. Additionally, the

TABLE 2. Synchro signal time settings.

yellow transition is set to 4 seconds between two different
phases, which is included at the end of each phase.

E. RESULTS ANALYSIS
1) CONVERGENCE VALIDATION
The performance of the agent during the training process is
shown in Fig. 9. The horizontal axis of the figure reflects
the training days, ranging from 0 to 200, where a day repre-
sents a simulated day. The vertical axis reflects the average
cost J

T (overall delay at the intersection during each time
interval). The gray curve illustrates that the value of the
objective function can increase significantly during the learn-
ing process. The magnitudes of the oscillations decreases
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FIGURE 10. Evolutions of the RL controller and fixed-time plan over 24 h: a lower value means better control.

with growing training days. The results confirm that our
algorithm can learn from experience and optimize the policy
gradually.

To describe the above results in detail, in Fig. 9 (b),
the cost jt during one day, for different days is visualized
to provide insight into the noise and performance changes
as the algorithm progresses. The horizontal axis represents
the simulation time for one day, while the vertical axis is
the cost jt obtained per time interval. Note that we use the
moving average technique to illustrate the change tendency
of costs during a day. Fig. 9 (b) shows that the cost increases
significantly during the morning and evening peaks of all
the training days because of commuting traffic, which is
consistent with the tendency of the traffic demand in Fig. 8.
However, the magnitude of increased delay during the period
of commuting, decreases as the training days progress as

illustrated through the comparisons between day 0, 49, 99,
149 and 199. Therefore, we can conclude that the influence
of the commuting traffic is significantly weakened using our
algorithm.

Moreover, Fig. 9 (b) shows the convergence of the pro-
posed RL algorithm. Initially, on training day 0 (day 0),
the agent explores the environment and selects actions ran-
domly most of the time. Therefore, the performance of the
agent is poor, and the magnitude of the oscillations is very
large. As the training days progress, the agent learns more
from experience and selects more exploitative actions with a
lower exploratory rate. Thus, the agent achieves a lower cost,
lower variance and a near-optimal and stable performance
to control the environment. Finally, after training day 83,
the agent begins to converge to an optimal policy as indicated
in Fig. 9 (a).
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FIGURE 11. Delay evolutions of the RL controller and fixed-time plan over 24 h.

2) PERFORMANCE COMPARISON
We compare the RL controller’s performance to that of the
fixed-time plan generated by Synchro. As the RL controller

has a different cycle length with a fixed-time plan, we collect
data every 5 seconds in the RL controller and use a fixed-time
plan to build the same test bench. To test the effectiveness
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TABLE 3. Performance comparisons of RL controller and fixed time
plan (Synchro).

TABLE 4. Performance comparisons of the RL controller and fixed-time
plan (Synchro) for the different directions.

of the RL controller, we chose an additional 5 indicators,
including fuel consumption (ml/s), emissions rate (mg/s),
mean speed (m/s), queue length (veh), and waiting time
(seconds). Note that waiting time is different from the delay,
in that waiting time refers to the stopping time as a result of a
red phase, while delay time refers to the extra time needed
because of the control policies. With respect to the emis-
sions rate, we only consider hydrocarbon (HC) emissions.
In the experiment, we chose 10 random samples to compare
the two above control methods (see Table 3). Moreover,
we establish performance comparisons by analyzing day 0
(1st sample) in detail. In Table 4 and Fig. 10, we analyze the
performance of the four directions in the Synchro and RL
controllers. In Fig. 11, we analyze the delay evolution over
24 h, morning peak between 8:45 to 9:00 and evening peak
from 17:45 to 18:00.

As listed in Table 3, for 10 random samples, the RL con-
troller can effectively reduce fuel consumptions by 8.85%,
emission rates by 17.92%, vehicle queue lengths by 33.09%,
waiting times by 50.27% and increasemean speeds by 8.31%.
Therefore, we can conclude that the RL controller performs
better than the fixed-time plan because it can adapt to real-
time changes in traffic flows at a higher resolution.

Table 4 and Fig. 10 show that compared with the fixed-
time plan in Synchro, the RL controller can significantly
improve the performance of traffic signal control in terms
of the five indicators. Fig. 10 shows that the RL controller
can enhance the performance of the north direction in the
morning peak and the performance of the east direction in the

evening. Compared to the fixed-time plan, RL can reduce
the queue length from 4.25 to 1.31 and from 2.60 to 1.26 in
the north and east directions, respectively (see Table 4). The
above result is consistent with the fact that the north traffic
(flows 3,4 and 5) and east traffic (flows 9,10 and 11) occupy
a large proportion of the traffic in the morning and evening
peaks (see Fig. 8). The result shows that the RL controller
can address the unbalanced time-space problem caused by
commuting traffic.

The delay evolution is illustrated in Fig. 11 (a), and the
results show that the RL controller performs better in com-
parison to the Synchro plan because of the rapid and flex-
ible changing phases. As Fig. 11 (a) shows, the delay in
both controllers increases with increasing traffic demand in
the morning and evening peaks, whereas the RL controller
increases more slowly when compared to the fixed-time con-
troller, especially in the morning peak. Fig. 11 (b) shows that
the RL controller can increase the duration of phase 1 (time
duration from 31600 to 31900) and phase 3 (time duration
from 32000 to 32400) to accommodate the traffic demand
in the morning peak. However, the Synchro plan is based
on the fixed time plan, which can cause an oversaturated
traffic flow at the intersection, and delays using the Synchro
plan can increase significantly (i.e., the time duration from
31600 to 31900). Additionally, Fig. 11 (c) shows that the
RL controller outperforms the Synchro plan by giving more
priority to left-turn traffic (phase 0 and phase 2) in the evening
peak. We can conclude that the RL controller can outperform
the fixed-time plan because of its adaptability and rapid
responsiveness.

VI. CONCLUSION
In this paper, we propose a new adaptive traffic signal con-
trol scheme to produce optimized traffic control policies in
order to minimize the delay of vehicles passing through
intersections. The scheme employs an enhanced algorithm
which uses spatial-temporal network information to define
the traffic state, where individual vehicle delay is used as
a basic measure rather than the aggregate measures of flow
rate, flow speed and vehicle queue length as used in previous
studies. The proposed method to identify traffic patterns can
reduce information loss (such as vehicle delay) when charac-
terizing high-dimensional features in the definition of traffic
state. Furthermore, we adopted a deep neural network (the
LSTM) to construct a decision-making agent in which its
intrinsic parameters are determined through a RL framework;
thus optimizing the ability of a traffic controller to decide
whether to extend the current phase or switch into the next
phase. Specifically, the RL framework uses an actor-critic
algorithm to obtain a balance between a biased convergence
result (critic-based RL algorithms) and a high variance result
(actor-based RL algorithms). Additionally, we modified this
algorithm with a multistep technique and a clipped surrogate
objective technique to improve its performance.

In the simulations, we built experiments based on a rep-
resentation of the intersection of Palm Drive and Arboretum
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TABLE 5. Variables and meanings.

Road, where simulated vehicles entered the network based on
the assumption that the vehicle arrival rate follows a Poisson
distribution that was derived from the 24-hour traffic flow
history for this intersection. Therefore, this vehicle generation
plan reflects the prevailing time-varying daily commuting
traffic, which characterizes the flow peak in rush hours and
the instability of traffic flow during non-rush hour periods.
Regarding the primary aim of this study, to reduce vehicle
delay times at intersections, it was shown in the numerical
examples for 10 random samples, compared to the optimized
fixed-time plans obtained using Synchro, that the proposed
method can reduce such vehicle delay times by over 50%.
This significant reduction in delay times also has additional
knock-on effects; fuel consumptions were reduced by over
8%, emission rates down by over 17%, vehicle queues down

by over 33%, whilst mean speeds were increased by over 8%.
The results, therefore, strongly indicate that the proposed
scheme should be effective for traffic signal control at iso-
lated intersections where significant traffic fluctuations are
prevalent.

The proposed scheme in this study essentially focused on
an isolated intersection. However, in future work the scheme
could be extended to control a regional network similar
to that of the OPAC and PRODYN systems. To overcome
the significant computational load problems, a distributive
RL framework should also be considered to speed up the
training process.

NOTATION
In this section, the notation is given in Table 5 to clarify the
whole scheme.

RELATIONSHIP BETWEEN δW , δθ AND L(W ), L(θ

1θ = αθδt∇θ logπ (at |st ; θ )

= E[log∇θπ (s, a)δt ]
= ∇θL(θ ) (18)

Eq. 18 shows that 1θ is the derivative of L(θ ), where the
update gradient αθδt∇θ logπ (at |st ; θ) is the common updat-
ing rule of the policy-based RL algorithm. In the study,
the automatic differentiate software achieves maxθ L(θ ) by
obtaining the derivative 1θ to update θ . In other words,
the automatic differentiation software (such as TensorFlow,
Keras, PyTorch) achieves minw L(w) by obtaining the
derivative 1w.
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