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ABSTRACT This paper investigates the impulsive synchronization scheme of fractional-order chaotic
systems with actuator saturation and control gain error. Based on the theory of fractional order system and
impulsive differential system, discontinuous Lyapunov stability and matrix inequality approach, some new
sufficient conditions are derived to guarantee the impulsive synchronization of a general class of fractional
order chaotic systems. It is worth mentioning that the actuator saturation and control gain error are discussed
simultaneously, which is more rigorous and practical in real systems. Finally, some simulation results verify
the correctness and effectiveness of the theoretical results.

INDEX TERMS Fractional-order chaotic systems, impulsive synchronization, control gain error, actuator
saturation.

I. INTRODUCTION
In the past few decades, the synchronization scheme for a
myriad of chaotic systems has been wildly applied to many
occasions, such as neural networks [1], mechanical sys-
tems [2] and data transmission privacy [3]. In [4], the chaos
synchronization case was discussed for the first time, and
a variety of significant and representative control protocols
were designed subsequently to achieve the synchronization
objective of chaotic dynamical systems. The representative
synchronization protocols consist of linear and nonlinear
feedback control [5], [6], sliding mode control [7], [8], event-
triggered control [9], [10], nonlinear observer approach [11],
[12], fuzzy approach [13], [14], adaptive control [15], [16],
etc. It should be noted that the impulsive control approach,
one discontinuous control protocol, has special advantages
over the above continuous ones. For the synchronization
control process with impulsive approach, the response (slave)
system obtains the drive (master) system’s state information
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only at the discrete instants which described by an impulsive
sequence. Therefore, the state transmission burdens between
the response (slave) and drive (master) systems will be
relieved in large extent. It is obviously concluded that the
impulsive approach can obtain higher robustness and lower
control cost in practical applications than the continuous
control methods [17]– [20].

Fractional order calculus and fractional order system are
the old mathematic research fields for more than 300 years,
and they are rarely used to the actual physical system owing
to the poor application background. However, it has been con-
firmed that the fractional order calculus can describe a large
number of systems more accurately than the integer one, such
as viscoelastic systems [21], electromagnetic wave systems
[22], macroeconomic systems [23] and so on. In recent years,
the synchronization case for the fractional order chaotic sys-
tems obtained wide and considerable attention. Several typi-
cal fractional-order chaotic systems are analyzed and proved
such as Lorenz systems [24], hyperchaotic Lü systems [25],
Liu systems [26] and Bloch equations [27]. Numerous stud-
ies focused on the synchronization case of many kinds of
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fractional-order nonlinear chaotic systems owing to its wild
applications in genetic characteristics [28], and it was a chal-
lenging research task owing to the high sensitivity to initial
parameters. In addition, various kinds of control methods has
been explored to accomplish the synchronization goal for
the fractional order systems. In [29], the robust synchroniza-
tion case of the fractional order unified systems was studied
by the linear control approach. The active synchronization
case between two identical (or nonidentical) fractional order
chaotic systems was discussed in [30]. In [31], the com-
plete synchronization case of the commensurate fractional
order systems with sliding mode control approach was stud-
ied. The adaptive synchronization of fractional order chaotic
systems with uncertain system parameters via fuzzy sliding
mode control approach was explored in [32]. The lag pro-
jective synchronization of delayed fractional-order systems
via comparison system theory of linear fractional equation
was discussed in [33]. In [34], the synchronization case of
different fractional order chaotic systems with time-varying
orders and parameters was investigated. Note that the above
papers [29]–[34] are concern with the dynamical control sys-
tems in ideal system models. In fact, in many real-world sys-
tems, the control with restricted conditions and disturbances
occurs periodically or aperiodically, which is not negligible
in real systems and deserves further in-depth study.

Actuator saturation, which is also called control input sat-
uration, is a serious defect in control process. The reason
for this defect is that the actuators cannot provide persis-
tent efforts in the practical engineering applications. It often
destroy the control performance and effectiveness or even the
stability to a great extent if the effect of the actuator saturation
is ignored [35]. Owing to the importance and significance of
the saturation, there are many results about the actuator satu-
ration in recent years [11], [36]–[40]. For instance, in [36],
the synchronization of nonlinear master and slave systems
with input saturation and input delay (delay-range dependent)
was investigated. In [37], the design of adaptive feedback
controllers for chaos synchronization with unknown param-
eters and input saturation constraints was studied. In [38],
the adaptive synchronization for the unknown chaotic sys-
tems with external unknown disturbances and input satura-
tion was investigated, and the prescribed performance can
be assured. In [11], the chaos synchronization with model
uncertainties, non-symmetric input saturation and external
disturbances was discussed. In [39], the synchronization case
of delayed complex networks with actuator saturations via
intermittent controller was studied. Note that the above results
focus on the actuator saturation constraint problems via con-
tinuous control approaches. Based on the remarkable control
advantage of the impulsive control approach (fast response
speed, low energy consumption and simple implementation),
it is significant and important to explore the impulsive syn-
chronization of nonlinear systems with actuator saturation
[40]. In addition, so far the impulsive synchronization of frac-
tional order systems with actuator saturation has not investi-
gated yet, which deserves further investigate intensively.

On the other hand, another nonnegligible disturbance
element is the control gain error. Specifically, the dis-
turbance occurring at the impulsive control instant has
great adverse influence on the synchronization performance.
In [41], the fuzzy adaptive control scheme of nonlinear
fractional-order chaotic systems with unknown control gain
sign was studied. In [42], the impulsive stabilization of non-
linear system with bounded gain error was explored. The
impulsive consensus of multi-agent systems with bounded
and unknown control gain error was further investigated in
[43], [44]. Considering the analytical complexity of fractional
order systems, the extension of control gain error case to
fractional order systems is more significant and changeling.

Motivated by the above discussions, this paper mainly
investigates the impulsive synchronization case of nonlinear
fractional-order chaotic systems with actuator saturation and
control gain error, which goes deep into investigation firstly
in this paper. By conducting the synchronization error vec-
tor, the master-slave synchronization case of the fractional
order chaotic systems is transformed into the asymptotic
stability case of the synchronization error system. Combined
with the fractional order derivative, impulsive differential
system and some matrix inequality techniques, the impul-
sive controller is designed and some novel sufficient syn-
chronization conditions are derived. It should be noted that
the actuator saturation and control gain error are discussed
simultaneously, which is very rigorous and practical in real
systems. Moreover, the impact of the key controller design
parameters, saturation level and control gain error intensity
on the synchronization performance is analyzed intensively,
which provides helpful guideline for obtaining better control
performance.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are given, which introduces Caputo
factional-order derivative and a useful inequality lemma.
Section 3 studies the synchronization case with actuator sat-
uration and control gain error. The simulation results are
presented in Section 4. Finally, the conclusion is drawn in
Section 5.
Notation: In this paper, ⊗ and In denote the Kronecker

product and the n dimensional identity matrix. Rn×m denotes
the set of all n× m real matrices, specially, R and Rn denote
the real number and n-dimensional Euclidean space. N =
{1, 2, . . .}.

II. PRELIMINARIES
Definition 1 [45]:The Caputo factional order derivative for

function f (t) ∈ ([t0,+∞),R) is defined as

t0D
α
t f (t) =

1
0(n− α)

∫ t

t0

f (n)(τ )
(t − τ )α+1−n

dτ, (1)

where n ∈ N, α > 0 with n − 1 < α < n, and 0(·) is the
Gamma function 0(p) =

∫
+∞

0 tp−1e−tdt .
In the following, let t0D

α
t x(t) as D

αx(t) for convenience.

36114 VOLUME 8, 2020



T. Ma et al.: Impulsive Synchronization of Fractional-Order Chaotic Systems With Actuator Saturation and Control Gain Error

Lemma 1 [45]: If the continuous function V (t) ∈
([t0,+∞),R) satisfies

DαV (t) ≤ ςV (t), (2)

where 0 < α < 1 and ς ∈ R, then

V (t) ≤ V (t0)Eα(ς (t − t0)α), (3)

where Eα(z) =
+∞∑
k=0

zk
0(αk+1) is the Mittag-Leffter function.

Property 1: For any constants υ ∈ R andω ∈ R, it satisfies

Dα(υp(t)+ ωq(t)) = υDαp(t)+ ωDαq(t). (4)

Lemma 2 [46]: For a continuous and derivable function
x(t) ∈ R, t ≥ t0, it has

1
2
Dαx2(t) ≤ x(t)Dαx(t). (5)

III. MAIN RESULTS
The master nonlinear system to be considered is given as

Dαx(t) = Ax(t)+ f (x(t)), (6)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn,A ∈ Rn×n, f (x(t)) =
[f1(x1(t)), · · · , fn(xn(t))]T ∈ Rn is the nonlinear dynamical
function, and satisfies the Lipschiz condition ‖f (y)− f (x)‖ ≤
σ ‖y− x‖ , σ > 0, x, y ∈ R.

From the master–slave synchronization topic, the slave
system can be described as

Dαy(t) = Ay(t)+ f (y(t))+ u(t), (7)

where u(t) = [u1(t), · · · , un(t)]T ∈ Rn is the designed
controller, y(t) = [y1(t), · · · , yn(t)]T ∈ Rn. Then, from (6)
and (7), one can get the following synchronization error
system,

Dαe(t) = Ae(t)+ f (y(t))− f (x(t))+ u(t), (8)

where e(t) = y(t)− x(t) denotes the error vector.
Remark 1: Many nonlinear dynamical systems (including

many typical chaotic systems, such as Chen system, Chua’s
system, Lorenz system and so on) meet the description (6).

The controller u(t) is designed as

u(t) = sat(bke(tk ))δ(t − tk ), k ∈ N, (9)

where {tk} denotes the impulsive instants with 0 ≤ t0 <

t1 < · · · < tk < · · · , δ(t) is the Dirac delta function
and satisfies δ(t) = 0 for t 6= 0, the saturation func-
tion sat(bke(tk ))

.
= (sat(bke1(t1)), . . . , sat(bken(tk )))T with

sat(s) = sign(s) min{1, |s|}, where s ∈ R,1 > 0 is the
saturation level, bk ∈ R is the impulsive control gain.
Assumption 1: The controller is disturbed with the control

parametric uncertainty 1bk , which satisfies

1bk = κϕ(tk )bk , (10)

where κ > 0 is a known constant, |ϕ(tk )| < 1. Thus, the real
controller is

u(t) = sat((bk +1bk )e(tk ))δ(t − tk )

= sat((1+ κϕ(tk ))bke(tk ))δ(t − tk ). (11)

Define a time-varying parameter hi(tk ) as

hi(tk )

=


1

|(1+ κϕ(tk ))bkei(tk )|
|(1+ κϕ(tk ))bkei(tk )| > 1

1 |(1+ κϕ(tk ))bkei(tk )| ≤ 1
(12)

Obviously, it has hi(t) ∈ (0, 1] and the saturation input can
be expressed as

sat((1+κϕ(tk ))bkei(tk ))= (1+κϕ(tk ))bkhi(tk )ei(tk ). (13)

Then one can get

sat((1+ κϕ(tk ))bke(tk ))

= (sat((1+ κϕ(tk ))bke1(tk )), sat((1+ κϕ(tk ))bke2(tk )),

· · · , sat((1+ κϕ(tk ))bken(tk )))T

= ((1+ κϕ(tk ))bkh1(tk )e1(tk ), (1+ κϕ(tk ))bkh2(tk )e2(tk ),

· · · , (1+ κϕ(tk ))bkhn(tk )en(tk ))T

= (1+ κϕ(tk ))bkH (tk )e(tk ), (14)

where H (tk ) = diag{h1(tk ), h2(tk ), . . . , hn(tk )}.
From (10)∼(14), the error system (8) can be rewritten as{
Dαe(t) = Ae(t)+ f (y(t))− f (x(t)), t 6= tk ,
1e(tk ) = e(t+k )− e(tk ) = (1+ κϕ(tk ))bkH (tk )e(tk ).

(15)

Theorem 1: The asymptotical synchronization between
systems (6) and (7) is realized, if the following conditions
are satisfied

2(A+ σ In) ≤ λIn, (16)

3T
k 3k ≤ ηk In, (17)

Eα(λταk )ηk < θ, (18)

where 3k = (1 + κϕ(tk ))bkH (tk ) + In, 0 < θ < 1, 0 <
ηk < 1, λ > 0 are constants, τk = tk+1 − tk is the impulsive
interval.

Proof: Choose the Lyapunov functions as

V (t) = eT e. (19)

It is easy to verify that V (t) is nonnegative for [t0,∞).
When t 6= tk , it has the following fractional order deriva-

tive

DαV (t, e) ≤ 2eTDαe

= 2eT (Ae+ f (y)− f (x))

≤ 2eT (A+ σ In)e. (20)

From (16), there exists

DαV (t, e) ≤ λeT e = λV (t, e). (21)
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From Lemma 1, let each tk−1 as the initial time, then

V (tk ) ≤ V (t
+

k−1)Eα(λ(tk − tk−1)
α). (22)

When t = tk , it follows from (15) that

e(t+k ) = ((1+ κϕ(tk ))bkH (tk )+ In)e(tk ), (23)

then it yields from (17) that

V (t+k ) = eT (t+k )e(t
+

k )

= eT (tk )(((1+ κϕ(tk ))bkH (tk )+ In)T

× ((1+ κϕ(tk ))bkH (tk )+ In))e(tk )

≤ ηkV (tk ). (24)

Therefore

V (t+k ) ≤ ηkV (tk , e)

≤ ηkV (t
+

k−1)Eα(λτ
α
k ). (25)

Indeed, when k = 1, we get

V (t+1 ) ≤ η1V (t1) ≤ η1V (t0)Eα(λτα1 ). (26)

Thus, (18) holds for k = 1, we have

V (t+1 ) ≤ η1V (t0)Eα(λτα1 ) ≤ θV (t0). (27)

Similarly, for k = 2, we have

V (t+2 ) ≤ η2V (t1)Eα(λτα2 ) ≤ θ
2V (t0). (28)

For t = tk , one can obtain the following recursive result

V (t+k ) ≤ V (t+k−1)ηkEα(λ(tk − tk−1)
α)

≤ η1Eα(λτα1 )V (t0) · · · ηk−1Eα(λτ
α
k−1)ηkEα(λτ

α
k )

≤ θkV (t0). (29)

Since 0 < θ < 1 is a constant, θk → 0 as k → ∞. It is
obvious that V (t0) is bounded, so ‖V (t)‖ → 0 as k → ∞.
Since V (t) = eT (t)e(t), the synchronization of fractional
order chaotic systems is realized. This completes the proof.
Remark 2: If the parameters bk and κ satisfy ((1 +

κϕ(tk ))bk ∈ (−2,−1) ∪ (−1, 0), it follows from (17) and
hi(tk ) ∈ (0, 1] that ηk ∈ (0, 1). One can choose suitable
control gain bk and impulsive interval τk to achieve the
master-slave synchronization goal.
Corollary 1: The asymptotical synchronization without the

control gain error between systems (6) and (7) is realized,
if the following conditions satisfied

2(A+ σ In) ≤ λIn, (30)

((bkH (tk )+ In)T (bkH (tk )+ In)) ≤ ηk In, (31)

Eα(λταk ) · ηk < θ, (32)

where θ , λ, ηk and τk have the same meanings with
Theorem 1.
Conducting κ = 0 into the dynamic error system (15), and

the detailed analysis process is omitted for brevity (the similar
proof is similar to that of Theorem 1).

FIGURE 1. The impulsive interval τk = tk+1 − tk vs k (Example A).

IV. NUMERICAL EXAMPLES
Subsequently, the fractional order chaotic Chua’s system is
considered to verify the results, and the model to be consid-
ered is 

Dαx1 = a(x2 − ξ (x1)),
Dαx2 = x1 − x2 + x3,
Dαx3 = −bx2,

(33)

where ξ (x1) = ωx1 + 0.5(ζ − ω)(|x1 + 1| − |x1 − 1|), ζ and
ω are two given constants.
Let α = 0.97, a = 10, b = 14.7, ζ = −0.144, ω =

0.256.H (0) = diag[0.5, 0.4, 0.1]. Correspondingly, the sys-
tem can be rewritten as

A =

−ωa a 0
1 −1 1
0 −b 0

 ,
f (x) =

−0.5a(ζ − ω)(|x1 + 1| − |x1 − 1|)
0
0

 ,
where σ = |aυ| = 1.44.

A. SYNCHRONIZATION WITH ACTUATOR
SATURATION/WITHOUT CONTROL GAIN ERROR
Let 1 = 0.3, bk = −0.678. Due to different ηk at differ-
ent tk , the τk = tk+1 − tk is different obviously. By sim-
ple calculating, the corresponding curves of τk is shown
in Fig. 1. It can be observed that the impulsive interval
reaches a constant value finally. Since the error is decreasing
over time, there is no saturation appearance any more when
error is small enough (|bkei(tk )| ≤ 1) and H (tk ) becomes
a unit matrix. Because ηk is related to τk , since ηk is a
constant, from (18) we can get that the impulsive interval
is a constant value. Therefore, it can conclude that there is
no saturation appearance when the impulsive interval reaches
a constant value. The synchronization errors are reflected
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FIGURE 2. Error states of the master and slaver systems (Example A).

FIGURE 3. The impulsive interval τk = tk+1 − tk vs k (Example B).

FIGURE 4. Error states of the master and slaver systems (Example B).

in Fig. 2, which shows that the error states of the master
and slaver systems cover to zero, then the system can realize
synchronization.

B. SYNCHRONIZATION WITH ACTUATOR SATURATION
AND CONTROL GAIN ERROR
When control gain error exists, let 1 = 0.3,bk = −0.6, κ =
0.5, ϕ(tk ) = sin(k), thus 1bk = 0.5 ∗ sin(k)bk . Due to
different ηk at different tk , the τk = tk+1 − tk is different
obviously. By simple calculating, the corresponding curves of
τk is shown in Fig. 3. Distinguished from Fig. 1, the impulsive
interval cannot reach a constant value finally because of the
influence of control gain error. Even if the synchronization
error is small enough and there isn’t saturation appearance,
ηk is changing on the effect of1bk . Since ηk is related to τk ,
the impulsive interval can’t reach a constant value finally. The
synchronization errors are reflected in Fig. 4, which shows
that the error states of the master and slaver systems converge
to zero, then the system can realize synchronization.

V. CONCLUSION
The synchronization problem of factional-order chaotic sys-
tems by impulsive approach subject to actuator saturation and
control gain error is mainly discussed. The controller is pro-
vided based on the Caputo factional-order derivative method.
Then, based on the Lyapunov stability and impulsive differ-
ential system theory, the error system with impulsive control
is analyzed and the control guideline for impulsive control
parameters is studied. The relations of the impulsive con-
troller, actuator saturation level and control gain error func-
tion are considered, and the method is proved to be effective
under the derived inequality conditions. Considering the real
engineering applications, the above results are meaningful in
the synchronization problems.
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